
The Extended BG-Simulation
and the Characterization of t-Resiliency

Eli Gafni
Computer Science Department, University of California, Los Angeles.

eli@ucla.edu

ABSTRACT
A distributed task T on n processors is an input/output
relation between a collection of processors’ inputs and out-
puts. While all tasks are solvable if no processor may ever
crash, the FLP result revealed that the possibility of a fail-
ure of just a single processor precludes a solution to the task
of consensus. That is consensus is not solvable 1-resiliently.
Yet, some nontrivial tasks are wait-free solvable, i.e. n− 1-
resiliently. What tasks are solvable if at most t < n proces-
sors may crash? I.e. what tasks are solvable t-resiliently?

The Herlihy-Shavit condition characterizes wait-free solv-
ability, i.e., when t = n−1. The Borowsky-Gafni (BG) sim-
ulation extends this characterization to the t-resilient case
for the case “colorless” tasks - tasks like consensus in which
one processor can adopt the output of any other processor.
It does this by reducing questions about t-resilient solvabil-
ity, to a question of wait-free solvability. The latter question
has been characterized.

In this paper, we amend the BG-simulation to result in
the Extended-BG-simulation, an extension that yields a full
characterization of t-resilient solvability: A task T on n pro-
cessors is solvable t-resiliently iff all tasks T ′ on t + 1 sim-
ulators s0, . . . , st created as follows are wait-free solvable.
Simulator si is given an input of processor pi as well as the
input to a set of processors of size n− (t+1) with ids higher
than i. Simulator si outputs for pi as well as for a (possibly
different) set of processors of size n− (t +1) with ids higher
than i. The input/output of the t + 1 simulators have to be
a projection of a single original input/output tuple-pair in
T .

We demonstrate the convenience that the characterization
provides, in two ways. First, we prove a new equivalence
result: We show that n processes can solve t-resiliently weak
renaming with n + (t + 1) − 2 names, where n > 1 and
0 < t < n, iff weak-renaming on t + 1 processors is wait-free
solvable with 2t names. Second, we reproduce the result
that the solvability of n-processors tasks, t-resiliently, for
t > 1 and n > 2, is undecidable, by a simple reduction to

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
STOC’09,May 31–June 2, 2009, Bethesda, Maryland, USA.
Copyright 2009 ACM 978-1-60558-506-2/09/05 ...$5.00.

the undecidability of the wait-free solvability of 3-processors
tasks.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network
Architecture and Design—distributed networks; C.2.4 [Com-
puter-Communication Networks]: Distributed Systems;
F.1.1 [Computation by Abstract Devices]: Models of
Computation—relations between models

General Terms
Algorithms, Performance, Theory

Keywords
Wait-freedom, t-resilience, solvability, renaming, symmetry
breaking, decidability

1. INTRODUCTION
The most celebrated result of distributed computing, the

FLP impossibility result [9], is couched in the domain of
resiliency: Any number of processors, communicating asyn-
chronously by message-passing, with the possibility of at
most one faulty (1-resiliently), cannot asynchronously reach
consensus. The result applies to Shared-Memory (SM) too [4].

It may be thought that in SM 2 processors with one faulty
cannot reach consensus, since it is “one against one;” yet,
100 processors with the possibility of just one faulty, then
with the overwhelming majority of 99 non-faulty processors
they could reach consensus. The FLP result proved they
cannot.

The FLP proves the result about 100 processors with 1
faulty directly. It has to deal with “fair executions” and
other cluttering details. Proving FLP for 2 processors in SM
is clean and short [4]. Can the FLP impossibility be reduced
to the impossibility of 2 processors solving consensus wait-
free in SM?

The BG-Simulation [2, 6] does just that.
It reduces a class of questions about resiliency to ques-

tions about wait-free (i.e. n − 1-resiliency). It can be used
to prove FLP in the SM context by proving the impossi-
bility for 2 processors, and then showing that the existence
of r/w protocol that can solve consensus for 100 processors
1-resiliently, will imply a wait-free consensus protocol for 2
processors, leading to a contradiction.

