Neural Networks

Professor Ameet Talwalkar

・ロト ・回ト ・ヨト

Outline

Administration (1

-

▲ 同 ▶ → 三 ▶

Grade Policy and Final Exam

Upcoming Schedule

- Today: HW5 due, HW6 released
- Wednesday (3/8): Last day of class
- Next Monday (3/13): No class I will hold office hours in my office (BH 4531F)
- Next Wednesday (3/15): Final Exam, HW6 due

Final Exam

• Cumulative but with more emphasis on new material

Outline

1 Administration

2 Review of last lecture

- AdaBoost
- Boosting as learning nonlinear basis

3 Neural Networks

Boosting

High-level idea: combine a lot of classifiers

- \bullet Sequentially construct / identify these classifiers, $h_t(\cdot),$ one at a time
- Use *weak* classifiers to arrive at a complex decision boundary (*strong* classifier), where β_t is the contribution of each weak classifier

Boosting

High-level idea: combine a lot of classifiers

- Sequentially construct / identify these classifiers, $h_t(\cdot)$, one at a time
- Use *weak* classifiers to arrive at a complex decision boundary (*strong* classifier), where β_t is the contribution of each weak classifier

$$h[\boldsymbol{x}] = \operatorname{sign}\left[\sum_{t=1}^{T} \beta_t h_t(\boldsymbol{x})
ight]$$

• Given: N samples $\{x_n, y_n\}$, where $y_n \in \{+1, -1\}$, and some way of constructing weak (or base) classifiers

- Given: N samples $\{x_n, y_n\}$, where $y_n \in \{+1, -1\}$, and some way of constructing weak (or base) classifiers
- Initialize weights $w_1(n) = \frac{1}{N}$ for every training sample

- Given: N samples $\{x_n, y_n\}$, where $y_n \in \{+1, -1\}$, and some way of constructing weak (or base) classifiers
- Initialize weights $w_1(n) = \frac{1}{N}$ for every training sample • For t = 1 to T
 - $\textcircled{\ }$ Train a weak classifier $h_t({\pmb x})$ using current weights $w_t(n),$ by minimizing

$$\epsilon_t = \sum_n w_t(n) \mathbb{I}[y_n \neq h_t(\boldsymbol{x}_n)]$$

- Given: N samples $\{x_n, y_n\}$, where $y_n \in \{+1, -1\}$, and some way of constructing weak (or base) classifiers
- Initialize weights $w_1(n) = \frac{1}{N}$ for every training sample • For t = 1 to T
 - $\textcircled{\ }$ Train a weak classifier $h_t({\pmb x})$ using current weights $w_t(n),$ by minimizing

 $\epsilon_t = \sum_n w_t(n) \mathbb{I}[y_n \neq h_t(\boldsymbol{x}_n)] \quad \text{(the weighted classification error)}$

・ 同 ト ・ ヨ ト ・ ヨ ト … ヨ …

- Given: N samples $\{x_n, y_n\}$, where $y_n \in \{+1, -1\}$, and some way of constructing weak (or base) classifiers
- Initialize weights $w_1(n) = \frac{1}{N}$ for every training sample • For t = 1 to T
 - $\textcircled{\ }$ Train a weak classifier $h_t({\pmb x})$ using current weights $w_t(n),$ by minimizing

 $\epsilon_t = \sum_n w_t(n) \mathbb{I}[y_n \neq h_t(\boldsymbol{x}_n)] \quad \text{(the weighted classification error)}$

2 Compute contribution for this classifier

- Given: N samples $\{x_n, y_n\}$, where $y_n \in \{+1, -1\}$, and some way of constructing weak (or base) classifiers
- Initialize weights $w_1(n) = \frac{1}{N}$ for every training sample • For t = 1 to T
 - $\textcircled{\ }$ Train a weak classifier $h_t({\pmb x})$ using current weights $w_t(n),$ by minimizing

 $\epsilon_t = \sum_n w_t(n) \mathbb{I}[y_n \neq h_t(\boldsymbol{x}_n)] \quad \text{(the weighted classification error)}$

2 Compute contribution for this classifier: $\beta_t = \frac{1}{2} \log \frac{1-\epsilon_t}{\epsilon_t}$

- Given: N samples $\{x_n, y_n\}$, where $y_n \in \{+1, -1\}$, and some way of constructing weak (or base) classifiers
- Initialize weights $w_1(n) = \frac{1}{N}$ for every training sample • For t = 1 to T
 - $\textcircled{\ }$ Train a weak classifier $h_t({\pmb x})$ using current weights $w_t(n),$ by minimizing

 $\epsilon_t = \sum_n w_t(n) \mathbb{I}[y_n \neq h_t(\boldsymbol{x}_n)] \quad \text{(the weighted classification error)}$

- **2** Compute contribution for this classifier: $\beta_t = \frac{1}{2} \log \frac{1-\epsilon_t}{\epsilon_t}$
- Opdate weights on training points

