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Outline

1 Administration

2 Review of last lecture

3 Basic ideas to overcome overfitting

4 Bias/Variance Analysis
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Announcements

HW2 will be returned in section on Friday

HW3 due in class next Monday

Midterm is next Wednesday
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Midterm

Next Wednesday in class from 10am - 11:50am

Completely closed-book (no notes allowed)

Will include roughly 6 short answer questions and 3 long questions
I Short questions should take 5 minutes on average
I Long questions should take 15 minutes each

Covers all material through (and including) today’s lecture
I Goal is to test conceptual understanding of the course material
I Suggestion: carefully review lecture notes and problem sets

Office hours / Section (see timing on course website)

Professor Ameet Talwalkar CS260 Machine Learning Algorithms February 8, 2017 4 / 40



Outline

1 Administration

2 Review of last lecture
Linear Regression
Ridge Regression for Numerical Purposes
Non-linear Basis

3 Basic ideas to overcome overfitting

4 Bias/Variance Analysis
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Linear regression

Setup

Input: x ∈ RD (covariates, predictors, features, etc)

Output: y ∈ R (responses, targets, outcomes, outputs, etc)

Model: f : x→ y, with f(x) = w0 +
∑

dwdxd = w0 +w
Tx

I w = [w1 w2 · · · wD]
T: weights, parameters, or parameter vector

I w0 is called bias
I We also sometimes call w̃ = [w0 w1 w2 · · · wD]

T parameters too

Training data: D = {(xn, yn), n = 1, 2, . . . ,N}

Least Mean Squares (LMS) Objective: Minimize squared difference on
training data (or residual sum of squares)

RSS(w̃) =
∑
n

[yn − f(xn)]
2 =

∑
n

[yn − (w0 +
∑
d

wdxnd)]
2

1D Solution: Identify stationary points by taking derivative with respect
to parameters and setting to zero, yielding ‘normal equations’
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LMS when x is D-dimensional
RSS(w̃) in matrix form

RSS(w̃) =
∑
n

[yn − (w0 +
∑
d

wdxnd)]
2

=
∑
n

[yn − w̃Tx̃n]
2

where we have redefined some variables (by augmenting)

x̃← [1 x1 x2 . . . xD]
T, w̃ ← [w0 w1 w2 . . . wD]

T

which leads to

RSS(w̃) =
∑
n

(yn − w̃Tx̃n)(yn − x̃T
n w̃)

=
∑
n

w̃Tx̃nx̃
T
n w̃ − 2ynx̃

T
n w̃ + const.

=

{
w̃T

(∑
n

x̃nx̃
T
n

)
w̃ − 2

(∑
n

ynx̃
T
n

)
w̃

}
+ const.
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RSS(w̃) in new notations
From previous slide

RSS(w̃) =

{
w̃T

(∑
n

x̃nx̃
T
n

)
w̃ − 2

(∑
n

ynx̃
T
n

)
w̃

}
+ const.

Design matrix and target vector

X̃ =


x̃T
1

x̃T
2
...
x̃T
N

 ∈ RN×(D+1), y =


y1
y2
...
yN


Compact expression

RSS(w̃) = ||X̃w̃ − y||22 =
{
w̃TX̃TX̃w̃ − 2

(
X̃Ty

)T
w̃

}
+ const
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Solution in matrix form

Compact expression

RSS(w̃) = ||X̃w̃ − y||22 =
{
w̃TX̃TX̃w̃ − 2

(
X̃Ty

)T
w̃

}
+ const

Gradients of Linear and Quadratic Functions

∇xb
>x = b

∇xx
>Ax = 2Ax (symmetric A)

Normal equation

∇w̃RSS(w̃) ∝ X̃TX̃w − X̃Ty = 0

This leads to the least-mean-square (LMS) solution

w̃LMS =
(
X̃TX̃

)−1
X̃Ty
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Practical concerns

Bottleneck of computing the LMS solution

w =
(
X̃TX̃

)−1
X̃y

Matrix multiply of X̃TX̃ ∈ R(D+1)×(D+1)

Inverting the matrix X̃TX̃

Scalable methods

Batch gradient descent

Stochastic gradient descent

Professor Ameet Talwalkar CS260 Machine Learning Algorithms February 8, 2017 10 / 40



(Batch) Gradient Descent

Initialize w̃ to w̃(0) (e.g., randomly); set t = 0; choose η > 0

Loop until convergence
1 Compute the gradient
∇RSS(w̃) = X̃TX̃w̃(t) − X̃Ty

2 Update the parameters
w̃(t+1) = w̃(t) − η∇RSS(w̃)

3 t← t+ 1

What is the complexity of each iteration?

