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HW1

@ Will be returned today in class during our break

@ Can also pick up from Brooke during her office hours
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Outline

© Review of last lecture

@ Naive Bayes

o & = E DA
Professor Ameet Talwalkar CS260 Machine Learning Algorithms



How to tell spam from ham?

FROMTHE DESK OF MR.AMINU SALEH
DIRECTOR, FOREIGN OPERATIONS DEPARTMENT
AFRI BANK PLC

Afribank Plaza,

14th Floormoney344.jpg

51/55 Broad Street,

PM.B 12021 Lagos-Nigeria

Attention: Honorable Beneficiary,

IMMEDIATE PAYMENT NOTIFICATION VALUED AT US$ 10 MILLION

Dear Ameet,
Do you have 10 minutes to get on a videocall before 2pm?
Thanks,

Stefano




Simple strategy: count the words

Bag-of-word representation
of documents (and textual data)

free 100
money 2

account 2

free 1

Just wanted to send a quick reminder dbout the guest lec

noon. We meet in RTH 105. It has a PC and LCD projector

connection for your laptop if you desire. Maybe we can . .
o Setup the A SLUFF,

gotn, 1F you would be able to make it around 30 minutes account 2
et

[ Thanks so much for your willingness to do this,

Mark




Naive Bayes (in our Spam Email Setting)
Assume X € RP, all X; € [K], and 2 is the number of times k in X

P X=2,Y=¢)=PY =c¢)P(X =z|Y =¢)
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Naive Bayes (in our Spam Email Setting)
Assume X € RP, all X; € [K], and 2 is the number of times k in X

PX=2,Y=¢)=PY =c¢)P(X =z|Y =¢)

=P(Y =) [[ PR = o) = =[] 03
k k

Key assumptions made?
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Naive Bayes (in our Spam Email Setting)

Assume X € RP, all X; € [K], and z is the number of times k in X

PX=2,Y=¢)=PY =c¢)P(X =z|Y =¢)

=P(Y =) [[Pk]Y =¢)* == ][ 0%
k k

Key assumptions made?

o Conditional independence:
e P(X;|Y = c) depends only the value of X;, not i itself (order of
words does not matter in “bag-of-word” representation of documents)
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Learning problem

Training data

D= {({an}lljzla yn)}:\zlzl
Goal

o = £ DA
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Learning problem

Training data
D= {({an};s:p yn)}l\zlzl
Goal
Learn 7, e =1,2,---,C, and O, Ve € [C], k € [K] under the constraints:
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Learning problem

Training data

D = {({znk }om1> Yn) 11
Goal

Learn 7, e =1,2,---,C, and O, Ve € [C], k € [K] under the constraints:

Zﬂ'c: 1,
> O => Pk]Y =c)=1,
k k

and all quantities should be nonnegative.

Professor Ameet Talwalkar CS260 Machine Learning Algorithms January 25, 2017 6 /48



Likelihood Function

o Let Xy,..., Xy be lID with PDF f(z|0) (also written as f(x;0))
o Likelihood function is defined by L(6|z) (also written as L(0;x)):

=2

L(0lz) = [ ] £(Xi;0).

=1

Notes The likelihood function is just the joint density of the data, except
that we treat it as a function of the parameter 6, L : © — [0, c0).
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Maximum Likelihood Estimator

Definition: The maximum likelihood estimator (MLE) 6, is the value of 0
that maximizes L(6).

The log-likelihood function is defined by [(#) = log L(0)

@ Maximum occurs at same place as that of the likelihood function
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Maximum Likelihood Estimator

Definition: The maximum likelihood estimator (MLE) 6, is the value of 0
that maximizes L(6).
The log-likelihood function is defined by [(#) = log L(0)

@ Maximum occurs at same place as that of the likelihood function

@ Using logs simplifies mathemetical expressions (converts exponents to
products and products to sums)

@ Using logs helps with numerical stabilitity

The same is true of the likelihood function times any constant. Thus we
shall often drop constants in the likelihood function.
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Bayes Rule

For any document z, we want to compare p(spam|x) and p(ham|z)
Axiom of Probability: p(spam, x) = p(spam|z)p(z) = p(z|spam)p(spam)
This gives us (via bayes rule):

p(x|spam)p(spam)
p(z)

p(spam|z) =

p(z[ham)p(ham)
p(z)

p(ham|z) =

Professor Ameet Talwalkar CS260 Machine Learning Algorithms January 25, 2017 9 /48



