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Announcements

Homework 2: due on Wednesday
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Logistic classification

Setup for two classes

Input: x ∈ RD

Output: y ∈ {0, 1}
Training data: D = {(xn, yn), n = 1, 2, . . . , N}
Model of conditional distribution

p(y = 1|x; b,w) = σ[g(x)]

where
g(x) = b+

∑
d

wdxd = b+wTx
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Why the sigmoid function?

What does it look like?

σ(a) =
1

1 + e−a

where

a = b+wTx
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Properties

Bounded between 0 and 1 ← thus, interpretable as probability

Monotonically increasing thus, usable to derive classification rules
I σ(a) > 0.5, positive (classify as ’1’)
I σ(a) < 0.5, negative (classify as ’0’)
I σ(a) = 0.5, undecidable

Nice computational properties Derivative is in a simple form

Linear or nonlinear classifier?
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Linear or nonlinear?

σ(a) is nonlinear, however, the decision boundary is determined by

σ(a) = 0.5⇒ a = 0⇒ g(x) = b+wTx = 0

which is a linear function in x

We often call b the offset term.
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Likelihood function

Probability of a single training sample (xn, yn)

p(yn|xn; b;w) =

{
σ(b+wTxn) if yn = 1
1− σ(b+wTxn) otherwise

Compact expression, exploring that yn is either 1 or 0

p(yn|xn; b;w) = σ(b+wTxn)
yn [1− σ(b+wTxn)]

1−yn
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Maximum likelihood estimation

Cross-entropy error (negative log-likelihood)

E(b,w) = −
∑
n

{yn log σ(b+wTxn) + (1− yn) log[1− σ(b+wTxn)]}

Numerical optimization

Gradient descent: simple, scalable to large-scale problems

Newton method: fast but not scalable

Professor Ameet Talwalkar CS260 Machine Learning Algorithms January 30, 2017 9 / 40



Numerical optimization

Gradient descent

Choose a proper step size η > 0

Iteratively update the parameters following the negative gradient to
minimize the error function

w(t+1) ← w(t) − η
∑
n

{
σ(wTxn)− yn

}
xn

Remarks

Gradient is direction of steepest ascent.

The step size needs to be chosen carefully to ensure convergence.

The step size can be adaptive (i.e. varying from iteration to iteration).

Variant called stochastic gradient descent (later this quarter).
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Intuition for Newton’s method

Approximate the true function with an easy-to-solve optimization
problem
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In particular, we can approximate the cross-entropy error function around
w(t) by a quadratic function (its second order Taylor expansion), and then

minimize this quadratic function
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Update Rules

Gradient descent

w(t+1) ← w(t) − η
∑
n

{
σ(wTxn)− yn

}
xn

Newton method

w(t+1) ← w(t) −H(t)−1∇E(w(t))
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Contrast gradient descent and Newton’s method

Similar

Both are iterative procedures.

Different

Newton’s method requires second-order derivatives (less scalable, but
faster convergence)

Newton’s method does not have the magic η to be set
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Naive Bayes and logistic regression: two different
modelling paradigms

Consider spam classification problem

First Strategy:
I Use training set to find a decision boundary in the feature space that

separates spam and non-spam emails
I Given a test point, predict its label based on which side of the

boundary it is on.

Second Strategy:
I Look at spam emails and build a model of what they look like.

Similarly, build a model of what non-spam emails look like.
I To classify a new email, match it against both the spam and non-spam

models to see which is the better fit.

First strategy is discriminative (e.g., logistic regression)
Second strategy is generative (e.g., naive bayes)
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Generative vs Discriminative

Discriminative

Requires only specifying a model for the conditional distribution
p(y|x), and thus, maximizes the conditional likelihood∑

n log p(yn|xn).
Models that try to learn mappings directly from feature space to the
labels are also discriminative, e.g., perceptron, SVMs (covered later)

Generative

Aims to model the joint probability p(x, y) and thus maximize the
joint likelihood

∑
n log p(xn, yn).

The generative models we’ll cover do so by modeling p(x|y) and p(y)

Let’s look at two more examples: Gaussian (or Quadratic)
Discriminative Analysis and Linear Discriminative Analysis
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Determining sex based on measurements
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red = female, blue=male
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Generative approach

Model joint distribution of (x = (height, weight), y =sex)

our data

Sex Height Weight
1 6′ 175
0 5′2” 120
1 5′6” 140
1 6′2” 240
0 5.7” 130
· · · · · · · · · 55 60 65 70 75 80
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w
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red = female, blue=male

Intuition: we will model how heights vary (according to a Gaussian) in
each sub-population (male and female).
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Model of the joint distribution (1D)

p(x, y) = p(y)p(x|y)

=


p0

1√
2πσ0

e
− (x−µ0)