- 4 回 ト 4 三 ト - 三 - シックマ

- Given: N samples $\{x_n, y_n\}$, where $y_n \in \{+1, -1\}$, and some way of constructing weak (or base) classifiers
- Initialize weights $w_1(n) = \frac{1}{N}$ for every training sample • For t = 1 to T
 - $\textcircled{\ }$ Train a weak classifier $h_t({\pmb x})$ using current weights $w_t(n),$ by minimizing

 $\epsilon_t = \sum_n w_t(n) \mathbb{I}[y_n \neq h_t(\boldsymbol{x}_n)] \quad \text{(the weighted classification error)}$

Compute contribution for this classifier: β_t = ¹/₂ log ^{1-ε_t}/_{ε_t}
 Update weights on training points

$$w_{t+1}(n) \propto w_t(n) e^{-\beta_t y_n h_t(\boldsymbol{x}_n)}$$

- 4 回 ト 4 三 ト - 三 - シックマ

- Given: N samples $\{x_n, y_n\}$, where $y_n \in \{+1, -1\}$, and some way of constructing weak (or base) classifiers
- Initialize weights $w_1(n) = \frac{1}{N}$ for every training sample • For t = 1 to T
 - $\textcircled{\ }$ Train a weak classifier $h_t({\pmb x})$ using current weights $w_t(n),$ by minimizing

 $\epsilon_t = \sum_n w_t(n) \mathbb{I}[y_n \neq h_t(\boldsymbol{x}_n)] \quad \text{(the weighted classification error)}$

Compute contribution for this classifier: \$\beta_t = \frac{1}{2} \log \frac{1-\epsilon_t}{\epsilon_t}\$
 Update weights on training points

$$w_{t+1}(n) \propto w_t(n) e^{-\beta_t y_n h_t(\boldsymbol{x}_n)}$$

and normalize them such that $\sum_n w_{t+1}(n) = 1$

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

- Given: N samples $\{x_n, y_n\}$, where $y_n \in \{+1, -1\}$, and some way of constructing weak (or base) classifiers
- Initialize weights $w_1(n) = \frac{1}{N}$ for every training sample • For t = 1 to T
 - $\textcircled{\ }$ Train a weak classifier $h_t({\pmb x})$ using current weights $w_t(n),$ by minimizing

 $\epsilon_t = \sum_n w_t(n) \mathbb{I}[y_n \neq h_t(\boldsymbol{x}_n)] \quad \text{(the weighted classification error)}$

Compute contribution for this classifier: β_t = ¹/₂ log ^{1-ε_t}/_{ε_t}
 Update weights on training points

$$w_{t+1}(n) \propto w_t(n) e^{-\beta_t y_n h_t(\boldsymbol{x}_n)}$$

and normalize them such that $\sum_n w_{t+1}(n) = 1$ \bullet Output the final classifier

$$h[\boldsymbol{x}] = \operatorname{sign}\left[\sum_{t=1}^{T} \beta_t h_t(\boldsymbol{x})\right]$$

Example 10 data points and 2 features

- The data points are clearly not linear separable
- In the beginning, all data points have equal weights (the size of the data markers "+" or "-")

Example 10 data points and 2 features

- The data points are clearly not linear separable
- In the beginning, all data points have equal weights (the size of the data markers "+" or "-")
- Base classifier $h(\cdot)$: horizontal or vertical lines ('decision stumps')
 - Depth-1 decision trees, i.e., classify data based on a single attribute

7 / 20

Round 1: t = 1

▲ ▲ 볼 ▶ 볼 ∽ ९ ে March 5, 2017 8 / 20

<ロ> (日) (日) (日) (日) (日)

Round 1: t = 1

- 3 misclassified (with circles): $\epsilon_1 = 0.3 \rightarrow \beta_1 = 0.42$.
- Weights recomputed; the 3 misclassified data points receive larger weights

Round 2: t = 2

▶ < ≣ ▶ ≣ ∽ ९ ० March 5, 2017 9 / 20

イロト イヨト イヨト イヨト

Round 2: t = 2

- 3 misclassified (with circles): $\epsilon_2 = 0.21 \rightarrow \beta_2 = 0.65$. Note that $\epsilon_2 \neq 0.3$ as those 3 data points have weights less than 1/10
- 3 misclassified data points get larger weights
- Data points classified correctly in both rounds have small weights

Round 3: t = 3

March 5, 2017 10 / 20

3

イロト イヨト イヨト イヨト

Round 3: t = 3

- 3 misclassified (with circles): $\epsilon_3 = 0.14 \rightarrow \beta_3 = 0.92$.
- Previously correctly classified data points are now misclassified, hence our error is low; what's the intuition?

Round 3: t = 3

- 3 misclassified (with circles): $\epsilon_3 = 0.14 \rightarrow \beta_3 = 0.92$.
- Previously correctly classified data points are now misclassified, hence our error is low; what's the intuition?
 - Since they have been consistently classified correctly, this round's mistake will hopefully not have a huge impact on the overall prediction

Final classifier: combining 3 classifiers

• All data points are now classified correctly!