The idea of the reduction is to take 2 simulators s0 and
s1. If there exist a code code0, code1,. . ., code99, for 100 pro-
cessors that solves consensus 1-resiliently, then w.l.o.g there

exists an input and an execution e0 (in which only 99 pro-
cessors are induced to participate) that results a decision
0, and execution e1 (in which all processors are induced to
participate) that results a decision value 1 [9]. Simulator
si, i = 0, 1 in solo execution emulates execution ei where
they service the participating codes in a round-robin fash-
ion. It is shown that the BG-simulation is such that the
failure of a simulator manifests itself as lack of progress of
a single code. Thus the emulated execution is 1-resilient.
Consequently, at least 99 codes will have an output. Since
for consensus all outputs are the same, it can be adopted as
a consensus output for s0 and s1.

Moreover, the BG-simulation not only reduces 1-resilient
consensus to 2-processors wait-free consensus, it also fully
characterizes the 1-resilient solvability of the task T of n-
processors consensus: T is 1-resiliently solvable iff there ex-
ists a wait-free protocol for 2 processors to solve 2-processor
consensus. The BG simulation shows that if T is solvable
1-resiliently then 2-processor consensus is solvable wait free.
In the other direction: Were 2 processors wait free able to
do consensus, then n processors 1-resilently would have been
able to do consensus too; all processors wait on any pro-
cessor among processors p0 and p1 to reach consensus and
announce it, as at least one among the two processors must
be alive.

Thus, if wait-free tasks are characterized by the HS con-
ditions [11], we would like to take any question about t-
resilient solvability and reduce it to a question about wait-
free solvability. The BG-simulation does this only for a sub-
class of such questions.

It can bee seen that the correctness of the emulation relies
heavily on the fact that the two simulators, one perhaps ob-
serving only 99 entry output tuple and the other observing
100, will nevertheless, output the same value, as all simu-
lated processors output the same value. But what about
tasks in which this is not the case.

Imagine you wanted to simulate 100 processors, 1-resilient,
by 2 simulators wait-free, such that s0’s output includes the
output of code0 and s1’s output include the output of code1.
If the task is not consensus, then when s0 observes 99 out-
puts, these may be outputs for codes code1, . . . , code99, while
code0 is the one on which progress was blocked as a result
of a failure of simulator s1. Thus the BG-simulation cannot
accommodate such a requirement.

This drawback is remedied here by the Extended BG-
simulation. It allows a simulator to be associated uniquely
with certain code and guarantees that when simulator s0 re-
turns wait free with 99 or 100 outputs, one of these outputs
in both cases is the output of code0. This is derived from
a simple observation that if s0 cannot return only because
code0 is blocked by s1, then s1 has enough outputs to de-
part. Thus, we can implement a “safe abort” operation that
releases code0 from being blocked by s1, under the condition
that s1 will depart and will not obstruct s0 anymore.

Extending the BG-simulation by this simple property re-
sults in a full characterization of t-resiliency in terms of wait-
freedom.

Given a task T on n > t processors we create the task
T ′ on t + 1 simulators s0, ...st, such that T is t-resiliently
solvable iff T ′ is wait-free solvable: Simulator si is given the
input of processor pi as well as the input to a set of pro-
cessors of size n− (t + 1) with ids higher than i. Simulator
si outputs for pi as well as for a (possibly different) set of

processors of size n − (t + 1) with ids higher than i. The
input/output of the t + 1 simulators have to be a projec-
tion of a single original input/output tuple-pair in T , where
all inputs in the tuple appear as an input to at least one
simulator.

As an example, consider the task of WeakRenaming (n +
t, n, n + t − 1) [12]. This is a task on n + t processors and
requires a processor in a participating set of size n to output
a unique integer in the range 1 to n + t − 1. The question
is whether this task is solvable 2t = r-resiliently. Thus the
induced wait-free task is on r + 1 = 2t + 1 = 2(t + 1) − 1
simulators. The characterization implies that when t + 1
simulators si i ∈ {0, . . . , 2t} participate, where the input
to si is the id of pi, as well as all the ids of processors
in {p2t+1, . . . , pn+t−1}, then the problem is wait-free solv-
able. Notice that the induced size of participating set of
processors in T , that is, all the union of ids that appear
as inputs to simulators, is n. Thus, each processors si will
output a unique integer for pi as well as they will all agree
to output the same unique integers for all the processors in
{p2t+1, . . . , pn+t−1}. We will see that this implies that sim-
ulators chose for themselves a unique integer in a range of
size 2(t + 1)− 2.

