Gaussian and Linear Discriminant Analysis; Multiclass Classification

Professor Ameet Talwalkar

Outline

(1) Administration

(2) Review of last lecture

(3) Generative versus discriminative

4 Multiclass classification

Announcements

- Homework 2: due on Wednesday

Outline

(1) Administration

(2) Review of last lecture

- Logistic regression
(3) Generative versus discriminative

4 Multiclass classification

Logistic classification

Setup for two classes

- Input: $\boldsymbol{x} \in \mathbb{R}^{D}$
- Output: $y \in\{0,1\}$
- Training data: $\mathcal{D}=\left\{\left(\boldsymbol{x}_{n}, y_{n}\right), n=1,2, \ldots, N\right\}$
- Model of conditional distribution

$$
p(y=1 \mid \boldsymbol{x} ; b, \boldsymbol{w})=\sigma[g(\boldsymbol{x})]
$$

where

$$
g(\boldsymbol{x})=b+\sum_{d} w_{d} x_{d}=b+\boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}
$$

Why the sigmoid function?

What does it look like?

$$
\sigma(a)=\frac{1}{1+e^{-a}}
$$

where

$$
a=b+\boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}
$$

Properties

Why the sigmoid function?

What does it look like?

$$
\sigma(a)=\frac{1}{1+e^{-a}}
$$

where

$$
a=b+\boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}
$$

Properties

- Bounded between 0 and $1 \leftarrow$ thus, interpretable as probability
- Monotonically increasing thus, usable to derive classification rules
- $\sigma(a)>0.5$, positive (classify as ' 1 ')
- $\sigma(a)<0.5$, negative (classify as ' 0 ')
- $\sigma(a)=0.5$, undecidable
- Nice computational properties Derivative is in a simple form

Why the sigmoid function?

What does it look like?

$$
\sigma(a)=\frac{1}{1+e^{-a}}
$$

where

$$
a=b+\boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}
$$

Properties

- Bounded between 0 and $1 \leftarrow$ thus, interpretable as probability
- Monotonically increasing thus, usable to derive classification rules
- $\sigma(a)>0.5$, positive (classify as ' 1 ')
- $\sigma(a)<0.5$, negative (classify as ' 0 ')
- $\sigma(a)=0.5$, undecidable
- Nice computational properties Derivative is in a simple form Linear or nonlinear classifier?

Linear or nonlinear?

$\sigma(a)$ is nonlinear, however, the decision boundary is determined by

$$
\sigma(a)=0.5 \Rightarrow a=0 \Rightarrow g(\boldsymbol{x})=b+\boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}=0
$$

which is a linear function in \boldsymbol{x}
We often call b the offset term.

Likelihood function

Probability of a single training sample $\left(x_{n}, y_{n}\right)$

$$
p\left(y_{n} \mid \boldsymbol{x}_{n} ; b ; \boldsymbol{w}\right)= \begin{cases}\sigma\left(b+\boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_{n}\right) & \text { if } y_{n}=1 \\ 1-\sigma\left(b+\boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_{n}\right) & \text { otherwise }\end{cases}
$$

Likelihood function

Probability of a single training sample $\left(\boldsymbol{x}_{n}, y_{n}\right)$

$$
p\left(y_{n} \mid \boldsymbol{x}_{n} ; b ; \boldsymbol{w}\right)= \begin{cases}\sigma\left(b+\boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_{n}\right) & \text { if } y_{n}=1 \\ 1-\sigma\left(b+\boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_{n}\right) & \text { otherwise }\end{cases}
$$

Compact expression, exploring that y_{n} is either 1 or 0

$$
p\left(y_{n} \mid \boldsymbol{x}_{n} ; b ; \boldsymbol{w}\right)=\sigma\left(b+\boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_{n}\right)^{y_{n}}\left[1-\sigma\left(b+\boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_{n}\right)\right]^{1-y_{n}}
$$

Maximum likelihood estimation

Cross-entropy error (negative log-likelihood)

$$
\mathcal{E}(b, \boldsymbol{w})=-\sum_{n}\left\{y_{n} \log \sigma\left(b+\boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_{n}\right)+\left(1-y_{n}\right) \log \left[1-\sigma\left(b+\boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_{n}\right)\right]\right\}
$$

Numerical optimization

- Gradient descent: simple, scalable to large-scale problems
- Newton method: fast but not scalable

Numerical optimization

Gradient descent

- Choose a proper step size $\eta>0$
- Iteratively update the parameters following the negative gradient to minimize the error function

$$
\boldsymbol{w}^{(t+1)} \leftarrow \boldsymbol{w}^{(t)}-\eta \sum_{n}\left\{\sigma\left(\boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_{n}\right)-y_{n}\right\} \boldsymbol{x}_{n}
$$

Numerical optimization

Gradient descent

- Choose a proper step size $\eta>0$
- Iteratively update the parameters following the negative gradient to minimize the error function

$$
\boldsymbol{w}^{(t+1)} \leftarrow \boldsymbol{w}^{(t)}-\eta \sum_{n}\left\{\sigma\left(\boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_{n}\right)-y_{n}\right\} \boldsymbol{x}_{n}
$$

Remarks

- Gradient is direction of steepest ascent.
- The step size needs to be chosen carefully to ensure convergence.
- The step size can be adaptive (i.e. varying from iteration to iteration).
- Variant called stochastic gradient descent (later this quarter).

