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Outline

1 Administration

2 Review of last lecture

3 Decision tree
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Homeworks

HW1 due now

HW2 will be available by next Monday (and possibly earlier)
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Math Quiz

Scores were out of 13 points

Mean: 8.53; median: 8.75; standard deviation: 2.0

Your grade is available on CCLE

Will NOT count toward final grade, but good indication of material
I Score less than 6: I have already contacted you

Roughly 25 registered students have not taken the quiz!
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Registration / PTEs

I have increased class size to add all students who were on waitlist
I Waitlist is now empty (and locked)

I plan to give out PTEs in the next week

If you’re not registered, please continue to remain patient
I I am confident that all qualified students will be able to enroll
I Request PTE here: https://goo.gl/forms/cpS1XcfWuVTileKI3
I Priority to students who take quiz by Friday (1/20) (check CCLE!)
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Preview / Review

I am aware that the lecture presentation can be fast at times

Providing slides in advance of lecture usually not possible

However, I cover material twice
I e.g., today we’ll first review nearest neighbor material before talking

about decision trees

This gives you two opportunities to be exposed to the material and
ask questions
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Outline

1 Administration

2 Review of last lecture
General setup for classification
Nearest neighbor classifier
Understanding learning algorithm
Practical Considerations

3 Decision tree
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Multi-class classification

Classify data into one of the multiple categories

Input (feature vectors): x ∈ RD

Output (label): y ∈ [C] = {1, 2, · · · ,C}
Learning goal: y = f(x)

Special case: binary classification

Number of classes: C = 2

Labels: {0, 1} or {−1,+1}

Example: Iris dataset

3 classes, corresponding to three types of Irises

D = 4 corresponding to the length and width of the sepals and petals
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More terminology

Training data)

N samples/instances: Dtrain = {(x1, y1), (x2, y2), · · · , (xN, yN)}
They are used for learning f(·)

Test data

M samples/instances: Dtest = {(x1, y1), (x2, y2), · · · , (xM, yM)}
They are used for assessing how well f(·) will do in predicting an
unseen x /∈ Dtrain

Training data and test data should not overlap: Dtrain ∩ Dtest = ∅
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Algorithm

x1

x2

(a)

Nearest neighbor

x(1) = xnn(x)

where nn(x) ∈ [N] = {1, 2, · · · ,N},

nn(x) = argminn∈[N] ‖x− xn‖22

Classification rule

y = f(x) = ynn(x)

Extension to KNN classification?

Every neighbor gets a vote;
return the majority vote

Randomly break ties
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How good is NNC?

We answer this question in 3 steps:
1 We define a performance metric for a classifier/algorithm

I Expected Risk via 0/1 Loss

2 We then propose an ideal classifier
I Bayes Optimal Classifier

3 We then compare NNC to the Bayes Optimal Classifier
I Cover-Hart Inequality
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Performance Metric

Assume data (x, y) drawn from unknown, joint distribution p(x, y)

0/1 loss function measures mistake on a single data point

L(f(x), y) =

{
0 if f(x) = y
1 if f(x) 6= y

Empirical risk (on test set)

RD(f) =
1

M

∑

m

L(f(xm), ym)

Expected risk
R(f) = E(x,y)∼p(x,y)L(f(x), y)
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Bayes binary classifier

It ‘cheats’ by using the posterior probability η(x) = p(y = 1|x)

f∗(x) =
{

1 if η(x) ≥ 1/2
0 if η(x) < 1/2 equivalently f∗(x) =

{
1 if p(y = 1|x) ≥ p(y = 0|x)
0 if p(y = 1|x) < p(y = 0|x)

Unsurprisingly, it is optimal (we proved this)

Theorem

For any labeling function f(·), R(f∗) ≤ R(f).
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Comparing NNC to Bayes optimal classifier

How well does NNC do asymptotically?

Theorem (Cover-Hart inequality)

For the NNC rule fnnc for binary classification, we have,

R(f∗) ≤ R(fnnc) ≤ 2R(f∗)

What does this tell us?

Shows that as n→∞, NNC’s expected risk is at worst twice that of
the Bayes optimal classifier

Provides theoretical justification, as NNC is nearly optimal
asymptotically
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Hyperparameters in NNC

Three practical issues related to NNC

Choosing K, i.e., the number of nearest neighbors (default is 1)

Choosing the right distance measure (default is Euclidean distance)

Choosing the scale of each feature since distances depend on units
(default is to normalize to zero mean and unit variance)

Those are not specified by the algorithm itself — resolving them requires
empirical studies and are task/dataset-specific.
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Tuning by using a validation dataset

Training data

N samples/instances: Dtrain = {(x1, y1), (x2, y2), · · · , (xN, yN)}
They are used for learning f(·)

Test data

M samples/instances: Dtest = {(x1, y1), (x2, y2), · · · , (xM, yM)}
They are used for assessing how well f(·) will do in predicting an
unseen x /∈ Dtrain

Validation data

L samples/instances: Dval = {(x1, y1), (x2, y2), · · · , (xL, yL)}
They are used to optimize hyperparameter(s).

