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Grade Policy and Final Exam

Final Grades

HWs (30%), midterm (30%), and final exam (40%) of final grade

The final grades will be curved so that the median grade is either a B
or B+ (I have not yet decided)

I may increase weight of final for students who do much better on
final than midterm (I don’t have a strict policy in place though)

Final Exam

Cumulative but with more emphasis on new material

On last day of class (Wednesday, 3/15)
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Support vector machines (SVM)

Primal Formulation

min
w,b,ξ

1

2
‖w‖22 + C

∑
n

ξn

s.t. yn[w
Tφ(xn) + b] ≥ 1− ξn and ξn ≥ 0, ∀ n

Two equivalent interpretations

Geometric: Maximizing (soft) margin

Optimization: Minimize hinge loss with L2 regularization
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Hinge Loss
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Upper-bound for 0/1 loss function (black line)
Convex surrogate to 0/1 loss

, though others exist as well
I Hinge loss less sensitive to outliers than exponential (or logistic) loss
I Logistic loss has a natural probabilistic interpretation
I We can optimize exponential loss efficiently in a greedy manner

(Adaboost)
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Constrained Optimization

Primal Formulation

min
w,b,ξ

1

2
‖w‖22 + C

∑
n

ξn

s.t. yn[w
Tφ(xn) + b] ≥ 1− ξn and ξn ≥ 0, ∀ n

When working with constrained optimization problems with inequality
constraints, we can write down primal and dual problems

The dual solution is always a lower bound on the primal solution
(weak duality)

The duality gap equals 0 under certain conditions (strong duality),
and in such cases we can either solve the primal or dual problem

Strong duality holds for the SVM problem, and in particular the KKT
conditions are necessary and sufficient for the optimal solution
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Dual formulation of SVM and Kernel SVMs

max
α

∑
n

αn −
1

2

∑
m,n

ymynαmαnφ(xm)
Tφ(xn)

s.t. 0 ≤ αn ≤ C, ∀ n∑
n

αnyn = 0

Dual problem is also a convex quadratic programming

involving N
dual variables αn
Kernel SVM:

I Replace inner products φ(xm)Tφ(xn) with a kernel function,
k(xm,xn) when solving dual problem

I Show that we can recover primal predictions at test time without
relying explicitly on φ(·).
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Recovering primal solution using dual variables
Why do we care?

Using solely a kernel function, we can solve the dual optimization
problem and make predictions at test time!

Prediction only depends on support vectors, i.e., points with αn > 0!

Weights

w =
∑
n

ynαnφ(xn) ← Linear combination of the input features

Offset

b = [yn −wTφ(xn)] = [yn −
∑
m

ymαmk(xm,xn)], for any C > αn > 0

Prediction on a test point x

h(x) = sign(wTφ(x) + b) = sign(
∑
n

ynαnk(xn,x) + b)
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Deriving the dual for SVM

Primal SVM

min
w,b,ξ

1

2
‖w‖22 + C

∑
n

ξn

s.t. yn[w
Tφ(xn) + b] ≥ 1− ξn, ∀ n

ξn ≥ 0, ∀ n

Lagrangian

L(w, b, {ξn}, {αn}, {λn}) = C
∑
n

ξn +
1

2
‖w‖22 −

∑
n

λnξn

+
∑
n

αn{1− yn[wTφ(xn) + b]− ξn}

under the constraints that αn ≥ 0 and λn ≥ 0.
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Minimizing the Lagrangian
Taking derivatives with respect to the primal variables

∂L

∂w
= w −

∑
n

ynαnφ(xn) = 0

∂L

∂b
=
∑
n

αnyn = 0

∂L

∂ξn
= C − λn − αn = 0

These equations link the primal variables and the dual variables and
provide new constraints on the dual variables:

w =
∑
n

ynαnφ(xn)∑
n

αnyn = 0

C − λn − αn = 0
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Rearrange the Lagrangian and incorporate these constraints
Recall:

L(·) = C
∑

n ξn + 1
2
‖w‖22 −

∑
n λnξn +

∑
n αn{1− yn[wTφ(xn) + b]− ξn}

where αn ≥ 0 and λn ≥ 0

Constraints from partial derivatives:
∑

n αnyn = 0 and C − λn − αn = 0

g({αn},{λn}) = L(w, b, {ξn}, {αn}, {λn})

=
∑
n

(C − αn − λn)ξn +
1

2
‖
∑
n

ynαnφ(xn)‖22 +
∑
n

αn

−

(∑
n

αnyn

)
b−

∑
n

αnyn

(∑
m

ymαmφ(xm)

)T

φ(xn)

=
∑
n

αn +
1

2
‖
∑
n

ynαnφ(xn)‖22 −
∑
m,n

αnαmymynφ(xm)
Tφ(xn)

=
∑
n

αn −
1

2

∑
m,n

αnαmymynφ(xm)
Tφ(xn)
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The dual problem

Maximizing the dual under the constraints

max
α

g({αn}, {λn}) =
∑
n

αn −
1

2

∑
m,n

ymynαmαnk(xm,xn)

s.t. αn ≥ 0, ∀ n∑
n

αnyn = 0

C − λn − αn = 0, ∀ n
λn ≥ 0, ∀ n

We can simplify as the objective function does not depend on λn.