Intuition for Newton's method

Approximate the true function with an easy-to-solve optimization problem

In particular, we can approximate the cross-entropy error function around $\boldsymbol{w}^{(t)}$ by a quadratic function (its second order Taylor expansion), and then minimize this quadratic function

Update Rules

Gradient descent

$$
\boldsymbol{w}^{(t+1)} \leftarrow \boldsymbol{w}^{(t)}-\eta \sum_{n}\left\{\sigma\left(\boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_{n}\right)-y_{n}\right\} \boldsymbol{x}_{n}
$$

Newton method

$$
\boldsymbol{w}^{(t+1)} \leftarrow \boldsymbol{w}^{(t)}-\boldsymbol{H}^{(t)^{-1}} \nabla \mathcal{E}\left(\boldsymbol{w}^{(t)}\right)
$$

Contrast gradient descent and Newton's method

Similar

- Both are iterative procedures.

Different

- Newton's method requires second-order derivatives (less scalable, but faster convergence)
- Newton's method does not have the magic η to be set

Outline

(1) Administration

(2) Review of last lecture
(3) Generative versus discriminative

- Contrast Naive Bayes and logistic regression
- Gaussian and Linear Discriminant Analysis

4 Multiclass classification

Naive Bayes and logistic regression: two different modelling paradigms

Consider spam classification problem

- First Strategy:
- Use training set to find a decision boundary in the feature space that separates spam and non-spam emails
- Given a test point, predict its label based on which side of the boundary it is on.

Naive Bayes and logistic regression: two different modelling paradigms

Consider spam classification problem

- First Strategy:
- Use training set to find a decision boundary in the feature space that separates spam and non-spam emails
- Given a test point, predict its label based on which side of the boundary it is on.
- Second Strategy:
- Look at spam emails and build a model of what they look like. Similarly, build a model of what non-spam emails look like.
- To classify a new email, match it against both the spam and non-spam models to see which is the better fit.

Naive Bayes and logistic regression: two different modelling paradigms

Consider spam classification problem

- First Strategy:
- Use training set to find a decision boundary in the feature space that separates spam and non-spam emails
- Given a test point, predict its label based on which side of the boundary it is on.
- Second Strategy:
- Look at spam emails and build a model of what they look like. Similarly, build a model of what non-spam emails look like.
- To classify a new email, match it against both the spam and non-spam models to see which is the better fit.
First strategy is discriminative (e.g., logistic regression)
Second strategy is generative (e.g., naive bayes)

Generative vs Discriminative

Discriminative

- Requires only specifying a model for the conditional distribution $p(y \mid x)$, and thus, maximizes the conditional likelihood $\sum_{n} \log p\left(y_{n} \mid \boldsymbol{x}_{n}\right)$.
- Models that try to learn mappings directly from feature space to the labels are also discriminative, e.g., perceptron, SVMs (covered later)

Generative vs Discriminative

Discriminative

- Requires only specifying a model for the conditional distribution $p(y \mid x)$, and thus, maximizes the conditional likelihood $\sum_{n} \log p\left(y_{n} \mid \boldsymbol{x}_{n}\right)$.
- Models that try to learn mappings directly from feature space to the labels are also discriminative, e.g., perceptron, SVMs (covered later)

Generative

- Aims to model the joint probability $p(x, y)$ and thus maximize the joint likelihood $\sum_{n} \log p\left(\boldsymbol{x}_{n}, y_{n}\right)$.
- The generative models we'll cover do so by modeling $p(x \mid y)$ and $p(y)$

Generative vs Discriminative

Discriminative

- Requires only specifying a model for the conditional distribution $p(y \mid x)$, and thus, maximizes the conditional likelihood $\sum_{n} \log p\left(y_{n} \mid \boldsymbol{x}_{n}\right)$.
- Models that try to learn mappings directly from feature space to the labels are also discriminative, e.g., perceptron, SVMs (covered later)

Generative

- Aims to model the joint probability $p(x, y)$ and thus maximize the joint likelihood $\sum_{n} \log p\left(\boldsymbol{x}_{n}, y_{n}\right)$.
- The generative models we'll cover do so by modeling $p(x \mid y)$ and $p(y)$
- Let's look at two more examples: Gaussian (or Quadratic) Discriminative Analysis and Linear Discriminative Analysis

Determining sex based on measurements

Generative approach

Model joint distribution of $(x=$ (height, weight), $y=$ sex $)$

our data		
Sex	Height	Weight
1	6^{\prime}	175
0	$5^{\prime} 2^{\prime \prime}$	120
1	$5^{\prime} 6^{\prime \prime}$	140
1	$6^{\prime} 2^{\prime \prime}$	240
0	$5.7^{\prime \prime}$	130
\cdots	\cdots	\cdots

Intuition: we will model how heights vary (according to a Gaussian) in each sub-population (male and female).