Why do we bring this “complex” example? Turns out that
just because si has an output for pi we can show that the
wait-free task T ′ on 2t + 1 simulators induced by WeakRe-
naming (n + t, n, n + t − 1), is equivalent WeakSymmetry-
Breaking (2(t + 1) − 1, t + 1) (WSB) which is a task on
2(t + 1) − 1 processors and just asks that for participat-
ing set of size t + 1 all processor output 0 or 1, but at
least one processor outputs 0 and at least one processor out-
puts 1. This task was recently been shown to be unsolvable
for certain values of t and solvable for others [7]. We can
immediately infer that the same holds for WeakRenaming
(n + t, n, n + t− 1).

The answer to the question about the solvability of Weak-
Renaming (n + t, n, n + t− 1) [10] is the new tangible ram-
ification of the characterization of the t-resilient solvability,
and indeed, the quest to answer this question motivated this
paper.

Another by-product of the characterization is a signifi-
cant simplification of the derivation of the HR result that
implies that the question about the solvability of a task
on n processors, for any given n, 2-resiliently, is undecid-
able [15]. Prior to the HR result the GK result proved that
the question of solvability of tasks on 3 processors wait-free
is undecidable [16, 17]. The HR derivation appealed to first
principles. Here we reproduced the HR result by using the
new resiliency characterization and showing that solvability
question n processors tasks 2-resiliently is undecidable iff 3
processors wait-free is.

The paper is organized as follows: In Section 2, we define
resiliency, recall the details of the BG Agreement-Protocol [2,
6], and present its extended version. In Section 3, we prove
the extended characterization of t-resiliency. Finally, in Sec-
tion 4, we then show the above two ramifications of the
characterization, and in Section 5, conclude the paper.

2. THE MODEL
We assume a single-writer multiple-reader Atomic Snap-

shot shared-memory [1] model. Each processor pi has a ded-
icated cell Ci, to which it writes exclusively, and can read the
whole memory in a snapshot. Processors alternate between

writing and reading in a snapshot. W.l.o.g we assume that
processors when they write, they write their whole history.
To start with, the memory cells are initialized to ⊥, and the
initial state of each processor is its own private input. The
last snapshot by a processor is called its view.

A task T is a binary relation ∆ between input tuples,
vectors of inputs to subsets of processors, called the partici-
pating sets, and output tuples, a commensurate size vectors
of output values.

For instance, consider the consensus task on n processors.
For each subset of k processors, there are 2k input vectors,
telling a processor whether to start with 0 as an input or
1. If all processors start with 0, then the output vector is
all 0’s, and if all start with 1 then the output vector is all
1’s. Otherwise, for each input vector there are two possible
output vectors one of all 0’s and the other one of all 1’s.

A task is “colorless” if given an input-output tuple (In, Out)
∈ ∆ where the length of the Out vector is k, and the set of
values that appear in Out is σ, then for all vectors v ∈ σk,
(In, v) ∈ ∆. (For a generalization of colorlessness that cap-
tures the outputs of the BG-simulation declaratively, see [6].)

A protocol is a partial mapping from views to output val-
ues.

An execution is an infinite sequence of processors names.
Every appearance of a processor in the sequence is called a
“step.”

With each entry in an execution we associate a set of
views, one for each processor. We do this by interpreting
the first appearance of a processor name in the sequence as
a write action, the second appearance as a snapshot action,
the third as a write action, etc. Initially the view of a pro-
cessor is its own input. A processor which took a step in an
execution is called “participating.”

A processor pi is non-faulty in an execution e if its name
appears infinitely many times in e. It is otherwise faulty.

An environment is a set of infinite executions. A task
T is solvable in an environment N by a protocol Π, if for
all executions e ∈ N , every non-faulty processor reaches a
view that is mapped by Π to an output value. Consider-
ing only the first such view for each processor, the result-
ing input output can be extended to a pair in ∆: If we
then take the vector of the participating set, and fill out the
corresponding-size vector with these output values in the
appropriate positions, then we say that the task is solvable
by Π if the possible empty entries can be filled-out (com-
pleted) such that the resulting output values vector and the
vector of the participating set are members of ∆.

Given a system of n processors, a t-resilient environment
is the set of executions Nt such that for all e ∈ Nt at least
n−t processors are non-faulty. A task is t-resiliently solvable
if there is a protocol Π such that T is solvable in Nt with Π.
Environment Nn−1 that places no constraints on the infinite
executions is called wait-free.

It is straightforward to see that if a task T is t-resiliently
solvable by a protocol Π, then there is a protocol Π′ such
that solves T in a environment N ′

t in which a processor stops
taking steps as soon as it decides with Π. Intuitively, once
a processor pi decides, it can be simulated taking steps in a
lock-step manner together with some not yet decided pro-
cessor, chosen and registered in the shared-memory by pi

before deciding. By repeating this procedure for each de-
cided processor, we obtain a simulated t-resilient execution
of Π in which every non-faulty process decides.