Training data, validation and test data should not overlap!
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Recipe

For each possible value of the hyperparameter (say
K = 1, 3, · · · , 100)

I Train a model using Dtrain

I Evaluate the performance of the model on Dval

Choose the model with the best performance on Dval

Evaluate the model on Dtest
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Cross-validation

What if we do not want to withhold an explicit validation set?

We split the training data into S
equal parts.

We use each part in turn as a
validation dataset and use the
others as a training dataset.

We choose the hyperparameter
such that on average, the model
performing the best

S = 5: 5-fold cross validation

Special case: when S = N, this will be leave-one-out.
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Recipe

Split the training data into S equal parts. Denote each part as Dtrain
s

For each possible value of the hyperparameter (say
K = 1, 3, · · · , 100)

I for every s ∈ [1,S]
F Train a model using Dtrain

\s = Dtrain −Dtrain
s

F Evaluate the performance of the model on Dtrain
s

I Average the S performance metrics

Choose the hyperparameter corresponding to the best averaged
performance

Use the best hyperparameter to train on a model using all Dtrain

Evaluate the model on Dtest
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Things you need to know

NNC

Advantages
I Computationally, simple and easy to implement – just computing the

distance
I Theoretically, has good guarantees

Disadvantages
I Computationally intensive for large-scale problems: O(ND) for labeling

a data point
I We need to “carry” the training data around to perform classification

(nonparametric).
I Choosing the right distance measure, scaling, and K can be involved.

Crucial theoretical concepts loss function, expected risk, empirical risk,
Bayes optimal
Crucial practical concepts hyperparameters, validation set, cross
validation
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Outline

1 Administration

2 Review of last lecture

3 Decision tree
Examples
Algorithm
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Many decisions are tree structures

Medical treatment

Fever 

𝑇 > 100 𝑇 < 100 

Treatment #1 Muscle Pain 

Treatment #2 

High 

Treatment #3 

Low 

Salary in a company

Degree 

High School College Graduate 

Work Experience Work Experience Work Experience 

< 5yr > 5yr 

$𝑿𝟏 $𝑿𝟐 

< 5yr > 5yr 

$𝑿𝟑 $𝑿𝟒 

< 5yr > 5yr 

$𝑿𝟓 $𝑿𝟔 
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What is a Tree?

Node 

Edge 
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Special Names for Nodes in a Tree

Node 

Root 

Edge 

Leaf 
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A tree partitions the feature space

A

B

C D

E

θ1 θ4

θ2

θ3

x1

x2

x1 > θ1

x2 > θ3

x1 6 θ4

x2 6 θ2

A B C D E
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Learning a tree model

x1 > θ1

x2 > θ3

x1 6 θ4

x2 6 θ2

A B C D E

Three things to learn:

1 The structure of the tree.

2 The threshold values (θi).

3 The values for the leafs
(A,B, . . .).

Professor Ameet Talwalkar CS260 Machine Learning Algorithms January 18, 2017 26 / 45



Learning a tree model

x1 > θ1

x2 > θ3

x1 6 θ4

x2 6 θ2

A B C D E

Three things to learn:

1 The structure of the tree.

2 The threshold values (θi).

3 The values for the leafs
(A,B, . . .).

Professor Ameet Talwalkar CS260 Machine Learning Algorithms January 18, 2017 26 / 45



A tree model for deciding where to eat

Choosing a restaurant
(Example from Russell & Norvig, AIMA)
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First decision: at the root of the tree

Which attribute to split?
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First decision: at the root of the tree

Which attribute to split?

Idea:  use information gain to choose 
which attribute to split
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How to measure information gain?

Idea:	



Gaining information reduces 
uncertainty	



!

Use to entropy to measure uncertainty	



If a random variable X has K different values, a1, 
a2, ...aK, it is entropy is given by	



!
! H[X] = �

KX

k=1

P (X = ak) log P (X = ak)

the base can be 2 , 
though it is not essential	


(if the base is 2, the unit 
of the entropy is called 

“bit”)
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Examples of computing entropy

Entropy
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H(X) = 1.3863
H(X) = 0.8360

H(X) = 0
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Which attribute to split?

!
!
!
!
!
!
Patron vs. Type?	



By choosing Patron, we end up with a partition (3 branches) with smaller entropy, ie, 
smaller uncertainty (0.45 bit)	



By choosing Type, we end up with uncertainty of 1 bit.	



Thus, we choose Patron over Type.	
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Uncertainty if we go with  “Patron”

For “None” branch	



!
For “Some” branch	



!
For “Full” branch	



!
For choosing “Patrons”	



weighted average of each branch: this quantity is called conditional entropy	



!