Model of the joint distribution (1D)

$$
\begin{aligned}
p(x, y) & =p(y) p(x \mid y) \\
& = \begin{cases}p_{0} \frac{1}{\sqrt{2 \pi} \sigma_{0}} e^{-\frac{\left(x-\mu_{0}\right)^{2}}{2 \sigma_{0}^{2}}} & \text { if } y=0 \\
p_{1} \frac{1}{\sqrt{2 \pi \sigma_{1}}} e^{-\frac{\left(x-\mu_{1}\right)^{2}}{2 \sigma_{1}^{2}}} & \text { if } y=1\end{cases}
\end{aligned}
$$

$p_{0}+p_{1}=1$ are prior probabilities, and
 $p(x \mid y)$ is a class conditional distribution

Model of the joint distribution (1D)

$$
\begin{aligned}
p(x, y) & =p(y) p(x \mid y) \\
& = \begin{cases}p_{0} \frac{1}{\sqrt{2 \pi \sigma_{0}}} e^{-\frac{\left(x-\mu_{0}\right)^{2}}{2 \sigma_{0}^{2}}} & \text { if } y=0 \\
p_{1} \frac{1}{\sqrt{2 \pi} \sigma_{1}} e^{-\frac{\left(x-\mu_{1}\right.}{2)^{2}}} 2 & \text { if } y=1\end{cases}
\end{aligned}
$$

$p_{0}+p_{1}=1$ are prior probabilities, and
 $p(x \mid y)$ is a class conditional distribution

What are the parameters to learn?

Parameter estimation

Log Likelihood of training data $\mathcal{D}=\left\{\left(x_{n}, y_{n}\right)\right\}_{n=1}^{N}$ with $y_{n} \in\{0,1\}$

$$
\begin{aligned}
\log P(\mathcal{D}) & =\sum_{n} \log p\left(x_{n}, y_{n}\right) \\
& =\sum_{n: y_{n}=0} \log \left(p_{0} \frac{1}{\sqrt{2 \pi} \sigma_{0}} e^{-\frac{\left(x_{n}-\mu_{0}\right)^{2}}{2 \sigma_{0}^{2}}}\right) \\
& +\sum_{n: y_{n}=1} \log \left(p_{1} \frac{1}{\sqrt{2 \pi} \sigma_{1}} e^{-\frac{\left(x_{n}-\mu_{1}\right)^{2}}{2 \sigma_{1}^{2}}}\right)
\end{aligned}
$$

Parameter estimation

Log Likelihood of training data $\mathcal{D}=\left\{\left(x_{n}, y_{n}\right)\right\}_{n=1}^{N}$ with $y_{n} \in\{0,1\}$

$$
\begin{aligned}
\log P(\mathcal{D}) & =\sum_{n} \log p\left(x_{n}, y_{n}\right) \\
& =\sum_{n: y_{n}=0} \log \left(p_{0} \frac{1}{\sqrt{2 \pi} \sigma_{0}} e^{-\frac{\left(x_{n}-\mu_{0}\right)^{2}}{2 \sigma_{0}^{2}}}\right) \\
& +\sum_{n: y_{n}=1} \log \left(p_{1} \frac{1}{\sqrt{2 \pi} \sigma_{1}} e^{-\frac{\left(x_{n}-\mu_{1}\right)^{2}}{2 \sigma_{1}^{2}}}\right)
\end{aligned}
$$

Max log likelihood $\left(p_{0}^{*}, p_{1}^{*}, \mu_{0}^{*}, \mu_{1}^{*}, \sigma_{0}^{*}, \sigma_{1}^{*}\right)=\arg \max \log P(\mathcal{D})$

Parameter estimation

Log Likelihood of training data $\mathcal{D}=\left\{\left(x_{n}, y_{n}\right)\right\}_{n=1}^{N}$ with $y_{n} \in\{0,1\}$

$$
\begin{aligned}
\log P(\mathcal{D}) & =\sum_{n} \log p\left(x_{n}, y_{n}\right) \\
& =\sum_{n: y_{n}=0} \log \left(p_{0} \frac{1}{\sqrt{2 \pi} \sigma_{0}} e^{-\frac{\left(x_{n}-\mu_{0}\right)^{2}}{2 \sigma_{0}^{2}}}\right) \\
& +\sum_{n: y_{n}=1} \log \left(p_{1} \frac{1}{\sqrt{2 \pi} \sigma_{1}} e^{-\frac{\left(x_{n}-\mu_{1}\right)^{2}}{2 \sigma_{1}^{2}}}\right)
\end{aligned}
$$

Max log likelihood $\left(p_{0}^{*}, p_{1}^{*}, \mu_{0}^{*}, \mu_{1}^{*}, \sigma_{0}^{*}, \sigma_{1}^{*}\right)=\arg \max \log P(\mathcal{D})$
Max likelihood $(D=2)\left(p_{0}^{*}, p_{1}^{*}, \boldsymbol{\mu}_{0}^{*}, \boldsymbol{\mu}_{1}^{*}, \boldsymbol{\Sigma}_{0}^{*}, \boldsymbol{\Sigma}_{1}^{*}\right)=\arg \max \log P(\mathcal{D})$

Parameter estimation

Log Likelihood of training data $\mathcal{D}=\left\{\left(x_{n}, y_{n}\right)\right\}_{n=1}^{N}$ with $y_{n} \in\{0,1\}$

$$
\begin{aligned}
\log P(\mathcal{D}) & =\sum_{n} \log p\left(x_{n}, y_{n}\right) \\
& =\sum_{n: y_{n}=0} \log \left(p_{0} \frac{1}{\sqrt{2 \pi} \sigma_{0}} e^{-\frac{\left(x_{n}-\mu_{0}\right)^{2}}{2 \sigma_{0}^{2}}}\right) \\
& +\sum_{n: y_{n}=1} \log \left(p_{1} \frac{1}{\sqrt{2 \pi} \sigma_{1}} e^{-\frac{\left(x_{n}-\mu_{1}\right)^{2}}{2 \sigma_{1}^{2}}}\right)
\end{aligned}
$$