2.1 Special Tasks
In this paper we deal with two specific tasks. The task

WeakRenaming(u, p, s) [12] requires that if only p processors
participate out of a universe of u processors p0, . . . , pu−1,
then each outputs a unique integer in the range 1, . . . , s.

Why do we choose p out of u? To force the algorithm
on the p processors to be a “comparison-based algorithm.”
By Ramsey Theorem [3] if the p processors are chosen from
a universe big enough then the algorithm is comparison-
based. We know that here exist a wait-free comparison-
based algorithm — an algorithm that only compares ids -
for n processors to wait-free rename in the range 1, . . . , 2n−
1 [12]. A simple variation of that algorithm shows that there
exists a comparison algorithm that t-resiliently rename n
processors in the range 1, . . . , n + t.

It was recently shown that WeakRenaming(2n−1, n, 2n−
2) is wait-free unsolvable for certain values of n while it is
solvable for others [7]. It makes sense that WeakRenaming(n+
t, n, n+ t−1) will exhibit the same behavior when at most t
out of the n may fail, with t+1 as the value that determines
the solvability. This observation made by Hagit Attiya [10]
initiated this research.

The other task we deal with is WSB(u, p). This task re-
quires that if only p processors participate out of a universe
u, then each outputs either 0 or 1 with at least one 0 and one
1 among the outputs. It is known [5] that WSB(2n − 1, n)
is wait-free equivalent to WeakRenaming(2n− 1, n, 2n− 2).
This paper extends this and shows that WSB(2(t+1)−1, t+
1) is equivalent to WeakRenaming(n + t, n, n + t − 1). for
all t < n.

2.2 An Agreement-Protocol (AP)
An agreement-protocol [2, 6] is a protocol that solves con-

sensus (leader election) in an environment in which all pro-
cessors that take a step, take at least b steps for some b ≥ 3.

Notice that directly from the abstract definition of an AP
we can derive the following property: If all participating
processors are past b steps then every participating proces-
sor can immediately decide; it can simulate itself continuing
solo. Indeed, by applying the valence-based arguments [9],
we can derive that no further steps can change the valence
of the system state: otherwise, there is an extension of the
state in which no decision is possible. Consequently, we can
talk about the state of the AP. It is either “decided” or not.

To make things concrete, here’s a simple instance of an
agreement-protocol:

Suppose that each cell Ci in the SWMR memory is sub-
divided into two cells Ci,1 and Ci,2, both initialized to ⊥.
The algorithm proceeds in two phases. In the first phase pi

writes its name i in Ci,1. It then takes a snapshot of the
names, Si := C∗,1, to get a set of names Si. In the second
phase processor pi posts the snapshot, Ci,2 := Si. It then
waits until its snapshot of C∗,2 is such that there exists a
not-a-⊥ cell Cj,2, such that for all k ∈ Cj,2, Ck,2 6= ⊥. When
this happens pi return the smallest name from the smallest
set Cl,2 it sees (No need for tie-breaker as snapshots of the
same size are identical).

For the this agreement-protocol b = 3. Safety - all proces-
sor that return a name return the same name - follows from
the fact that as time progresses the smallest set posted at
phase 2 can only decrease. Since posted sets are snapshots
it follows that two sets of the same size are identical. By
way of contradiction assume Sp > Sq and one processor re-

turned a name from Sp and another from Sq. Thus Sq was
posted after Sp and by virtues of snapshots Sq ⊂ Sp and
q ∈ Sq. But the halting condition says that there exist some
snapshot Sm greater or equal to Sp and all its processors
have a already posted their set. Since q belongs to Sm we
have a contradiction.

Liveness follows from the fact that if all processors that
took a step executed at least 3 steps, then if q appears in any
snapshot, then it took the first step, and since it took the
3rd step, a snapshot is now posted at Cq,2, and consequently
the halting condition holds.

To extend as AP to an Extended AP (EAP) we need the
the protocol below.

2.3 Commit-Adopt (CA) Protocol
The Commit-Adopt Task [13] is specified as follows:
Processors are divided into groups, the members of each

group share the unique group-name.