2

2σ20 if y = 0

p1
1√
2πσ1

e
− (x−µ1)

2

2σ21 if y = 1

p0 + p1 = 1 are prior probabilities, and
p(x|y) is a class conditional distribution
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red = female, blue=male

What are the parameters to learn?
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Parameter estimation

Log Likelihood of training data D = {(xn, yn)}Nn=1 with yn ∈ {0, 1}

logP (D) =
∑
n

log p(xn, yn)

=
∑

n:yn=0

log

(
p0

1√
2πσ0

e
− (xn−µ0)

2

2σ20

)

+
∑

n:yn=1

log

(
p1

1√
2πσ1

e
− (xn−µ1)

2

2σ21

)

Max log likelihood (p∗0, p
∗
1, µ
∗
0, µ
∗
1, σ
∗
0, σ
∗
1) = argmax logP (D)

Max likelihood (D = 2) (p∗0, p
∗
1,µ

∗
0,µ

∗
1,Σ

∗
0,Σ

∗
1) = argmax logP (D)

For Naive Bayes we assume Σ∗i is diagonal

Professor Ameet Talwalkar CS260 Machine Learning Algorithms January 30, 2017 20 / 40



Parameter estimation

Log Likelihood of training data D = {(xn, yn)}Nn=1 with yn ∈ {0, 1}

logP (D) =
∑
n

log p(xn, yn)

=
∑

n:yn=0

log

(
p0

1√
2πσ0

e
− (xn−µ0)

2

2σ20

)

+
∑

n:yn=1

log

(
p1

1√
2πσ1

e
− (xn−µ1)

2

2σ21

)

Max log likelihood (p∗0, p
∗
1, µ
∗
0, µ
∗
1, σ
∗
0, σ
∗
1) = argmax logP (D)

Max likelihood (D = 2) (p∗0, p
∗
1,µ

∗
0,µ

∗
1,Σ

∗
0,Σ

∗
1) = argmax logP (D)

For Naive Bayes we assume Σ∗i is diagonal

Professor Ameet Talwalkar CS260 Machine Learning Algorithms January 30, 2017 20 / 40



Parameter estimation

Log Likelihood of training data D = {(xn, yn)}Nn=1 with yn ∈ {0, 1}

logP (D) =
∑
n

log p(xn, yn)

=
∑

n:yn=0

log

(
p0

1√
2πσ0

e
− (xn−µ0)

2

2σ20

)

+
∑

n:yn=1

log

(
p1

1√
2πσ1

e
− (xn−µ1)

2

2σ21

)

Max log likelihood (p∗0, p
∗
1, µ
∗
0, µ
∗
1, σ
∗
0, σ
∗
1) = argmax logP (D)

Max likelihood (D = 2) (p∗0, p
∗
1,µ

∗
0,µ

∗
1,Σ

∗
0,Σ

∗
1) = argmax logP (D)

For Naive Bayes we assume Σ∗i is diagonal

Professor Ameet Talwalkar CS260 Machine Learning Algorithms January 30, 2017 20 / 40



Parameter estimation

Log Likelihood of training data D = {(xn, yn)}Nn=1 with yn ∈ {0, 1}

logP (D) =
∑
n

log p(xn, yn)

=
∑

n:yn=0

log

(
p0

1√
2πσ0

e
− (xn−µ0)

2

2σ20

)

+
∑

n:yn=1

log

(
p1

1√
2πσ1

e
− (xn−µ1)

2

2σ21

)

Max log likelihood (p∗0, p
∗
1, µ
∗
0, µ
∗
1, σ
∗
0, σ
∗
1) = argmax logP (D)

Max likelihood (D = 2) (p∗0, p
∗
1,µ

∗
0,µ

∗
1,Σ

∗
0,Σ

∗
1) = argmax logP (D)

For Naive Bayes we assume Σ∗i is diagonal

Professor Ameet Talwalkar CS260 Machine Learning Algorithms January 30, 2017 20 / 40



Decision boundary

As before, the Bayes optimal one under the assumed joint
distribution depends on

p(y = 1|x) ≥ p(y = 0|x)

which is equivalent to

p(x|y = 1)p(y = 1) ≥ p(x|y = 0)p(y = 0)

Namely,

− (x− µ1)2

2σ21
− log

√
2πσ1 + log p1 ≥ −

(x− µ0)2

2σ20
− log

√
2πσ0 + log p0

⇒ ax2 + bx+ c ≥ 0 ← the decision boundary not linear!
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Example of nonlinear decision boundary

−2 0 2

−2

0

2

Parabolic Boundary

Note: the boundary is characterized by a quadratic function, giving rise to
the shape of a parabolic curve.
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A special case: what if we assume the two Gaussians have
the same variance?