Max log likelihood $\left(p_{0}^{*}, p_{1}^{*}, \mu_{0}^{*}, \mu_{1}^{*}, \sigma_{0}^{*}, \sigma_{1}^{*}\right)=\arg \max \log P(\mathcal{D})$
Max likelihood $(D=2)\left(p_{0}^{*}, p_{1}^{*}, \boldsymbol{\mu}_{0}^{*}, \boldsymbol{\mu}_{1}^{*}, \boldsymbol{\Sigma}_{0}^{*}, \boldsymbol{\Sigma}_{1}^{*}\right)=\arg \max \log P(\mathcal{D})$

- For Naive Bayes we assume $\boldsymbol{\Sigma}_{i}^{*}$ is diagonal

Decision boundary

As before, the Bayes optimal one under the assumed joint distribution depends on

$$
p(y=1 \mid x) \geq p(y=0 \mid x)
$$

which is equivalent to

$$
p(x \mid y=1) p(y=1) \geq p(x \mid y=0) p(y=0)
$$

Decision boundary

As before, the Bayes optimal one under the assumed joint distribution depends on

$$
p(y=1 \mid x) \geq p(y=0 \mid x)
$$

which is equivalent to

$$
p(x \mid y=1) p(y=1) \geq p(x \mid y=0) p(y=0)
$$

Namely,

$$
-\frac{\left(x-\mu_{1}\right)^{2}}{2 \sigma_{1}^{2}}-\log \sqrt{2 \pi} \sigma_{1}+\log p_{1} \geq-\frac{\left(x-\mu_{0}\right)^{2}}{2 \sigma_{0}^{2}}-\log \sqrt{2 \pi} \sigma_{0}+\log p_{0}
$$

Decision boundary

As before, the Bayes optimal one under the assumed joint distribution depends on

$$
p(y=1 \mid x) \geq p(y=0 \mid x)
$$

which is equivalent to

$$
p(x \mid y=1) p(y=1) \geq p(x \mid y=0) p(y=0)
$$

Namely,

$$
\begin{aligned}
& -\frac{\left(x-\mu_{1}\right)^{2}}{2 \sigma_{1}^{2}}-\log \sqrt{2 \pi} \sigma_{1}+\log p_{1} \geq-\frac{\left(x-\mu_{0}\right)^{2}}{2 \sigma_{0}^{2}}-\log \sqrt{2 \pi} \sigma_{0}+\log p_{0} \\
& \Rightarrow a x^{2}+b x+c \geq 0 \quad \leftarrow \text { the decision boundary not linear! }
\end{aligned}
$$

Example of nonlinear decision boundary

Note: the boundary is characterized by a quadratic function, giving rise to the shape of a parabolic curve.

A special case: what if we assume the two Gaussians have the same variance?

$$
-\frac{\left(x-\mu_{1}\right)^{2}}{2 \sigma_{1}^{2}}-\log \sqrt{2 \pi} \sigma_{1}+\log p_{1} \geq-\frac{\left(x-\mu_{0}\right)^{2}}{2 \sigma_{0}^{2}}-\log \sqrt{2 \pi} \sigma_{0}+\log p_{0}
$$

with $\sigma_{0}=\sigma_{1}$

A special case: what if we assume the two Gaussians have the same variance?

$$
-\frac{\left(x-\mu_{1}\right)^{2}}{2 \sigma_{1}^{2}}-\log \sqrt{2 \pi} \sigma_{1}+\log p_{1} \geq-\frac{\left(x-\mu_{0}\right)^{2}}{2 \sigma_{0}^{2}}-\log \sqrt{2 \pi} \sigma_{0}+\log p_{0}
$$

with $\sigma_{0}=\sigma_{1}$
We get a linear decision boundary: $b x+c \geq 0$

A special case: what if we assume the two Gaussians have the same variance?

$$
-\frac{\left(x-\mu_{1}\right)^{2}}{2 \sigma_{1}^{2}}-\log \sqrt{2 \pi} \sigma_{1}+\log p_{1} \geq-\frac{\left(x-\mu_{0}\right)^{2}}{2 \sigma_{0}^{2}}-\log \sqrt{2 \pi} \sigma_{0}+\log p_{0}
$$

with $\sigma_{0}=\sigma_{1}$
We get a linear decision boundary: $b x+c \geq 0$
Note: equal variances across two different categories could be a very strong assumption.

For example, from the plot, it does seem that the male population has slightly bigger variance (i.e., bigger ellipse) than the female population. So the assumption might not be applicable.

Mini-summary

Gaussian discriminant analysis

- A generative approach, assuming the data modeled by

$$
p(x, y)=p(y) p(x \mid y)
$$

where $p(x \mid y)$ is a Gaussian distribution.

- Parameters (of Gaussian distributions) estimated by max likelihood
- Decision boundary

Mini-summary

Gaussian discriminant analysis

- A generative approach, assuming the data modeled by

$$
p(x, y)=p(y) p(x \mid y)
$$

where $p(x \mid y)$ is a Gaussian distribution.