1. If a processor outputs before anybody in another group
started, then it outputs “commit my-group-name,”

2. If a processor outputs “commit j” for some group name
j, then all processors output either “commit j,” or
“adopt j.”

The CA task is wait-free solvable in two phases similar to
the phases of the agreement protocol:

In the first phase pi writes its group name to Ci,1 and
then reads all C∗,1. If in the first phase pi observes only
a single group name it writes “commit my-group-name” in
Ci,2, otherwise it writes “abort.” It then reads C∗,2 if it
reads only “commit group-name” it outputs “commit group-
name,” and if it reads both “commit j” and “abort” it out-
puts “adopt j.”

Obviously, only the group name written first in the first
phase has a chance that a processor will write it as a commit
argument in the second phase. Also, if a processor commits,
it did not read any abort in the second phase, consequently
“commit” was written first. Thus all will see a commit post-
ing and will either commit or adopt.

If we use two CA in succession and the adopt value of the
first CA is the input of a processor to the second CA, then
if a processor commit in the first CA, all will commit either
in the first CA or the second CA.

2.4 Extended Agreement Protocol
The Extended Agreement Protocol (EAP) is a sequence of

sub-protocols. Each element in the sequence is an Agreement-
Protocol or a Commit-Adopt. The sequence starts with an
AP protocol and from there on alternates between an AP
and a CA. The output of an AP is the input to the suc-
ceeding CA, while a value adopted in CA is an input to the
succeeding AP.

What are the properties of EAP? To terminate an EAP
we will require a processor to execute the EAP sub-protocols
in order until it commits an agreement value in some CA.
Consequently by the properties of CA, EAP is safe: All pro-
cessors that terminate an EAP will output the same value.
If one processor commits in one CA, the rest that do not
commit but adopt will submit the same value to the subse-
quent AP. Consequently, if the AP is decided it decides that
value which will be then submitted to the succeeding CA,
which will commit the decision.

The addition, the CA protocol provides for a safe abort
of an AP within the EAP. Suppose that a simulator waiting
on some AP within an EAP decides to abort the AP and
continue. It will write in SM that it aborts that AP (so that
other simulators do not wait at this AP any more) and can
now safely proceed to the succeeding CA with any value it
wants.

If no processors invokes an “abort,” then EAP coincide
with AP. Processors that start the EAP will go through the
first AP and wait until it is resolved. Once it is resolved
they go with the resolution value to the next CA and since
they all start it with the same value they will all commit to
that value and the EAP is terminated.

In the Extended BG-simulation an AP in an EAP will
be aborted by a simulator si which cannot progress in the
simulation but cannot halt as it does not have an output for
pi or n− t− 1 processors with ids higher than i.

3. CHARACTERIZATION OF t-RESILIENCY
In this section, we describe the extended BG-simulation

protocols and apply it to completely characterize t-resilient
solvability of tasks.

3.1 T is t-resiliently Solvable→ T ′ is Wait-Free
Solvable

In this subsection we show how t + 1 simulators solve T′

wait-free given a code with which T is t-resiliently solvable.
The Extended BG-simulation that uses EAP works as fol-

lows.
We have t + 1 simulators where simulator si is associated

with pi, i = 0, . . . , t. Each simulator si that started, i.e.,
having taken at least one step, has an input value for pi and
the input values for n − t − 1 processes pj such that j > i.
We say that codei of T has started if some simulator pi has
started with an input for pi.

As in the original BG protocol [2, 6], simulators, in the
round-robin fashion, simulate all codes in code0, . . . , coden−1

for which any started simulator has an input value (we call
these codes also started). The simulators asynchronously
move the program-counter of the codes, by inductively agree-
ing on a value for the next read-command in the code. Once
a read-command value is agreed on the program counter
can be moved to the next read command in the code. The
“write” that follows a read command for which there is an
agreed value, is deterministically defined by the last read.
Thus, when a simulator wants to propose a value for a read
command all it needs to do is take a snapshot of the places
of the program-counters in order to propose a valid “read”
value. The problem is, of course, that different simulators
may propose different value for the same simulated read-
command, as the program-counters move asynchronously.
But as the read-commad is an asynchronous read all teh
value they propose are valid and all they need is to agree on
one of the values.

They do this by employing an EAP for each read-command.
A processors that waits on an AP inside an EAP to ter-
minate proceeds to simulate another read-command in the
order. Since we have at the most t + 1 simulators at most t
APs may be unresolved. When an AP is resolved processors
proceed to the succeeding CA, commit the resolved value,
and by that the program-counter of that code is moved to
the next read-command (Figure 1).