−(x− µ1)2

2σ21
− log

√
2πσ1 + log p1 ≥ −

(x− µ0)2

2σ20
− log

√
2πσ0 + log p0

with σ0 = σ1

We get a linear decision boundary: bx+ c ≥ 0
Note: equal variances across two different categories could be a very
strong assumption.
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red = female, blue=male
For example, from the plot, it does
seem that the male population has
slightly bigger variance (i.e., bigger
ellipse) than the female population.
So the assumption might not be
applicable.
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Mini-summary

Gaussian discriminant analysis

A generative approach, assuming the data modeled by

p(x, y) = p(y)p(x|y)

where p(x|y) is a Gaussian distribution.

Parameters (of Gaussian distributions) estimated by max likelihood

Decision boundary

I In general, nonlinear functions of x (quadratic discriminant analysis)
I Linear under various assumptions about Gaussian covariance matrices

F Single arbitrary matrix (linear discriminant analysis)
F Multiple diagonal matrices (Gaussian Naive Bayes (GNB))
F Single diagonal matrix (GNB in HW2 Problem 1)
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So what is the discriminative counterpart?

Intuition
The decision boundary in Gaussian discriminant analysis is

ax2 + bx+ c = 0

Let us model the conditional distribution analogously

p(y|x) = σ[ax2 + bx+ c] =
1

1 + e−(ax2+bx+c)

Or, even simpler, going after the decision boundary of linear discriminant
analysis

p(y|x) = σ[bx+ c]

Both look very similar to logistic regression — i.e. we focus on writing
down the conditional probability, not the joint probability.
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Does this change how we estimate the parameters?

First change: a smaller number of parameters to estimate

Models only parameterized by a, b and c. There are no prior probabilities
(p0, p1) or Gaussian distribution parameters (µ0, µ1, σ0 and σ1).

Second change: maximize the conditional likelihood p(y|x)

(a∗, b∗, c∗) = argmin−
∑
n

{
yn log σ(ax

2
n + bxn + c) (1)

+ (1− yn) log[1− σ(ax2n + bxn + c)]
}

(2)

No closed form solutions!

Professor Ameet Talwalkar CS260 Machine Learning Algorithms January 30, 2017 26 / 40



Does this change how we estimate the parameters?

First change: a smaller number of parameters to estimate

Models only parameterized by a, b and c. There are no prior probabilities
(p0, p1) or Gaussian distribution parameters (µ0, µ1, σ0 and σ1).

Second change: maximize the conditional likelihood p(y|x)

(a∗, b∗, c∗) = argmin−
∑
n

{
yn log σ(ax

2
n + bxn + c) (1)

+ (1− yn) log[1− σ(ax2n + bxn + c)]
}

(2)

No closed form solutions!

Professor Ameet Talwalkar CS260 Machine Learning Algorithms January 30, 2017 26 / 40



How easy for our Gaussian discriminant analysis?

Example

p1 =
# of training samples in class 1

# of training samples
(3)

µ1 =

∑
n:yn=1 xn

# of training samples in class 1
(4)

σ21 =

∑
n:yn=1(xn − µ1)2

# of training samples in class 1
(5)

Note: see textbook for detailed derivation (including generalization to
higher dimensions and multiple classes)
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Generative versus discriminative: which one to use?

There is no fixed rule

Selecting which type of method to use is dataset/task specific

It depends on how well your modeling assumption fits the data

For instance, as we show in HW2, when data follows a specific variant
of the Gaussian Naive Bayes assumption, p(y|x) necessarily follows a
logistic function. However, the converse is not true.

I Gaussian Naive Bayes makes a stronger assumption than logistic
regression

I When data follows this assumption, Gaussian Naive Bayes will likely
yield a model that better fits the data

I But logistic regression is more robust and less sensitive to incorrect
modelling assumption

Professor Ameet Talwalkar CS260 Machine Learning Algorithms January 30, 2017 28 / 40



Generative versus discriminative: which one to use?

There is no fixed rule

Selecting which type of method to use is dataset/task specific

It depends on how well your modeling assumption fits the data

For instance, as we show in HW2, when data follows a specific variant
of the Gaussian Naive Bayes assumption, p(y|x) necessarily follows a
logistic function. However, the converse is not true.