- Parameters (of Gaussian distributions) estimated by max likelihood
- Decision boundary
- In general, nonlinear functions of x (quadratic discriminant analysis)
- Linear under various assumptions about Gaussian covariance matrices

Mini-summary

Gaussian discriminant analysis

- A generative approach, assuming the data modeled by

$$
p(x, y)=p(y) p(x \mid y)
$$

where $p(x \mid y)$ is a Gaussian distribution.

- Parameters (of Gaussian distributions) estimated by max likelihood
- Decision boundary
- In general, nonlinear functions of x (quadratic discriminant analysis)
- Linear under various assumptions about Gaussian covariance matrices
* Single arbitrary matrix (linear discriminant analysis)
* Multiple diagonal matrices (Gaussian Naive Bayes (GNB))
* Single diagonal matrix (GNB in HW2 Problem 1)

So what is the discriminative counterpart?

Intuition

The decision boundary in Gaussian discriminant analysis is

$$
a x^{2}+b x+c=0
$$

Let us model the conditional distribution analogously

$$
p(y \mid x)=\sigma\left[a x^{2}+b x+c\right]=\frac{1}{1+e^{-\left(a x^{2}+b x+c\right)}}
$$

Or, even simpler, going after the decision boundary of linear discriminant analysis

$$
p(y \mid x)=\sigma[b x+c]
$$

Both look very similar to logistic regression - i.e. we focus on writing down the conditional probability, not the joint probability.

Does this change how we estimate the parameters?

First change: a smaller number of parameters to estimate
Models only parameterized by a, b and c. There are no prior probabilities $\left(p_{0}, p_{1}\right)$ or Gaussian distribution parameters $\left(\mu_{0}, \mu_{1}, \sigma_{0}\right.$ and $\left.\sigma_{1}\right)$.

Does this change how we estimate the parameters?

First change: a smaller number of parameters to estimate
Models only parameterized by a, b and c. There are no prior probabilities (p_{0}, p_{1}) or Gaussian distribution parameters $\left(\mu_{0}, \mu_{1}, \sigma_{0}\right.$ and $\left.\sigma_{1}\right)$.

Second change: maximize the conditional likelihood $p(y \mid x)$

$$
\begin{align*}
\left(a^{*}, b^{*}, c^{*}\right) & =\arg \min -\sum_{n}\left\{y_{n} \log \sigma\left(a x_{n}^{2}+b x_{n}+c\right)\right. \tag{1}\\
& \left.+\left(1-y_{n}\right) \log \left[1-\sigma\left(a x_{n}^{2}+b x_{n}+c\right)\right]\right\} \tag{2}
\end{align*}
$$

No closed form solutions!

How easy for our Gaussian discriminant analysis?

Example

$$
\begin{align*}
& p_{1}=\frac{\# \text { of training samples in class } 1}{\# \text { of training samples }} \tag{3}\\
& \mu_{1}=\frac{\sum_{n: y_{n}=1} x_{n}}{\# \text { of training samples in class } 1} \tag{4}\\
& \sigma_{1}^{2}=\frac{\sum_{n: y_{n}=1}\left(x_{n}-\mu_{1}\right)^{2}}{\# \text { of training samples in class } 1} \tag{5}
\end{align*}
$$

Note: see textbook for detailed derivation (including generalization to higher dimensions and multiple classes)

Generative versus discriminative: which one to use?

There is no fixed rule

- Selecting which type of method to use is dataset/task specific
- It depends on how well your modeling assumption fits the data

Generative versus discriminative: which one to use?

There is no fixed rule

- Selecting which type of method to use is dataset/task specific
- It depends on how well your modeling assumption fits the data
- For instance, as we show in HW2, when data follows a specific variant of the Gaussian Naive Bayes assumption, $p(y \mid x)$ necessarily follows a logistic function. However, the converse is not true.
- Gaussian Naive Bayes makes a stronger assumption than logistic regression
- When data follows this assumption, Gaussian Naive Bayes will likely yield a model that better fits the data
- But logistic regression is more robust and less sensitive to incorrect modelling assumption

Outline

(1) Administration

(2) Review of last lecture
(3) Generative versus discriminative
4) Multiclass classification

- Use binary classifiers as building blocks
- Multinomial logistic regression

Setup

Predict multiple classes/outcomes: $C_{1}, C_{2}, \ldots, C_{K}$

- Weather prediction: sunny, cloudy, raining, etc
- Optical character recognition: 10 digits +26 characters (lower and upper cases) + special characters, etc

Studied methods

- Nearest neighbor classifier
- Naive Bayes
- Gaussian discriminant analysis
- Logistic regression

Logistic regression for predicting multiple classes? Easy

The approach of "one versus the rest"

- For each class C_{k}, change the problem into binary classification
(1) Relabel training data with label C_{k}, into Positive (or '1')
(2) Relabel all the rest data into negative (or ' 0 ')

Logistic regression for predicting multiple classes? Easy

The approach of "one versus the rest"

- For each class C_{k}, change the problem into binary classification
(1) Relabel training data with label C_{k}, into positive (or '1')
(2) Relabel all the rest data into negative (or ' 0 ')