In following this procedure, we say that a simulator si is

AP n−1
2

CAn−1
2

AP n−1
1

CAn−1
1

AP 1
2

CA0
2

CA0
1

1st EAP 1st EAP

code0 coden−1

AP 0
1

Figure 1: The use of EAP in simulating a proto-
col on n processors: each read command of every
code codei is simulated using an instance of extended
agreement protocol.

complete if si witnesses each code to be either terminated,
or not started for the lack of input, or having an unresolved
EAP for its current read-command (we say that the code
is stalled). A simulator si is stuck if it is complete and
cannot depart : the output of codei is missing or the number
of terminated codes with ids higher i is less than n− t.

We say that a simulator si blocks code codej if si has not
completed enough steps in an AP of EAP of codej . Since a
simulator only proceeds to the next simulated code when it
has completed the AP protocol of the current one, no two
codes that any simulator witnesses (using an atomic snap-
shot) as being stalled can be blocked by the same simulator.

The following lemma is immediate from the definition of
a simulator being stuck:

Lemma 1. When a simulator si is complete, all started
codes that are witnessed as not stalled by si have terminated.

Once a simulator gets stuck, it aborts all codes it witnessed
stalled. For each stalled code, it marks the stalled AP as
“aborted,” and proceeds to the next CA proposing any valid
value. If a blocking simulators wakes up and finds that the
AP has been aborted, it checks if it has enough output values
to depart. If so, the simulator departs, otherwise, it also
proceeds to the next CA with any valid value.

The intuition here is that if a live simulator is stuck,
then there must be at least one blocking simulator that has
enough outputs to depart: the blocking simulators cannot
obstruct each other from departing. Formally:

Lemma 2. If a simulator si is complete, witnessing k codes
being stalled, then at most k started simulators cannot de-
part.

Proof. We proceed by induction on k. The case k = 0
follows directly from Lemma 1: if no started code is stalled,
then all started codes have terminated. But each started

simulator sj has started codej and n− t− 1 codes with ids
higher than j. Thus, each started simulator can depart.

Now suppose that the claim holds for all k′ ≤ k and con-
sider the case of k + 1 stalled codes, codei1 , . . ., codeik+1 ,
ordered with increasing ids. Let S be the set of started sim-
ulators that are blocked by codes codei1 , . . ., codeik , i.e., the
codes that would stay blocked if we assume that codeik+1

has terminated. By induction hypothesis, |S| ≤ k.
Now let si be the highest started simulator not in S that is

blocked by codes codei1 , . . ., codeik+1 . (If no such si exists,
then there are less than k +1 blocked codes in total and the
claim trivially holds.)

By definition, each started simulator not in S with id
higher than i can depart. Now consider a started simula-
tor sj /∈ S with j < i. Since si /∈ S, there are at least
n − t − 1 terminated codes with ids higher than j. Since
sj /∈ S, by Lemma 1, codej has also terminated. Thus, sj

can depart.
Hence, in the worst case, si is the only simulator not in S

that cannot depart, and we have at most k +1 simulators in
total that cannot depart because of k + 1 stalled codes.

By Lemma 2, if a simulator si is stuck, then at least one
blocking simulator can depart. Indeed, since si is not block-
ing any code, by the pigeon-hole principle, at least one block-
ing simulator can depart.

Thus, aborting the stalled codes in case a simulator gets
stuck does not affect liveness. Either the blocking simulator
is faulty, and will not obstruct the simulated codes anymore,
or it will eventually realize that it has enough outputs and
depart. In both cases, the live and not yet terminated sim-
ulators got rid of at least one simulator. Inductively, even-
tually one live simulator will participate in an unobstructed
simulation until all the codes it needs to depart terminate.

This finishes the description of the Extended BG-simulation.
To solve T ′ simulators use the code for T through the

Extended BG-simulation, as T is t-resiliently solvable.
Thus:

Theorem 3. If T is t-resiliently solvable, then T ′ is wait-
free solvable.

Note that the number of distinct APs and CAs that can
be used in an instance of EAP is bounded by t: the maximal
number of simulators that can block a given code.