I Gaussian Naive Bayes makes a stronger assumption than logistic
regression

I When data follows this assumption, Gaussian Naive Bayes will likely
yield a model that better fits the data

I But logistic regression is more robust and less sensitive to incorrect
modelling assumption

Professor Ameet Talwalkar CS260 Machine Learning Algorithms January 30, 2017 28 / 40



Outline

1 Administration

2 Review of last lecture

3 Generative versus discriminative

4 Multiclass classification
Use binary classifiers as building blocks
Multinomial logistic regression
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Setup

Predict multiple classes/outcomes: C1, C2, . . . , CK

Weather prediction: sunny, cloudy, raining, etc

Optical character recognition: 10 digits + 26 characters (lower and
upper cases) + special characters, etc

Studied methods

Nearest neighbor classifier

Naive Bayes

Gaussian discriminant analysis

Logistic regression
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Logistic regression for predicting multiple classes? Easy

The approach of “one versus the rest”

For each class Ck, change the problem into binary classification
1 Relabel training data with label Ck, into positive (or ‘1’)
2 Relabel all the rest data into negative (or ‘0’)

This step is often called 1-of-K encoding. That is, only one is nonzero
and everything else is zero.
Example: for class C2, data go through the following change

(x1, C1)→ (x1, 0), (x2, C3)→ (x2, 0), . . . , (xn, C2)→ (xn, 1), . . . ,

Train K binary classifiers using logistic regression to differentiate the
two classes

When predicting on x, combine the outputs of all binary classifiers
1 What if all the classifiers say negative?
2 What if multiple classifiers say positive?
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Yet, another easy approach

The approach of “one versus one”

For each pair of classes Ck and Ck′ , change the problem into binary
classification

1 Relabel training data with label Ck, into positive (or ‘1’)
2 Relabel training data with label Ck′ into negative (or ‘0’)
3 Disregard all other data

Ex: for class C1 and C2,

(x1, C1), (x2, C3), (x3, C2), . . .→ (x1, 1), (x3, 0), . . .

Train K(K − 1)/2 binary classifiers using logistic regression to
differentiate the two classes

When predicting on x, combine the outputs of all binary classifiers
There are K(K − 1)/2 votes!
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Contrast these two approaches

Pros of each approach

one versus the rest: only needs to train K classifiers.
I Makes a big difference if you have a lot of classes to go through.

one versus one: only needs to train a smaller subset of data (only
those labeled with those two classes would be involved).

I Makes a big difference if you have a lot of data to go through.

Bad about both of them
Combining classifiers’ outputs seem to be a bit tricky.

Any other good methods?
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Multinomial logistic regression

Intuition: from the decision rule of our naive Bayes classifier

y∗ = argmaxk p(y = Ck|x) = argmaxk log p(x|y = Ck)p(y = Ck)

= argmaxk log πk +
∑
i

zi log θki = argmaxkw
T
k x

Essentially, we are comparing

wT
1 x,w

T
2 x, · · · ,wT

Kx

with one for each category.
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First try

So, can we define the following conditional model?

p(y = Ck|x) = σ[wT
k x]

This would not work because:∑
k

p(y = Ck|x) =
∑
k

σ[wT
k x] 6= 1

as each summand can be any number (independently) between 0 and 1.
But we are close!
We can learn the K linear models jointly to ensure this property holds!
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Definition of multinomial logistic regression

Model

For each class Ck, we have a parameter vector wk and model the posterior
probability as

p(Ck|x) =
ew

T
k x∑

k′ e
wT
k′x

← This is called softmax function

Decision boundary: assign x with the label that is the maximum of
posterior

argmaxk P (Ck|x)→ argmaxkw
T
k x
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How does the softmax function behave?

Suppose we have

wT
1 x = 100,wT

2 x = 50,wT
3 x = −20

We would pick the winning class label 1.

Softmax translates these scores into well-formed conditional
probababilities

p(y = 1|x) = e100

e100 + e50 + e−20
< 1

preserves relative ordering of scores

maps scores to values between 0 and 1 that also sum to 1
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Sanity check

Multinomial model reduce to binary logistic regression when K = 2

p(C1|x) =
ew

T
1 x

ew
T
1 x + ew

T
2 x

=
1

1 + e−(w1−w2)Tx

=
1

1 + e−wTx

Multinomial thus generalizes the (binary) logistic regression to deal with
multiple classes.
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Parameter estimation

Discriminative approach: maximize conditional likelihood

logP (D) =
∑
n

logP (yn|xn)

We will change yn to yn = [yn1 yn2 · · · ynK ]T, a K-dimensional vector
using 1-of-K encoding.

ynk =

{
1 if yn = k
0 otherwise

Ex: if yn = 2, then, yn = [0 1 0 0 · · · 0]T.

⇒
∑
n

logP (yn|xn) =
∑
n

log
K∏
k=1

P (Ck|xn)ynk =
∑
n

∑
k

ynk logP (Ck|xn)
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Cross-entropy error function

Definition: negative log likelihood

E(w1,w2, . . . ,wK) = −
∑
n

∑
k

ynk logP (Ck|xn)

Properties

Convex, therefore unique global optimum

Optimization requires numerical procedures, analogous to those used
for binary logistic regression
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