Bayes Rule

For any document x, we want to compare p(spam|x) and p(ham|x)
Axiom of Probability: p(spam, x) = p(spam|z)p(z) = p(z|spam)p(spam)
This gives us (via bayes rule):

p(x|spam)p(spam)
p(x)

p(spam|z) =

p(z|ham)p(ham)
p(z)
Denominators are same, and easier to compute logarithms, so we compare:

p(ham|z) =

log[p(x|spam)p(spam)| versus log[p(z|ham)p(ham)]
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Our hammer: maximum likelihood estimation
Log-Likelihood of the training data

N
L =log P(D) = log [ [ 7y, P(wnlyn)

n=1
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Our hammer: maximum likelihood estimation
Log-Likelihood of the training data

N
L =log P(D) = log [ [ 7y, P(wnlyn)

n=1

N
o ] ( H%:',z)
n=1 k
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Our hammer: maximum likelihood estimation
Log-Likelihood of the training data

N
L =log P(D) = log [ [ 7y, P(wnlyn)

n=1
N
o T (. TT5
n=1 k
= Z <log Tyn + Z Znk log Hynk>
n k
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Our hammer: maximum likelihood estimation
Log-Likelihood of the training data

N
L =log P(D) = log [ [ 7y, P(wnlyn)

n=1
N
o T (. TT5
n=1 k
= Z <log Tyn + Z Znk log Hynk>
n k

= Z log my,, + Z Znk 10g Oy, 1
n n,k
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Our hammer: maximum likelihood estimation
Log-Likelihood of the training data

N
L =log P(D) = log [ [ 7y, P(wnlyn)

n=1

= log H <7ryn 11 9an>

= Z <log Tyn + Z Znk log Gynk>
n k
= Z log my,, + Z Znk 10g Oy, 1
n n,k
Optimize it!

(7Tc7 ck) = argimax Z 10g Ty, + Z Znk 10g Qynk
n,k
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Details

Note the separation of parameters in the likelihood

Z log my,, + Z Znk 1og Oy, i
n n,k

which implies that {m.} and {0.x} can be estimated separately.
Reorganize terms

Zlog Ty = Zlog Te X (Fof data points labeled as c)
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Details

Note the separation of parameters in the likelihood

Z log 7y, + Z Znk 1og Oy, i
n

n,k

which implies that {m.} and {0.x} can be estimated separately.
Reorganize terms

Zlog Ty = Zlog Te X (Fof data points labeled as c)

and
Z Znk IOg Hynk = Z Z Z Znk IOg eck = Z Z Znk IOg Hck
n,k

c nypn=c k c nyp=ck

The later implies {0,k =1,2,--- K} and {0k, k =1,2,--- K} can be
estimated independently.
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Estimating {7.}

We want to maximize
Zlog 7. X (#of data points labeled as c)

Intuition

e Similar to roll a dice (or flip a coin): each side of the dice shows up
with a probability of 7. (total C sides)

@ And we have total N trials of rolling this dice

Solution
Professor Ameet Talwalkar CS260 Machine Learning Algorithms
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Estimating {7.}

We want to maximize
Zlog 7. X (#of data points labeled as c)

Intuition

e Similar to roll a dice (or flip a coin): each side of the dice shows up
with a probability of 7. (total C sides)

@ And we have total N trials of rolling this dice

Solution )
.  #of data points labeled as c
T =
N

January 25, 2017 12 / 48



Estimating {0,k =1,2,--- K}

We want to maximize
Z Znk log eck
n:Yn=c,k
Intuition

@ Again similar to roll a dice: each side of the dice shows up with a
probability of 6. (total K sides)

© And we have total 3, 2 trials.