C − λn − αn = 0, λn ≥ 0 ⇐⇒ λn = C − αn ≥ 0

⇐⇒ 0 ≤ αn ≤ C
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Simplified Dual

max
α

∑
n

αn −
1

2

∑
m,n

ymynαmαnφ(xm)
Tφ(xn)

s.t. 0 ≤ αn ≤ C, ∀ n∑
n

αnyn = 0
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1 Administration

2 Review of last lecture

3 Boosting
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Boosting

High-level idea: combine a lot of classifiers

Sequentially construct / identify these classifiers, ht(·), one at a time

Use weak classifiers to arrive at a complex decision boundary (strong
classifier), where βt is the contribution of each weak classifier

h[x] = sign

[
T∑
t=1

βtht(x)

]

Our plan

Describe AdaBoost algorithm

Derive the algorithm
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Adaboost Algorithm
Given: N samples {xn, yn}, where yn ∈ {+1,−1}, and some way of
constructing weak (or base) classifiers

Initialize weights w1(n) =
1
N for every training sample

For t = 1 to T
1 Train a weak classifier ht(x) using current weights wt(n), by

minimizing

εt =
∑
n

wt(n)I[yn 6= ht(xn)] (the weighted classification error)

2 Compute contribution for this classifier: βt =
1
2 log

1−εt
εt

3 Update weights on training points

wt+1(n) ∝ wt(n)e−βtynht(xn)

and normalize them such that
∑
n wt+1(n) = 1

Output the final classifier

h[x] = sign

[
T∑
t=1

βtht(x)

]
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1 Train a weak classifier ht(x) using current weights wt(n), by

minimizing

εt =
∑
n

wt(n)I[yn 6= ht(xn)] (the weighted classification error)

2 Compute contribution for this classifier: βt =
1
2 log

1−εt
εt

3 Update weights on training points

wt+1(n) ∝ wt(n)e−βtynht(xn)

and normalize them such that
∑
n wt+1(n) = 1

Output the final classifier

h[x] = sign

[
T∑
t=1

βtht(x)

]
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Example
10 data points and 2 featuresToy ExampleToy ExampleToy ExampleToy ExampleToy Example

D1

weak classifiers = vertical or horizontal half-planes

The data points are clearly not linear separable

In the beginning, all data points have equal weights (the size of the
data markers “+” or “-”)

Base classifier h(·): horizontal or vertical lines (’decision stumps’)
I Depth-1 decision trees, i.e., classify data based on a single attribute
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Round 1: t = 1
Round 1Round 1Round 1Round 1Round 1

h1

!

"1
1

=0.30
=0.42

2D

3 misclassified (with circles): ε1 = 0.3→ β1 = 0.42.

Weights recomputed; the 3 misclassified data points receive larger
weights
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Round 2: t = 2Round 2Round 2Round 2Round 2Round 2

!

"2
2

=0.21
=0.65

h2 3D

3 misclassified (with circles): ε2 = 0.21→ β2 = 0.65.
Note that ε2 6= 0.3 as those 3 data points have weights less than 1/10

3 misclassified data points get larger weights

Data points classified correctly in both rounds have small weights
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Round 3: t = 3Round 3Round 3Round 3Round 3Round 3

h3

!

"3
3=0.92
=0.14

3 misclassified (with circles): ε3 = 0.14→ β3 = 0.92.

Previously correctly classified data points are now misclassified, hence
our error is low; what’s the intuition?

I Since they have been consistently classified correctly, this round’s
mistake will hopefully not have a huge impact on the overall prediction
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Final classifier: combining 3 classifiersFinal ClassifierFinal ClassifierFinal ClassifierFinal ClassifierFinal Classifier

H
final

+ 0.92+ 0.650.42sign=

=

All data points are now classified correctly!
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Why AdaBoost works?

It minimizes a loss function related to classification error.

Classification loss

Suppose we want to have a classifier

h(x) = sign[f(x)] =

{
1 if f(x) > 0
−1 if f(x) < 0

One seemingly natural loss function is 0-1 loss:

`(h(x), y) =

{
0 if yf(x) > 0
1 if yf(x) < 0

Namely, the function f(x) and the target label y should have the
same sign to avoid a loss of 1.
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Surrogate loss
0− 1 loss function `(h(x), y) is non-convex and difficult to optimize.
We can instead use a surrogate loss – what are examples?

Exponential Loss
`exp(h(x), y) = e−yf(x)

−2 0 2 4 6 8 10
0

1

2

3

4

5

6

7

8

yf(x)

`(h(x), y)

Professor Ameet Talwalkar CS260 Machine Learning Algorithms March 1, 2017 24 / 32



Surrogate loss
0− 1 loss function `(h(x), y) is non-convex and difficult to optimize.
We can instead use a surrogate loss – what are examples?