O(ND)

Why does this work? RSS(w̃) is convex (Hessian is PSD)
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Stochastic gradient descent

Widrow-Hoff rule: update parameters using one example at a time

Initialize w̃ to some w̃(0); set t = 0; choose η > 0

Loop until convergence
1 random choose a training a sample xt

2 Compute its contribution to the gradient

gt = (x̃T
t w̃

(t) − yt)x̃t

3 Update the parameters
w̃(t+1) = w̃(t) − ηgt

4 t← t+ 1

How does the complexity per iteration compare with gradient descent?

O(ND) for gradient descent versus O(D) for SGD
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What if X̃TX̃ is not invertible

Why might this happen?

Answer 1: N < D. Intuitively, not enough data to estimate all parameters.

Answer 2: Columns of X are not linearly independent, e.g., some
features are perfectly correlated. In this case, solution is not unique.
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Ridge regression

What can we do when X̃TX̃ is not invertible?

Add regularizer so that all singular values are at least λ > 0!

This is equivalent to adding an extra term to RSS(w̃)

RSS(w̃)︷ ︸︸ ︷
1

2

{
w̃TX̃TX̃w̃ − 2

(
X̃Ty

)T
w̃

}
+

1

2
λ‖w̃‖22︸ ︷︷ ︸

regularization

Solution

Can derive normal equations as before

Solution is of the form:

w̃ =
(
X̃TX̃ + λI

)−1
X̃Ty
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Is a linear modeling assumption always a good idea?
Example of nonlinear classification

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

Example of nonlinear regression

x

t

0 1

−1

0

1
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General nonlinear basis functions

We can use a nonlinear mapping

φ(x) : x ∈ RD → z ∈ RM

M is dimensionality of new features z (or φ(x))

M could be greater than, less than, or equal to D

We can apply existing learning methods on the transformed data

linear methods: prediction is based on wTφ(x)

other methods: nearest neighbors, decision trees, etc
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Regression with nonlinear basis

Residual sum squares ∑
n

[wTφ(xn)− yn]2

where w ∈ RM , the same dimensionality as the transformed features φ(x).

The LMS solution can be formulated with the new design matrix

Φ =


φ(x1)

T

φ(x2)
T

...
φ(xN )T

 ∈ RN×M , wlms =
(
ΦTΦ

)−1
ΦTy
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Example with regression
Polynomial basis functions

φ(x) =


1
x
x2

...
xM

⇒ f(x) = w0 +

M∑
m=1

wmx
m

Fitting samples from a sine function: underfitting as f(x) is too simple

x

t

M = 0

0 1

−1

0

1

x

t

M = 1

0 1

−1

0

1
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Adding high-order terms

M=3

x

t

M = 3

0 1

−1

0

1

M=9: overfitting

x

t

M = 9

0 1

−1

0

1

More complex features lead to better results on the training data, but
potentially worse results on new data, e.g., test data!
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Overfitting

Parameters for higher-order polynomials are very large

M = 0 M = 1 M = 3 M = 9

w0 0.19 0.82 0.31 0.35
w1 -1.27 7.99 232.37
w2 -25.43 -5321.83
w3 17.37 48568.31
w4 -231639.30
w5 640042.26
w6 -1061800.52
w7 1042400.18
w8 -557682.99
w9 125201.43
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Overfitting can be quite disastrous

Fitting the housing price data with large M

Predicted price goes to zero (and is ultimately negative) if you buy a big
enough house!

How might we prevent overfitting?
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Outline

1 Administration

2 Review of last lecture

3 Basic ideas to overcome overfitting
Use more training data
Regularization methods

4 Bias/Variance Analysis
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Use more training data to prevent over fitting

The more, the merrier
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What if we do not have a lot of data?
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Regularization methods

Intuition: Give preference to ‘simpler’ models

How do we define a simple linear regression model — wTx?