Solution
Professor Ameet Talwalkar CS260 Machine Learning Algorithms
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Estimating {0,k =1,2,--- K}

We want to maximize

Z Znk log eck

n:Yn=c,k
Intuition

@ Again similar to roll a dice: each side of the dice shows up with a
probability of 6. (total K sides)
© And we have total 3, 2 trials.
Solution

« _ #rof times side k shows up in data points labeled as c
ck #total trials for data points labeled as c
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Translating back to our problem of detecting spam emails

@ Collect a lot of ham and spam emails as training examples

@ Estimate the “bias”

_ #tof ham emails _ #tof spam emails

h = =
p(ham) #of emails ’ p(spam) #of emails

e Estimate the weights (i.e., p(funny_word|ham) etc)

p(funny word|ham) = #of funny_word in ham emails

#of words in ham emails
(f ord|spam) #of funny_word in spam emails (2)
unny_wor m) =
b y P #of words in spam emails
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Classification rule

Given an unlabeled data point x = {2,k = 1,2,--- K}, label it with
y" = argmax.cc) P(y = c[z)
= argmax .c(c) P(y = ¢)P(zly = )

= arg max_[log 7. + Z zi log 0]
k
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Constrained optimization

Equality Constraints

min  f(x)
st. g(x)=0

Method of Lagrange multipliers

Construct the following function (Lagrangian)

L(z, A) = f(x) + Ag()

Professor Ameet Talwalkar CS260 Machine Learning Algorithms January 25, 2017 16 / 48



A short derivation of the maximum likelihood estimation

Z Znk log ack

n:Yn=c,k

To maximize

We can use Lagrange multipliers
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A short derivation of the maximum likelihood estimation

Z Znk log eck

n:Yn=c,k

To maximize

We can use Lagrange multipliers

FO == > zulogle

nYyn=c,k

—1—Zeck—

Lagrangian

L0, X) = f(0) + Ag(0)

= — Z Znk 1og 0o, + A <1 —chk>
k

n:Yn=c,k
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LO,N) =~ > zlogbep+A 1= O
k

n:Yyn=c,k

First take derivatives with respect to 6., and then find the stationary point

n 1
_< Z ZC:)—A:Oeeck:—X Z Znk

niYn=C Nn:Yn=cC
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LO,N) =~ > zlogbep+A 1= O
k

niyn=c,k

First take derivatives with respect to 6., and then find the stationary point

_< Z ZZ:)_/\_O_)HCk___ Z Znk

n:Yp=c

@ Plug in expression above for 6 into constraint ), 0., = 1
@ Solve for A

@ Plug this expression for A back into expression for 6. to get:

Zn ‘Yn=C¢C Znk
Zk Zn Yn=c Znk

Chris will review in section on Friday

Hck:
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Summary

Things you should know
@ The form of the naive Bayes model

|

>
>
>

write down the joint distribution

explain the conditional independence assumption implied by the model
explain how this model can be used to classify spam vs ham emails
explain how it could be used for categorical variables

@ Be able to go through the short derivation for parameter estimation

>

>

>

The model illustrated here is called discrete Naive Bayes
HW?2 asks you to apply the same principle to other variants of naive

Bayes
The derivations are very similar — except there you need to estimate

different model parameters
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Moving forward

Examine the classification rule for naive Bayes

y* = argmax, log 7. + Z 2. 1og Ocx;
k

For binary classification, we thus determine the label based on the sign of

log ™ + Z zi log 015 — (log Ty + Z zi log 92k>

k k

This is just a linear function of the features {z}
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Moving forward

Examine the classification rule for naive Bayes

y* = argmax, log 7. + Z 2. 1og Ocx;
k

For binary classification, we thus determine the label based on the sign of

log ™ + Z zi log 015 — (log Ty + Z zi log 9%)

k k

This is just a linear function of the features {z}
wo + Z ZEWE
k

where we “absorb” wg = log m; — log mo and wg = log 615 — log Oo.

Professor Ameet Talwalkar CS260 Machine Learning Algorithms January 25, 2017 20 / 48



Naive Bayes is a linear classifier

Fundamentally, what really matters in deciding decision boundary is
wo + Z ZpWE
k

This motivates many new methods, including logistic regression, to be
discussed next
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Outline

9 Logistic regression
o General setup
@ Maximum likelihood estimation
o Gradient descent
@ Newton’s method
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Logistic classification

Setup for two classes
o Input: = € RP
e Output: y € {0,1}
e Training data: D = {(xn,yn),n=1,2,...,N}
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Logistic classification

Setup for two classes

o Input: = € RP
e Output: y € {0,1}
e Training data: D = {(xn,yn),n=1,2,...,N}
o Model:
p(y = 1@; b, w) = ofg(x)]
where

g(x) :b+2wdmd:b+me
d

and o[:] stands for the sigmoid function
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Why the sigmoid function?

o & = E DA
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Why the sigmoid function?

What does it look like?