This step is often called 1 -of- K encoding. That is, only one is nonzero and everything else is zero.
Example: for class C_{2}, data go through the following change

$$
\left(\boldsymbol{x}_{1}, C_{1}\right) \rightarrow\left(\boldsymbol{x}_{1}, 0\right),\left(\boldsymbol{x}_{2}, C_{3}\right) \rightarrow\left(\boldsymbol{x}_{2}, 0\right), \ldots,\left(\boldsymbol{x}_{n}, C_{2}\right) \rightarrow\left(\boldsymbol{x}_{n}, 1\right), \ldots,
$$

Logistic regression for predicting multiple classes? Easy

The approach of "one versus the rest"

- For each class C_{k}, change the problem into binary classification
(1) Relabel training data with label C_{k}, into positive (or '1')
(2) Relabel all the rest data into Negative (or ' 0 ')

This step is often called 1 -of- K encoding. That is, only one is nonzero and everything else is zero.
Example: for class C_{2}, data go through the following change

$$
\left(\boldsymbol{x}_{1}, C_{1}\right) \rightarrow\left(\boldsymbol{x}_{1}, 0\right),\left(\boldsymbol{x}_{2}, C_{3}\right) \rightarrow\left(\boldsymbol{x}_{2}, 0\right), \ldots,\left(\boldsymbol{x}_{n}, C_{2}\right) \rightarrow\left(\boldsymbol{x}_{n}, 1\right), \ldots,
$$

- Train K binary classifiers using logistic regression to differentiate the two classes

Logistic regression for predicting multiple classes? Easy

The approach of "one versus the rest"

- For each class C_{k}, change the problem into binary classification
(1) Relabel training data with label C_{k}, into positive (or '1')
(2) Relabel all the rest data into negative (or '0')

This step is often called 1 -of- K encoding. That is, only one is nonzero and everything else is zero.
Example: for class C_{2}, data go through the following change

$$
\left(\boldsymbol{x}_{1}, C_{1}\right) \rightarrow\left(\boldsymbol{x}_{1}, 0\right),\left(\boldsymbol{x}_{2}, C_{3}\right) \rightarrow\left(\boldsymbol{x}_{2}, 0\right), \ldots,\left(\boldsymbol{x}_{n}, C_{2}\right) \rightarrow\left(\boldsymbol{x}_{n}, 1\right), \ldots,
$$

- Train K binary classifiers using logistic regression to differentiate the two classes
- When predicting on \boldsymbol{x}, combine the outputs of all binary classifiers
(1) What if all the classifiers say NEGATIVE?
(2) What if multiple classifiers say POSITIVE?

Yet, another easy approach

The approach of "one versus one"

- For each pair of classes C_{k} and $C_{k^{\prime}}$, change the problem into binary classification
(1) Relabel training data with label C_{k}, into positive (or '1')
(2) Relabel training data with label $C_{k^{\prime}}$ into negative (or ' 0 ')
(3) Disregard all other data

Yet, another easy approach

The approach of "one versus one"

- For each pair of classes C_{k} and $C_{k^{\prime}}$, change the problem into binary classification
(1) Relabel training data with label C_{k}, into positive (or '1')
(2) Relabel training data with label $C_{k^{\prime}}$ into negative (or '0')
(3) Disregard all other data

Ex: for class C_{1} and C_{2},

$$
\left(\boldsymbol{x}_{1}, C_{1}\right),\left(\boldsymbol{x}_{2}, C_{3}\right),\left(\boldsymbol{x}_{3}, C_{2}\right), \ldots \rightarrow\left(\boldsymbol{x}_{1}, 1\right),\left(\boldsymbol{x}_{3}, 0\right), \ldots
$$

Yet, another easy approach

The approach of "one versus one"

- For each pair of classes C_{k} and $C_{k^{\prime}}$, change the problem into binary classification
(1) Relabel training data with label C_{k}, into POSITIVE (or '1')
(2) Relabel training data with label $C_{k^{\prime}}$ into NEGATIVE (or '0')
(3) Disregard all other data

Ex: for class C_{1} and C_{2},

$$
\left(\boldsymbol{x}_{1}, C_{1}\right),\left(\boldsymbol{x}_{2}, C_{3}\right),\left(\boldsymbol{x}_{3}, C_{2}\right), \ldots \rightarrow\left(\boldsymbol{x}_{1}, 1\right),\left(\boldsymbol{x}_{3}, 0\right), \ldots
$$

- Train $K(K-1) / 2$ binary classifiers using logistic regression to differentiate the two classes

Yet, another easy approach

The approach of "one versus one"

- For each pair of classes C_{k} and $C_{k^{\prime}}$, change the problem into binary classification
(1) Relabel training data with label C_{k}, into positive (or '1')
(2) Relabel training data with label $C_{k^{\prime}}$ into negative (or '0')
(3) Disregard all other data

Ex: for class C_{1} and C_{2},

$$
\left(\boldsymbol{x}_{1}, C_{1}\right),\left(\boldsymbol{x}_{2}, C_{3}\right),\left(\boldsymbol{x}_{3}, C_{2}\right), \ldots \rightarrow\left(\boldsymbol{x}_{1}, 1\right),\left(\boldsymbol{x}_{3}, 0\right), \ldots
$$

- Train $K(K-1) / 2$ binary classifiers using logistic regression to differentiate the two classes
- When predicting on \boldsymbol{x}, combine the outputs of all binary classifiers There are $K(K-1) / 2$ votes!