Our Strategy: Place a prior on our weights

Interpret w as a random variable

Assume that each wd is centered around zero

Use observed data D to update our prior belief on w
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Review: Probabilistic interpretation for LMS

LMS model: Y = w>X + η

I η ∼ N(0, σ2
0) is a Gaussian random variable

I Thus, Y ∼ N(w>X, σ2
0)

We assume that w is fixed (Frequentist interpretation)

The likelihood function maps parameters to probabilities

L : w, σ20 7→ p(D|w, σ20) = p(y|X,w, σ20) =
∏
n

p(yn|xn,w, σ
2
0)

Maximizing likelihood with respect to w minimizes RSS and yields
the LMS solution:

wLMS = wML = argmaxw L(w, σ
2
0)
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Probabilistic interpretation of Ridge Regression
Ridge Regression model: Y = w>X + η

I Y ∼ N(w>X, σ2
0) is a Gaussian random variable (as before)

I wd ∼ N(0, σ2) are i.i.d. Gaussian random variables (unlike before)
I Note that all wd share the same variance σ2

w is a random variable (Bayesian interpretation)

To find w given data D, we can compute posterior distribution of w:

p(w|D) = p(D|w)p(w)

p(D)

Maximum a posterior (MAP) estimate:

wmap = argmaxw p(w|D) = argmaxw p(D|w)p(w)

What’s the relationship between MAP and MLE?
I MAP reduces to MLE if we assume uniform prior for p(w)

Fully Bayesian treatment considers entire posterior, not just the mode
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Estimating w

Let X1, . . . , XN be IID with y|w,x ∼ N(w>x, σ20)

Let wd be IID with wd ∼ N(0, σ2)

Joint likelihood of data and parameters (given σ0, σ)

p(D,w) = p(D|w)p(w) =
∏
n

p(yn|xn,w)
∏
d

p(wd)

Joint log likelihood Plugging in Gaussian PDF, we get:

log p(D,w) =
∑
n

log p(yn|xn,w) +
∑
d

log p(wd)

= −
∑

n(w
Txn − yn)2
2σ20

−
∑
d

1

2σ2
w2
d + const

MAP estimate: wmap = argmaxw log p(D,w)

As with LMS, set gradient equal to zero and solve (for w)

Professor Ameet Talwalkar CS260 Machine Learning Algorithms February 8, 2017 27 / 40



Estimating w

Let X1, . . . , XN be IID with y|w,x ∼ N(w>x, σ20)

Let wd be IID with wd ∼ N(0, σ2)

Joint likelihood of data and parameters (given σ0, σ)

p(D,w) = p(D|w)p(w) =
∏
n

p(yn|xn,w)
∏
d

p(wd)

Joint log likelihood Plugging in Gaussian PDF, we get:

log p(D,w) =
∑
n

log p(yn|xn,w) +
∑
d

log p(wd)

= −
∑

n(w
Txn − yn)2
2σ20

−
∑
d

1

2σ2
w2
d + const

MAP estimate: wmap = argmaxw log p(D,w)

As with LMS, set gradient equal to zero and solve (for w)

Professor Ameet Talwalkar CS260 Machine Learning Algorithms February 8, 2017 27 / 40



Estimating w

Let X1, . . . , XN be IID with y|w,x ∼ N(w>x, σ20)

Let wd be IID with wd ∼ N(0, σ2)

Joint likelihood of data and parameters (given σ0, σ)

p(D,w) = p(D|w)p(w) =
∏
n

p(yn|xn,w)
∏
d

p(wd)

Joint log likelihood Plugging in Gaussian PDF, we get:

log p(D,w) =
∑
n

log p(yn|xn,w) +
∑
d

log p(wd)

= −
∑

n(w
Txn − yn)2
2σ20

−
∑
d

1

2σ2
w2
d + const

MAP estimate: wmap = argmaxw log p(D,w)

As with LMS, set gradient equal to zero and solve (for w)

Professor Ameet Talwalkar CS260 Machine Learning Algorithms February 8, 2017 27 / 40



Maximum a posterior (MAP) estimate
Regularized linear regression: a new error to minimize

E(w) =
∑
n

(wTxn − yn)2 + λ‖w‖22

where λ > 0 is used to denote σ20/σ
2. This extra term ‖w‖22 is called

regularization/regularizer and controls the model complexity.