Exponential Loss
`exp(h(x), y) = e−yf(x)

−2 0 2 4 6 8 10
0

1

2

3

4

5

6

7

8

yf(x)

`(h(x), y)

Professor Ameet Talwalkar CS260 Machine Learning Algorithms March 1, 2017 24 / 32



Choosing the t-th classifier

Suppose a classifier ft−1(x), and want to add a weak learner ht(x)

f(x) = ft−1(x) + βtht(x)

note: ht(·) outputs −1 or 1, as does sign [ft−1(·)]

How can we ‘optimally’ choose ht(x) and combination coefficient βt?
Adaboost greedily minimizes the exponential loss function!

(h∗t (x), β
∗
t ) = argmin(ht(x),βt)

∑
n

e−ynf(xn)

= argmin(ht(x),βt)
∑
n

e−yn[ft−1(xn)+βtht(xn)]

= argmin(ht(x),βt)
∑
n

wt(n)e
−ynβtht(xn)

where we have used wt(n) as a shorthand for e−ynft−1(xn)
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The new classifier

We can decompose the weighted loss function into two parts∑
n

wt(n)e
−ynβtht(xn)

=
∑
n

wt(n)e
βtI[yn 6= ht(xn)] +

∑
n

wt(n)e
−βtI[yn = ht(xn)]

=
∑
n

wt(n)e
βtI[yn 6= ht(xn)] +

∑
n

wt(n)e
−βt(1− I[yn 6= ht(xn)])

= (eβt − e−βt)
∑
n

wt(n)I[yn 6= ht(xn)] + e−βt
∑
n

wt(n)

We have used the following properties to derive the above

ynht(xn) is either 1 or -1 as ht(xn) is the output of a binary classifier

The indicator function I[yn = ht(xn)] is either 0 or 1, so it equals
1− I[yn 6= ht(xn)]
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Finding the optimal weak learner

Summary

(h∗t (x), β
∗
t ) = argmin(ht(x),βt)

∑
n

wt(n)e
−ynβtht(xn)

= argmin(ht(x),βt)(e
βt − e−βt)

∑
n

wt(n)I[yn 6= ht(xn)]

+ e−βt
∑
n

wt(n)

What term(s) must we optimize to choose ht(xn)?

h∗t (x) = argminht(x) εt =
∑
n

wt(n)I[yn 6= ht(xn)]

Minimize weighted classification error as noted in step 1 of Adaboost!
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How to choose βt?
Summary

(h∗t (x), β
∗
t ) = argmin(ht(x),βt)

∑
n

wt(n)e
−ynβtht(xn)

= argmin(ht(x),βt)(e
βt − e−βt)

∑
n

wt(n)I[yn 6= ht(xn)]

+ e−βt
∑
n

wt(n)

What term(s) must we optimize?

We need to minimize the entire objective function with respect to βt!

We can do this by taking derivative with respect to βt, setting to zero, and
solving for βt. After some calculation and using

∑
nwt(n) = 1, we find:

β∗t =
1

2
log

1− εt
εt

which is precisely step 2 of Adaboost! (Exercise – verify the solution)
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Updating the weights

Once we find the optimal weak learner we can update our classifier:

f(x) = ft−1(x) + β∗t h
∗
t (x)

We then need to compute the weights for the above classifier as:

wt+1(n) = e−ynf(xn) = e−yn[ft−1(x)+β∗
t h

∗
t (xn)]

= wt(n)e
−ynβ∗

t h
∗
t (xn) =

{
wt(n)e

β∗
t if yn 6= h∗t (xn)

wt(n)e
−β∗

t if yn = h∗t (xn)

Intuition Misclassified data points will get their weights increased, while
correctly classified data points will get their weight decreased
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Meta-Algorithm

Note that the AdaBoost algorithm itself never specifies how we would get
h∗t (x) as long as it minimizes the weighted classification error

εt =
∑
n

wt(n)I[yn 6= h∗t (xn)]

In this aspect, the AdaBoost algorithm is a meta-algorithm and can be
used with any type of classifier

Professor Ameet Talwalkar CS260 Machine Learning Algorithms March 1, 2017 30 / 32



E.g., Decision Stumps
How do we choose the decision stump classifier given the weights at the
second round of the following distribution?Round 1Round 1Round 1Round 1Round 1

h1

!

"1
1

=0.30
=0.42

2D

We can simply enumerate all possible ways of putting vertical and
horizontal lines to separate the data points into two classes and find the
one with the smallest weighted classification error! Runtime?

Presort data by each feature in O(dN logN) time

Evaluate N + 1 thresholds for each feature at each round in O(dN)
time

In total O(dN logN + dNT ) time – this efficiency is an attractive
quality of boosting!
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Interpreting boosting as learning nonlinear basis

Two-stage process

Get sign[h1(x)], sign[h2(x)],· · · ,
Combine into a linear classification model

y = sign

{∑
t

βtsign[ht(x)]

}
= sign

{
β>φ(x)

}

In other words, each stage learns a nonlinear basis φt(x) = sign[ht(x)]

This is an alternative way to introduce non-linearity aside from kernel
methods

We could also try to learn the basis functions and the classifier at the
same time, as we’ll talk about with neural networks next class
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