3.2 T′ is Wait-Free Solvable→ T is t-resiliently
Solvable

We have n > t processors in T . We have a code for t +
1 simulators to solve T′. When processors in T wake up
they write their input and then wait until they see at one
processor acting as a simulator, terminate. Initially, only
the first t + 1 processors, p0, . . . , pt, act as simulators of T ′.
To act as a simulator the processor has to observe at least
n+(t−1) inputs of other processors with index higher than
it. A code codei (i = 0, . . . , t) of T ′ is considered started in
T ′ only if there are inputs for pi and at least n − (t + 1)
processors of ids higher than itself. The started code codei

posts this set of n− t inputs as its input to T ′. (It is easy to
see that this rule satisfies the input condition of T ′.) We say
that a simulator pi is awake if it is associated with a started
in T ′ code. Notice that the availability of input to pi in T
does not necessarily mean that codei is started in T ′.

Since we work t-resiliently, the pigeon-hole principle im-
plies:

Lemma 4. For every processor pi that has an input to T ,
there is at least one non-faulty awake simulator that has the
input of pi to T in its input to T ′.

Just consider the simulator which is awake and has the
highest index. Notice, that to start with, if k simulators are
awake, then for any k processors, one can have a one-to-one
correspondence between processors and simulators such that
if simulator si corresponds to processor pj then pj ’s input is
in the input of si.

This is easy to see. If all k processors’ input appear in all
simulators then we are done. If not, consider the simulator
with the highest index. All processor with index greater
equal to it appear as an input, when we move backward
on awake simulators if some processor does not appear as
input the the simulator going backward, and there can be
only one, we associate this processor with this simulator.

We are using this property later implicitly. Consequently
it also holds implicitly for output sets as they are the same
size as the input sets.

Initially, the awake simulators use Extended BG-simulation
of t + 1 codes solving T ′. Note that simulators may have
different ideas about the input for any given codei. This is
because different simulators may have found different sets
of n− t inputs for pi and n− t− 1 processors of ids higher
than i. Thus, to make sure that the codes are simulated
consistently, the first AP for each simulated codei is used to
agree on the input of codei to T ′.

By Lemma 4, at least one awake simulator is non-faulty,
and, thus, at least one codei terminates with values for pi

and n− t− 1 processors pj , j > i. The output condition for
T′ implies that, when k terminate in T ′, at least n−(t+1)+k
processors have outputs in T . Each simulator si of these k
simulators departs with the output of its own code.

When a live non-simulator observes at least n − t out-
puts of T , it joins the Extended BG-simulation of the t + 1
(awake) codes in T′. A processor that sees an output for
itself departs. Since we can make a one-to-one correspon-
dence between k simulators and k processors, if k processors
do not have an output then the number of simulators that
are awake and did not terminate is at least k, which corre-
sponds to at least k codes in T′ which can be simulated.

Here we use the flexibility of Extended BG-simulation that
allows arbitrarily many simulators to simulate arbitrarily
many codes. What matters here is that, since the number
of simulators does not exceed the number of simulated codes,
the simulation makes progress, as long as there is at least
one live simulator.

As in Section 3.1, a simulator gets stuck when all started
codes either have terminated or are stalled, and the simula-
tor still does not have its output for T .

By Lemma 2, when a simulator gets stuck, i.e., all started
codes either have terminated or are stalled, and the simula-
tor still does not have its output for T , at least one blocking
simulator can depart. As the simulation continues, eventu-
ally every simulator departs and the task T is solved.

Thus:

Theorem 5. If T ′ is wait-free solvable, then T is t-resiliently
solvable.

4. REDUCTIONS
In this section, we present two applications of the above

equivalence result: a characterization of t-resilient weak re-
naming and decidability of t-resilient tasks.

4.1 Characterization of t-Resilient Weak Re-
naming

We want to show that if WSB(2(t+1)−1, t+1) is impossi-
ble to solve wait-free, then WeakRenaming (n+t, n, n+t−1)
is impossible to solve 2t-resiliently (the other direction is
known [5] and therefore after the reduction the problems
are proved equivalent).

We will prove that if WeakRenaming(n+ t, n, n+ t− 1) is
2t resiliently solvable then WSB(2(t+1)−1, t+1) is solvable.
For this we will use our characterization of resiliency. It says
that WeakRenaming is equivalent to a task WeakRenaming′

on 2t+1 simulators, out of which we wake up enough simu-
lators such that the induced participating set in the Weak-
Renaming task is of size n. We will show that if we wake
up exactly any t + 1 simulators with a total of inputs for
n processors, then when solving WeakRenaming′ wait-free,
then each simulator can also output 0 and 1 and such that
at least one simulator outputs 0 and at least one simulator
outputs 1. This therefore will solve WSB(2(t+1)−1, t+1).