1
o) = e
where
a=b+w'x
Properties

Professor Ameet Talwalkar CS260 Machine Learning Algorithms
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Why the sigmoid function?

What does it look like?

1
olqg) = ——— 09|
@i g
where i
a=b+wlx o
Properties

@ Bounded between 0 and 1 < thus, interpretable as probability

@ Monotonically increasing thus, usable to derive classification rules
» o(a) > 0.5, positive (classify as '1")
» o(a) < 0.5, negative (classify as '0")
» o(a) = 0.5, undecidable

@ Nice computational properties As we will see soon
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Why the sigmoid function?

What does it look like?

1
o) = e
where
a=b+wlx
Properties

09|
o8]

06
05
0.4
03]
02
ot

@ Bounded between 0 and 1 < thus, interpretable as probability

@ Monotonically increasing thus, usable to derive classification rules

» o(a) > 0.5, positive (classify as '1")
» o(a) < 0.5, negative (classify as '0")

» o(a) = 0.5, undecidable

@ Nice computational properties As we will see soon

Linear or nonlinear classifier?

Professor Ameet Talwalkar CS260 Machine Learning Algorithms January 25, 2017
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Linear or nonlinear?

o(a) is nonlinear, however, the decision boundary is determined by

o(a) =0.5=
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Linear or nonlinear?

o(a) is nonlinear, however, the decision boundary is determined by
o(a)=05=>a=0=>g(x)=b+w'z=0
which is a linear function in =

We often call b the offset term.
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Contrast Naive Bayes and our new model

Similar

o & = E DA
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Contrast Naive Bayes and our new model

Similar

Both classification models are linear functions of features

Different
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Contrast Naive Bayes and our new model

Similar
Both classification models are linear functions of features
Different

Naive Bayes models the joint distribution: P(X,Y) = P(Y)P(X|Y)
Logistic regression models the conditional distribution: P(Y|X)

Generative vs. Discriminative

NB is a generative model, LR is a discriminative model

o We will talk more about the differences later
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Likelihood function

Probability of a single training sample (x,,, y,)

olb+wTlz,) if y,=1

p(yn|mn; b; w) = { 1—o(b+ wTa:n) otherwise
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Likelihood function

Probability of a single training sample (x,,, y,)

olb+wTlz,) if y,=1

p(yn|wn; b; w) = { 1—o(b+ wTajn) otherwise

Compact expression, exploring that vy, is either 1 or 0

P(Yn|Xn; b;w) = o(b+ men)y” [1—o(b+ men)]l_yn
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Log Likelihood or Cross Entropy Error

Log-likelihood of the whole training data D

log P(D) = Z{yn logo(b+wrae,) + (1 —y,)log[l — o(b+ wre,)]}
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Log Likelihood or Cross Entropy Error

Log-likelihood of the whole training data D
log P(D) = Z{yn logo(b+wlx,) + (1 — y,)log[l — o(b+wTx,)]}

It is convenient to work with its negation, which is called
cross-entropy error function

E(b,w) Z{yn logo(b+wTx,) 4+ (1 —y,)log[l — o (b +wTax,)]}
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Shorthand notation

This is for convenience

@ Append 1 to x
x|l 1 2 - xp]

@ Append b to w
w<+— b w wy -+ wp]

@ Cross-entropy is then

E(w) ==Y {ynlogo(w z,) + (1 - yn) log[l — o(w a,)]}
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How to find the optimal parameters for logistic regression?

We will minimize the error function
E(w) == {ynlogo(w a,) + (1 - yn)log[l — o(w"z,)]}

However, this function is complex and we cannot find the simple solution
as we did in Naive Bayes. So we need to use numerical methods.

@ Numerical methods are messier, in contrast to cleaner analytic
solutions.