Intuitions

If λ→ +∞, then σ2
0 � σ2. That is, the variance of noise is far greater than

what our prior model can allow for w. In this case, our prior model on w
would be more accurate than what data can tell us. Thus, we are getting a
simple model. Numerically,

wmap → 0

If λ→ 0, then we trust our data more. Numerically,

wmap → wlms = argmin
∑
n

(wTxn − yn)2
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Closed-form solution

For regularized linear regression: the solution changes very little (in
form) from the LMS solution

argmin
∑
n

(wTxn − yn)2 + λ‖w‖22 ⇒ wmap =
(
XTX + λI

)−1
XTy

and reduces to the LMS solution when λ = 0, as expected.

Gradients and Hessian change nominally too

∇E(w) = 2(XTXw −XTy + λw), H = 2(XTX + λI)

As long as λ ≥ 0, the optimization is convex.
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Example: fitting data with polynomials

Our regression model

y =

M∑
m=1

wmx
m

Regularization would discourage large parameter values as we saw with the
LMS solution, thus potentially preventing overfitting.

M = 0 M = 1 M = 3 M = 9

w0 0.19 0.82 0.31 0.35
w1 -1.27 7.99 232.37
w2 -25.43 -5321.83
w3 17.37 48568.31
w4 -231639.30
w5 640042.26
w6 -1061800.52
w7 1042400.18
w8 -557682.99
w9 125201.43
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Overfitting in terms of λ
Overfitting is reduced from complex model to simpler one with the
help of increasing regularizers
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λ vs. residual error shows the difference of the model performance on
training and testing dataset
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The effect of λ

Large λ attenuates parameters towards 0

lnλ = −∞ lnλ = −18 lnλ = 0

w0 0.35 0.35 0.13
w1 232.37 4.74 -0.05
w2 -5321.83 -0.77 -0.06
w3 48568.31 -31.97 -0.06
w4 -231639.30 -3.89 -0.03
w5 640042.26 55.28 -0.02
w6 -1061800.52 41.32 -0.01
w7 1042400.18 -45.95 -0.00
w8 -557682.99 -91.53 0.00
w9 125201.43 72.68 0.01
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Regularized methods for classification

Adding regularizer to the cross-entropy functions used for binary
and multinomial logistic regression

E(w) = −
∑
n

{yn log σ(wTxn) + (1− yn) log[1− σ(wTxn)]}+ λ‖w‖22

E(w1,w2, . . . ,wK) = −
∑
n

∑
k

logP (Ck|xn) + λ
∑
k

‖wk‖22

Numerical optimization

Objective functions remain to be convex as long as λ ≥ 0.

Gradients and Hessians change marginally and can be easily derived.
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How to choose the right amount of regularization?

Can we tune λ on the training dataset?

No: as this will always set λ to zero, i.e., no regularization, defeating our
intention of controlling model complexity

λ is thus a hyperparemeter. To tune it,

We can use a validation set or do cross validation (as previously
discussed)
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1 Administration

2 Review of last lecture

3 Basic ideas to overcome overfitting
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Basic and important machine learning concepts

Supervised learning
We aim to build a function h(x) to predict the true value y associated
with x. If we make a mistake, we incur a loss

`(h(x), y)

Example: quadratic loss function for regression when y is continuous

`(h(x), y) = [h(x)− y]2

Ex: when y = 0

h(x)
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Other types of loss functions

For classification: cross-entropy loss (also called logistic loss)

`(h(x), y) = −y log h(x)−(1−y) log[1−h(x)]

Ex: when y = 1

h(x)
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Measure how good our predictor is

Risk: Given the true distribution of data p(x, y), the risk is

R[h(x)] =

∫
x,y

`(h(x), y)p(x, y)dxd y

However, we cannot compute R[h(x)], so we use empirical risk, given a
training dataset D

Remp[h(x)] =
1

N

∑
n

`(h(xn), yn)

Intuitively, as N → +∞,

Remp[h(x)]→ R[h(x)]
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How this relates to what we have learned?

So far, we have been doing empirical risk minimization (ERM)

For linear regression, h(x) = wTx, and we use squared loss

For logistic regression, h(x) = σ(wTx), and we use cross-entropy loss

ERM might be problematic

If h(x) is complicated enough,

Remp[h(x)]→ 0

But then h(x) is unlikely to do well in predicting things out of the
training dataset D
This is called poor generalization or overfitting. We have just
discussed approaches to address this issue.

We’ll explore why regularization might work from the context of the
bias-variance tradeoff, focusing on regression / squared loss
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Bias/variance tradeoff (Looking ahead)

Error decomposes into 3 terms

EDR[hD(x)] = variance+ bias2 + noise

We will prove this result, and interpret what it means...
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