Professor Ameet Talwalkar

March 5, 2017 11 / 20

Derivation of the AdaBoost

Minimize exponential loss

$$\ell^{\text{EXP}}(h(\boldsymbol{x}), y) = e^{-yf(\boldsymbol{x})}$$

Greedily (sequentially) find the best classifier to optimize the loss A classifier $f_{t-1}(x)$ is improved by adding a new classifier $h_t(x)$

$$f(\boldsymbol{x}) = f_{t-1}(\boldsymbol{x}) + \beta_t h_t(\boldsymbol{x})$$
$$(h_t^*(\boldsymbol{x}), \beta_t^*) = \arg\min_{(h_t(\boldsymbol{x}), \beta_t)} \sum_n e^{-y_n f(\boldsymbol{x}_n)}$$
$$= \arg\min_{(h_t(\boldsymbol{x}), \beta_t)} \sum_n e^{-y_n [f_{t-1}(\boldsymbol{x}_n) + \beta_t h_t(\boldsymbol{x}_n)]}$$

Nonlinear basis learned by boosting

Two-stage process

- Get $\operatorname{SIGN}[f_1(\boldsymbol{x})]$, $\operatorname{SIGN}[f_2(\boldsymbol{x})]$, \cdots ,
- Combine into a linear classification model

$$y = \operatorname{SIGN}\left\{\sum_t \beta_t \operatorname{SIGN}[f_t(\boldsymbol{x})]\right\}$$

Equivalently, each stage learns a nonlinear basis $\phi_t(\boldsymbol{x}) = \text{SIGN}[f_t(\boldsymbol{x})]$.

One thought is then, why not learning the basis functions and the classifier at the same time?

Outline

Administration

2 Review of last lecture

3 Neural Networks

4 Summary

3

< E

▲ 同 ▶ → 三 ▶

Derivation of backpropagation

- Calculate the feed-forward signals $oldsymbol{a}^{(l)}$ from the input to the output
- Calculate output error based on the predictions $oldsymbol{a}^{(L)}$ and the label
- ullet Backpropagate the error by computing the $\delta^{(l)}$ values
- Calculating the gradients $rac{\partial J}{\partial heta_{ij}}$ via $m{a}^{(l)}$ and $m{\delta}^{(l)}$
- Updates the parameters via $\theta_{ij} \leftarrow \theta_{ij} \eta \frac{\partial J}{\partial \theta_{ij}}$

Illustrative example

- p, q: outputs at the indicated nodes
- θ_h : edge weight from x_1 to hidden node q
- θ_o : edge weight from hidden node q to output node p
- b_q : bias associated with node q
- z_q : input to node q, i.e., $z_q = b_q + \theta_h x_1 + \dots$
- z_p : input to node p, i.e., $z_p = b_p + \theta_o q + \dots$
- g: activation function (e.g., sigmoid)
- t: target value for output node

Illustrative example (cont'd)

• Assume cross entropy loss between target t and network output p

$$E = t \log p + (1 - t)(1 - \log p)$$

• Gradients for the output layer (assuming t = 1)

$$\begin{aligned} \frac{\partial E}{\partial \theta_o} &= \frac{\partial E}{\partial g} \frac{\partial g}{\partial z_q} \frac{\partial z_q}{\partial \theta_o} \\ &= \frac{1}{p} \frac{\partial}{\partial \theta_o} p = \frac{1}{p} \frac{\partial}{\partial \theta_o} \sigma(z_p) \\ &= \frac{1}{p} p(1-p) \frac{\partial}{\partial \theta_o} z_p = (1-p) \frac{\partial}{\partial \theta_o} (b_p + \theta_o q + \ldots) \\ &= (1-p)q \end{aligned}$$

• Gradients for hidden layer

$$\frac{\partial E}{\partial \theta_h} = \frac{\partial E}{\partial g} \frac{\partial g}{\partial z_q} \frac{\partial z_q}{\partial \theta_h}$$

Outline

1 Administration

2 Review of last lecture

3 Neural Networks

Supervised learning

Summary of the course so far: a short list of important concepts

Supervised learning has been our focus

- Setup: given a training dataset $\{x_n, y_n\}_{n=1}^N$, we learn a function h(x) to predict x's true value y (i.e., regression or classification)
- Linear vs. nonlinear features
 - **1** Linear: $h(\boldsymbol{x})$ depends on $\boldsymbol{w}^{\mathrm{T}}\boldsymbol{x}$
 - **2** Nonlinear: h(x) depends on $w^{\mathrm{T}}\phi(x)$, where ϕ is either explicit or depends on a kernel function $k(x_m, x_n) = \phi(x_m)^{\mathrm{T}}\phi(x_n)$,
- Loss function
 - Squared loss: least square for regression (minimizing residual sum of errors)
 - 2 Logistic loss: logistic regression
 - Section 2 Sec
 - Margin-based loss: support vector machines
- Principles of estimation
 - Point estimate: maximum likelihood, regularized likelihood

(本間) (本語) (本語) (語)

cont'd

Optimization

- Methods: gradient descent, Newton method
- Onvex optimization: global optimum vs. local optimum
- Substitution Lagrange duality: primal and dual formulation

Learning theory

- Difference between training error and generalization error
- Overfitting, bias and variance tradeoff
- 8 Regularization: various regularized models