@ In practice, we often have to tune a few optimization parameters —
patience is necessary.
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An overview of numerical methods

We describe two

o Gradient descent (our focus in lecture): simple, especially effective for
large-scale problems

@ Newton's method: classical and powerful method

Gradient descent is often referred to as a first-order method
@ Requires computation of gradients (i.e., the first-order derivative)
Newton's method is often referred as to an second-order method

@ Requires computation of second derivatives

Professor Ameet Talwalkar CS260 Machine Learning Algorithms January 25, 2017 31/ 48



Gradient Descent

fiw)

Start at a random point




Gradient Descent

fiw)

Start at a random point

Determine a descent direction
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Start at a random point

Determine a descent direction
Choose a step size
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Start at a random point

Determine a descent direction
Choose a step size
Update




Gradient Descent

fiw)

Start at a random point

Repeat
Determine a descent direction
Choose a step size
Update

Until stopping criterion is satisfied




Gradient Descent

fiw)

Start at a random point
Repeat
| Determine a descent direction
Choose a step size
Update
Until stopping criterion is satisfied
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fiw)

Start at a random point
Repeat
| Determine a descent direction
Choose a step size
Update
Until stopping criterion is satisfied




Gradient Descent

fiw)

Start at a random point
Repeat
Determine a descent direction
| Choose a step size
Update
Until stopping criterion is satisfied




Gradient Descent

fiw)

Start at a random point
Repeat
Determine a descent direction
Choose a step size
| Update
Until stopping criterion is satisfied

w* w2 wi wo



Gradient Descent

fiw)

Start at a random point

Repeat
Determine a descent direction
Choose a step size
Update

Until stopping criterion is satisfied

W* e W2 Wi Wo



Where Will We Converge?

fiw) Convex g(w) Non-convex

o

W w W W w
Any local minimum is a global minimum  Multiple local minima may exist

Least Squares, Ridge Regression and
Logistic Regression are all convex!



Why do we move in the direction opposite the gradient?

o & = E DA
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Choosing Descent Direction (1D)

f(W) positive = go left! f(W) negative = go right!
zero = done!
— — w
Step Size
We can only move in two directions \ df

, o Update Rule: w; 1 = w; — a;— (w;)
Negative slope is direction of descent! dw

Negative Slope



Choosing Descent Direction

We can move anywhere in R4

Negative gradient is direction of
Steepest descent!

2D Example:

e Function values are in black/white
and black represents higher values

® Arrows are gradients

Step Size
Update Rule:w;, | = w; — a;VAw;)

Negative Slope



Example: min f(6) = 0.5(67 — 05)> + 0.5(0; — 1)*

o = E E = 9ace
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Example: min f(6) = 0.5(67 — 05)> + 0.5(0; — 1)*

@ We compute the gradients

of
50 = 2007 — 02)0; + 6, — 1

of o
0y (0] — 62)

it
<
¢

[m] = = =
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Example: min f(6) = 0.5(67 — 05)* + 0.5(0; — 1)*

@ We compute the gradients

9
a_efl = 2(0% — 02)0, + 61 — 1
of o

802 - (91 92)

@ Use the following iterative procedure for gradient descent
Q Initialize 6\” and 6\, and ¢t =0
Q do

2
oD 00— 2007 — 5ol + 0" — 1]
2
05 04— [~ (6"" — 0]
tt+1

@ until £(01) does not change much
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Impact of step size

Choosing the right 7 is important

o = £ DA
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Impact of step size

Choosing the right 7 is important

small n is too slow?

o [ - =] .
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Impact of step size

Choosing the right 7 is important

small 7 is too slow? large 7 is too unstable?
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Gradient descent

General form for minimizing f(0)

of
t+1 o5
0 ~— 0 7780

Remarks
@ 7 is step size — how far we go in the direction of the negative gradient

» Step size needs to be chosen carefully to ensure convergence.
» Step size can be adaptive, e.g., we can use line search

e We are minimizing a function, hence the subtraction (—7)
o With a suitable choice of 7, we converge to a stationary point

af _

89_0

e Stationary point not always global minimum (but happy when convex)

@ Popular variant called stochastic gradient descent
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Gradient Descent Update for Logistic Regression

Simple fact: derivatives of o(a)

do(a) d -1 —(1 ey

= — (1 a = —

da da( +e™) (14 e79)2
e ? 1 e ¢

(I+e92 l1tevlten
=o(a)[l - o(a)]
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Gradients of the cross-entropy error function

Cross-entropy Error Function

=D Aynlogo(w ae,) + (1 - yn) log[l — o(w" @]}

Gradients
85
Z {yn [1—o(w a:n)] T, — (1 — yn)U(wan)]wn}
:Z{a w’ Zy —yn}CL’n
Remark
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Gradients of the cross-entropy error function