Contrast these two approaches

Pros of each approach

Contrast these two approaches

Pros of each approach

- one versus the rest: only needs to train K classifiers.

Contrast these two approaches

Pros of each approach

- one versus the rest: only needs to train K classifiers.
- Makes a big difference if you have a lot of classes to go through.

Contrast these two approaches

Pros of each approach

- one versus the rest: only needs to train K classifiers.
- Makes a big difference if you have a lot of classes to go through.
- one versus one: only needs to train a smaller subset of data (only those labeled with those two classes would be involved).

Contrast these two approaches

Pros of each approach

- one versus the rest: only needs to train K classifiers.
- Makes a big difference if you have a lot of classes to go through.
- one versus one: only needs to train a smaller subset of data (only those labeled with those two classes would be involved).
- Makes a big difference if you have a lot of data to go through.

Contrast these two approaches

Pros of each approach

- one versus the rest: only needs to train K classifiers.
- Makes a big difference if you have a lot of classes to go through.
- one versus one: only needs to train a smaller subset of data (only those labeled with those two classes would be involved).
- Makes a big difference if you have a lot of data to go through.

Bad about both of them

Combining classifiers' outputs seem to be a bit tricky.
Any other good methods?

Multinomial logistic regression

Intuition: from the decision rule of our naive Bayes classifier

$$
\begin{aligned}
y^{*} & =\arg \max _{k} p\left(y=C_{k} \mid \boldsymbol{x}\right)=\arg \max _{k} \log p\left(\boldsymbol{x} \mid y=C_{k}\right) p\left(y=C_{k}\right) \\
& =\arg \max _{k} \log \pi_{k}+\sum_{i} z_{i} \log \theta_{k i}=\arg \max _{k} \boldsymbol{w}_{k}^{\mathrm{T}} \boldsymbol{x}
\end{aligned}
$$

Multinomial logistic regression

Intuition: from the decision rule of our naive Bayes classifier

$$
\begin{aligned}
y^{*} & =\arg \max _{k} p\left(y=C_{k} \mid \boldsymbol{x}\right)=\arg \max _{k} \log p\left(\boldsymbol{x} \mid y=C_{k}\right) p\left(y=C_{k}\right) \\
& =\arg \max _{k} \log \pi_{k}+\sum_{i} z_{i} \log \theta_{k i}=\arg \max _{k} \boldsymbol{w}_{k}^{\mathrm{T}} \boldsymbol{x}
\end{aligned}
$$

Essentially, we are comparing

$$
\boldsymbol{w}_{1}^{\mathrm{T}} \boldsymbol{x}, \boldsymbol{w}_{2}^{\mathrm{T}} \boldsymbol{x}, \cdots, \boldsymbol{w}_{\mathrm{K}}^{\mathrm{T}} \boldsymbol{x}
$$

with one for each category.

First try

So, can we define the following conditional model?

$$
p\left(y=C_{k} \mid \boldsymbol{x}\right)=\sigma\left[\boldsymbol{w}_{k}^{\mathrm{T}} \boldsymbol{x}\right]
$$

First try

So, can we define the following conditional model?

$$
p\left(y=C_{k} \mid \boldsymbol{x}\right)=\sigma\left[\boldsymbol{w}_{k}^{\mathrm{T}} \boldsymbol{x}\right]
$$

This would not work because:

$$
\sum_{k} p\left(y=C_{k} \mid \boldsymbol{x}\right)=\sum_{k} \sigma\left[\boldsymbol{w}_{k}^{\mathrm{T}} \boldsymbol{x}\right] \neq 1
$$

as each summand can be any number (independently) between 0 and 1 . But we are close!

First try

So, can we define the following conditional model?

$$
p\left(y=C_{k} \mid \boldsymbol{x}\right)=\sigma\left[\boldsymbol{w}_{k}^{\mathrm{T}} \boldsymbol{x}\right]
$$

This would not work because:

$$
\sum_{k} p\left(y=C_{k} \mid \boldsymbol{x}\right)=\sum_{k} \sigma\left[\boldsymbol{w}_{k}^{\mathrm{T}} \boldsymbol{x}\right] \neq 1
$$

as each summand can be any number (independently) between 0 and 1 .
But we are close!
We can learn the K linear models jointly to ensure this property holds!

Definition of multinomial logistic regression

Model

For each class C_{k}, we have a parameter vector \boldsymbol{w}_{k} and model the posterior probability as

$$
p\left(C_{k} \mid \boldsymbol{x}\right)=\frac{e^{\boldsymbol{w}_{k}^{\mathrm{T}} \boldsymbol{x}}}{\sum_{k^{\prime}} e^{\boldsymbol{w}_{k^{\prime}}^{\mathrm{T}} \boldsymbol{x}}} \quad \leftarrow \quad \text { This is called softmax function }
$$

Definition of multinomial logistic regression

Model

For each class C_{k}, we have a parameter vector \boldsymbol{w}_{k} and model the posterior probability as

$$
p\left(C_{k} \mid \boldsymbol{x}\right)=\frac{e^{\boldsymbol{w}_{k}^{\mathrm{T}} \boldsymbol{x}}}{\sum_{k^{\prime}} e^{\boldsymbol{w}_{k^{\prime}}^{\mathrm{T}} \boldsymbol{x}}} \quad \leftarrow \quad \text { This is called softmax function }
$$

Decision boundary: assign \boldsymbol{x} with the label that is the maximum of posterior

$$
\arg \max _{k} P\left(C_{k} \mid \boldsymbol{x}\right) \rightarrow \arg \max _{k} \boldsymbol{w}_{k}^{\mathrm{T}} \boldsymbol{x}
$$

How does the softmax function behave?