�
✓

0

0 + 2
log

0

0 + 2
+

2

0 + 2
log

2

0 + 2

◆
= 0

�
✓

4

4 + 0
log

4

4 + 0
+

4

4 + 0
log

4

4 + 0

◆
= 0

2

12
⇤ 0 +

4

12
⇤ 0 +

6

12
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�
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log
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+
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log
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◆
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Conditional entropy for Type

For “French” branch	



!
For “Italian” branch	



!
For “Thai” and “Burger” branches	



!
For choosing “Type”	



weighted average of each branch:	



!

�
✓

1

1 + 1
log

1

1 + 1
+

1

1 + 1
log

1

1 + 1

◆
= 1

�
✓

1

1 + 1
log

1

1 + 1
+

1

1 + 1
log

1

1 + 1

◆
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�
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log

2
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+
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log
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⇤ 1 +
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12
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4

12
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Conditional entropy

Definition. Given two random variables X and Y 	



!

!

In our example	



X:  the attribute to be split	



Y:   Wait or not	



Relation to information gain

H[Y |X] =
X

k

P (X = ak)H[Y |X = ak]

When H[Y] is fixed, we need only to	


compare conditional entropy

gain = H[Y ] � H[Y |X]
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What do we do next?Do we split on “Non” or “Some”?

!

No, we do not!
The decision is deterministic, as seen from the training data
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next split?
We will look only at the 6 instances with 

Patrons == Full
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Greedily we build the tree and get this
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What is the optimal Tree Depth?

We need to be careful to pick an appropriate tree depth

I If the tree is too deep, we can overfit
I If the tree is too shallow, we underfit

Max depth is a hyperparameter that should be tuned by the data

Alternative strategy is to create a very deep tree, and then to prune it
(see Section 9.2.2 in ESL for details)
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Control the size of the tree

We would prune to have a smaller one

If we stop here, not all training sample would be classified correctly. 

More importantly,   how do we classify a new instance?
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Control the size of the tree

We would prune to have a smaller one

If we stop here, not all training sample would be classified correctly. 

More importantly,   how do we classify a new instance?

We label the leaves of this smaller tree with the majority 
of training samples’ labels
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Example

Example

We stop after the root (first node)	



!

!

!

!

!

!

!

Wait: yes Wait: noWait: no

Professor Ameet Talwalkar CS260 Machine Learning Algorithms January 18, 2017 43 / 45



Computational Considerations

Numerical Features

We could split on any feature with any threshold

Can we do this efficiently?
I Yes – for a given feature we only need to consider the n values in the

training data!
I If we sort each feature by these n values, we can quickly compute our

impurity metric of interest

I This takes O(dn log n) time

Categorical Features

Assuming q distinct categories, there are 2q−1 − 1 possible partitions

Things simplify in the case of binary classification or regression,
I suffices to consider only q − 1 possible splits (see Section 9.2.4 in ESL)
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Summary of learning trees

Advantages of using trees

Can be interpreted by humans (as long as the tree is not too big)

Computationally efficient

Handles both numerical and categorical data

Parametric and thus compact: unlike NNC we don’t need training
data at test time

Building block for various ensemble methods (more on this later)

Disadvantages

Heuristic training techniques
I Finding partition of space that minimizes empirical error is NP-hard
I We resort to greedy approaches with limited theoretical underpinnings

Professor Ameet Talwalkar CS260 Machine Learning Algorithms January 18, 2017 45 / 45



Summary of learning trees

Advantages of using trees

Can be interpreted by humans (as long as the tree is not too big)

Computationally efficient

Handles both numerical and categorical data

Parametric and thus compact: unlike NNC we don’t need training
data at test time

Building block for various ensemble methods (more on this later)

Disadvantages

Heuristic training techniques
I Finding partition of space that minimizes empirical error is NP-hard
I We resort to greedy approaches with limited theoretical underpinnings

Professor Ameet Talwalkar CS260 Machine Learning Algorithms January 18, 2017 45 / 45



Summary of learning trees

Advantages of using trees

Can be interpreted by humans (as long as the tree is not too big)

Computationally efficient

Handles both numerical and categorical data

Parametric and thus compact: unlike NNC we don’t need training
data at test time

Building block for various ensemble methods (more on this later)

Disadvantages

Heuristic training techniques

I Finding partition of space that minimizes empirical error is NP-hard
I We resort to greedy approaches with limited theoretical underpinnings

Professor Ameet Talwalkar CS260 Machine Learning Algorithms January 18, 2017 45 / 45



Summary of learning trees

Advantages of using trees

Can be interpreted by humans (as long as the tree is not too big)

Computationally efficient

Handles both numerical and categorical data

Parametric and thus compact: unlike NNC we don’t need training
data at test time

Building block for various ensemble methods (more on this later)

Disadvantages

Heuristic training techniques
I Finding partition of space that minimizes empirical error is NP-hard
I We resort to greedy approaches with limited theoretical underpinnings

Professor Ameet Talwalkar CS260 Machine Learning Algorithms January 18, 2017 45 / 45


	Administration
	Review of last lecture
	General setup for classification 
	Nearest neighbor classifier
	Understanding learning algorithm
	Practical Considerations

	Decision tree
	Examples
	Algorithm