Cross-entropy Error Function

=D Aynlogo(w ae,) + (1 - yn) log[l — o(w" @]}

Gradients
88
Z {yn[l — o(w Te e, — (1 - yn)a(wTa:n)]:cn}
:Z{U w’ Ly, _yn}mn
Remark

o ¢, = {o(wTx,) —y,} is called error for the nth training sample.
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Numerical optimization

Gradient descent for logistic regression
@ Choose a proper step size > 0

@ lteratively update the parameters following the negative gradient to
minimize the error function

wtD  p® Z {o(w'z,) —yn} @,
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Intuition for Newton's method

Approximate the true function with an easy-to-solve

problem

—1(x)

Professor Ameet Talwalkar CS260 Machine Learning Algorithms

optimization

—f(x)

January 25, 2017
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Intuition for Newton's method

Approximate the true function with an easy-to-solve optimization
problem

—(x)

In particular, we can approximate the cross-entropy error function around
w® by a quadratic function, and then minimize this quadratic function
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Approximation

Second Order Taylor expansion around x;

Fl@) = Sl + f ) = 2 + @) - )?
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Approximation

Second Order Taylor expansion around x;
F@) = ) + £ @) = 2 + o f @ - )’
Taylor expansion of cross-entropy error function around w?
£(w) ~ Ew®) + (w — w ) TE(w®) + L (w —w®) T HO (1 — wl?)

where
o VE(w®) is the gradient
e H® is the Hessian matrix evaluated at w(®
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So what is the Hessian matrix?

The matrix of second-order derivatives

0?E (w)
H= owwT

9 [(0E(w)
H” - an' < 8wi )

So the Hessian matrix is RP*P, where w € RP.

In other words,
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Optimizing the approximation

Minimize the approximation

1
E(w) =~ E(w?) + (w — w?)TVE(w®) + §(w —wNTH® (w — w®)
and use the solution as the new estimate of the parameters

w « min(w — w)TVE(w) + %('w —wNTH® (w — w®)

w
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Optimizing the approximation

Minimize the approximation
£(w) ~ Ew) + (w — w1 VEwO) + J(w —w ) HO (w — w®)
and use the solution as the new estimate of the parameters

w ) II’}II;Il(’uJ —wNTVE(w®) + %('w —wNTH® (w — w®)
The quadratic function minimization has a closed form, thus, we have

w D) p® <H<t>)‘1 Ve (w®)

i.e., the Newton's method.
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Contrast gradient descent and Newton's method

Similar

@ Both are iterative procedures.

Different
@ Newton's method requires second-order derivatives.

@ Newton's method does not have the magic 7 to be set.
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Other important things about Hessian

Our cross-entropy error function is convex

% =Y {o(w ) —yo}z, (3)
0%E (w
= H = Bw—'EvT) = homework (4)
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Other important things about Hessian

Our cross-entropy error function is convex

% =Y {o(w ) —yo}z, (3)
0%E (w
= H = Bw—'EvT) = homework (4)

For any vector v,
vT Hv = homework >0

Thus, positive semi-definite. Thus, the cross-entropy error function is
convex, with only one global optimum.
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Good about Newton's method

Fast (in terms of convergence)!

Newton's method finds the optimal point in a single iteration when the
function we're optimizing is quadratic

In general, the better our Taylor approximation, the more quickly Newton's
method will converge
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Bad about Newton's method

Not scalable!
Computing and inverting Hessian matrix can be very expensive for

large-scale problems where the dimensionally D is very large. There are
fixes and alternatives, such as Quasi-Newton/Quasi-second order method.
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Summary

Setup for 2 classes

o Logistic Regression models conditional distribution as:
ply = L|z; w) = olg(a)] where g(z) = w'e
e Linear decision boundary: g(z) = wlz =0
Minimizing cross-entropy error (negative log-likelihood)
o £(byw) = - {ynlogo(b+wrex,)+(1—y,)log[l —o(b+wTz,)]}
@ No closed form solution; must rely on iterative solvers
Numerical optimization
o Gradient descent: simple, scalable to large-scale problems

» move in direction opposite of gradient!
» gradient of logistic function takes nice form

@ Newton method: fast to converge but not scalable

» At each iteration, find optimal point in 2nd-order Taylor expansion
» Closed form solution exists for each iteration
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Naive Bayes and logistic regression: two different modeling
paradigms

e Maximize joint likelihood ) logp(@n,yn) (Generative, NB)
e Maximize conditional likelihood ), logp(yn|y) (Discriminative, LR)

@ More on this next class
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