Suppose we have

$$
\boldsymbol{w}_{1}^{\mathrm{T}} \boldsymbol{x}=100, \boldsymbol{w}_{2}^{\mathrm{T}} \boldsymbol{x}=50, \boldsymbol{w}_{3}^{\mathrm{T}} \boldsymbol{x}=-20
$$

How does the softmax function behave?

Suppose we have

$$
\boldsymbol{w}_{1}^{\mathrm{T}} \boldsymbol{x}=100, \boldsymbol{w}_{2}^{\mathrm{T}} \boldsymbol{x}=50, \boldsymbol{w}_{3}^{\mathrm{T}} \boldsymbol{x}=-20
$$

We would pick the winning class label 1 .
Softmax translates these scores into well-formed conditional probababilities

$$
p(y=1 \mid \boldsymbol{x})=\frac{e^{100}}{e^{100}+e^{50}+e^{-20}}<1
$$

- preserves relative ordering of scores
- maps scores to values between 0 and 1 that also sum to 1

Sanity check

Multinomial model reduce to binary logistic regression when $K=2$

$$
\begin{aligned}
p\left(C_{1} \mid \boldsymbol{x}\right) & =\frac{e^{\boldsymbol{w}_{1}^{\mathrm{T}} \boldsymbol{x}}}{e^{\boldsymbol{w}_{1}^{\mathrm{T}} \boldsymbol{x}}+e^{\boldsymbol{w}_{2}^{\mathrm{T}} \boldsymbol{x}}}=\frac{1}{1+e^{-\left(\boldsymbol{w}_{1}-\boldsymbol{w}_{2}\right)^{\mathrm{T}} \boldsymbol{x}}} \\
& =\frac{1}{1+e^{-\boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}}}
\end{aligned}
$$

Multinomial thus generalizes the (binary) logistic regression to deal with multiple classes.

Parameter estimation

Discriminative approach: maximize conditional likelihood

$$
\log P(\mathcal{D})=\sum_{n} \log P\left(y_{n} \mid \boldsymbol{x}_{n}\right)
$$

Parameter estimation

Discriminative approach: maximize conditional likelihood

$$
\log P(\mathcal{D})=\sum_{n} \log P\left(y_{n} \mid \boldsymbol{x}_{n}\right)
$$

We will change y_{n} to $\boldsymbol{y}_{n}=\left[\begin{array}{llll}y_{n 1} & y_{n 2} & \cdots & y_{n K}\end{array}\right]^{\mathrm{T}}$, a K-dimensional vector using 1 -of-K encoding.

$$
y_{n k}= \begin{cases}1 & \text { if } y_{n}=k \\ 0 & \text { otherwise }\end{cases}
$$

Ex: if $y_{n}=2$, then, $\boldsymbol{y}_{n}=\left[\begin{array}{llllll}0 & 1 & 0 & 0 & \cdots & 0\end{array}\right]^{\mathrm{T}}$.

Parameter estimation

Discriminative approach: maximize conditional likelihood

$$
\log P(\mathcal{D})=\sum_{n} \log P\left(y_{n} \mid \boldsymbol{x}_{n}\right)
$$

We will change y_{n} to $\boldsymbol{y}_{n}=\left[\begin{array}{llll}y_{n 1} & y_{n 2} & \cdots & y_{n K}\end{array}\right]^{\mathrm{T}}$, a K-dimensional vector using 1 -of-K encoding.

$$
y_{n k}= \begin{cases}1 & \text { if } y_{n}=k \\ 0 & \text { otherwise }\end{cases}
$$

Ex: if $y_{n}=2$, then, $\boldsymbol{y}_{n}=\left[\begin{array}{llllll}0 & 1 & 0 & 0 & \cdots & 0\end{array}\right]^{\mathrm{T}}$.
$\Rightarrow \sum_{n} \log P\left(y_{n} \mid \boldsymbol{x}_{n}\right)=\sum_{n} \log \prod_{k=1}^{K} P\left(C_{k} \mid \boldsymbol{x}_{n}\right)^{y_{n k}}=\sum_{n} \sum_{k} y_{n k} \log P\left(C_{k} \mid \boldsymbol{x}_{n}\right)$

Cross-entropy error function

Definition: negative log likelihood

$$
\mathcal{E}\left(\boldsymbol{w}_{1}, \boldsymbol{w}_{2}, \ldots, \boldsymbol{w}_{K}\right)=-\sum_{n} \sum_{k} y_{n k} \log P\left(C_{k} \mid \boldsymbol{x}_{n}\right)
$$

Cross-entropy error function

Definition: negative log likelihood

$$
\mathcal{E}\left(\boldsymbol{w}_{1}, \boldsymbol{w}_{2}, \ldots, \boldsymbol{w}_{K}\right)=-\sum_{n} \sum_{k} y_{n k} \log P\left(C_{k} \mid \boldsymbol{x}_{n}\right)
$$

Properties

- Convex, therefore unique global optimum
- Optimization requires numerical procedures, analogous to those used for binary logistic regression