The input to simulator si, (i = 0, . . . , 2(t + 1) − 2) is
the id of pi and the ids of processors p2(t+1)−1, . . . , pn+t−1.
Simulator si submits this input to WeakRenaming′. It can
be easily seen that, for up to t + 1 started simulators, these
inputs satisfy the inputs condition for weak renaming for up
to n started processors.

When simulator si terminates WeakRenaming′ it has an
output for at least n + t − (2t + 1) + 1 = n − t processors,
where among them is also processor pi, for which it return
the integer Ii. If it has an output Ij for any pj , 0 ≤ j ≤
2(t + 1)− 2, j 6= i, then if Ii < Ij it outputs 0 (“less”) and
otherwise it outputs 1 (“more”).

If si observes no output for any other simulator but itself,
then it has exactly n − (t + 1) + 1 = n − t outputs. An
output for each of processors p2(t+1)−1, . . . , pn+t−1 and an
output for itself. Thus, out of the integers in 1 to n + t− 1
it is missing t + (t − 1) integers. Observe that either the
number of missing integers that are less than Ii is less than
t, or the number of missing integers that are greater than Ii

is less than t. In the former case it returns 0 (less) and in
the latter case 1 (more).

We claim that if all t + 1 simulators return then at least
one simulator will output 0 and at least one simulator will
output 1.

If each simulator returned output values for at least two
processors that correspond to simulators, then the simulator
sj whose Ij is the smallest must return 0, and the simulator
with maximum Ij must return 1. The only difficulty is when
one of these extreme two simulators, the one that returns
the smallest Ii or the one that returns the largest, observed
no other simulator. But in this case when the rest of t
simulators return and say si returned 0, then the number
of missing integers less than Ii is less then t. Consequently,
by pigeon-hole principle one of simulators has to return an
integer larger than Ii and therefore will output 1. Conversely
the other case.

4.2 2-resilient Tasks are Undecidable
Some tasks are r/w wait-free solvable and some are not [9].

A task on n processors has a precise finite encoding speci-
fication. Why not build a decision program whose input is

a task encoding and whose output is “yes” or “no” accord-
ing to whether the encoded task is r/w wait-free solvable
or not? Indeed this question was raised in [14] where they
show that 2 processors tasks is a reachability problem and
consequently, decidable.

In [16, 17], it was shown that the family of tasks on 3
processors is undecidable.

Later, in [15] the authors worry that perhaps 3 processors
tasks are undecidable, but if you take 100 processors and
only 2 may fail, then the question of whether the task is
solvable is decidable. They prove that it is not but appealed
to first principle rather than by reduction to 3 processors
tasks.

Here, using the characterization of t-resilient solvability
we now show how a program to decide 100-processor 2-
resilient tasks can be used to decide 3-processor wait-free
tasks.

Let T 3 be a task on 3 processors p0, p1, p2. Build from it
a task T 2−res on n processors p0, . . . , pn−1 as follows. The
projection of ∆ of T 2−res, on p0, p1, p2, (i.e., we take an
input-output tuple in T 2−res and just look at what input-
output relation it implies vis p0, p1, p2), is T 3. Conversely,
any input-output tuple which may be syntactically in T 2−res

is there, if its projection on p0, p1, p2 is in T 3, and moreover
the rest of the symbols in the output appear as an output of
one of the processors p0, p1, p2 in the tuple. In other words,
any processor from p4, . . . , pn−1 is allowed to adopt any out-
put it sees returned by any processor among p0, p1, p2.

We want to show that T 3 is wait-free solvable if and only
if T 2−res is 2-resiliently solvable.

If T 3 is solvable then T 2−res is: Processors p4, . . . , pn−1

wait on processors p0, p1, p2 to execute T 3 until at least an
output is available. They adopt this output and drop out.
The rest of the processors in p0, p1, p2 finish executing T 3 to
get an output.

If T 2−res is solvable then T 3 is: Three simulators s0, s1, s2

run n-processor Extended BG-simulation of T 2−res. Each
simulator si returns among other values a value for pi, and
thus the simulator adopt it as its output in T 3.

5. CONCLUSION
We amended the BG-simulation to get the Extended BG-

simulation. The Extended BG-simulation allows each sim-
ulator to be associated with a unique processor and return
values as in the BG-simulation but with the additional prop-
erty that a simulator returns an output value for the pro-
cessor it is associated with.

We show that the Extended BG-simulation fully captures
t-resiliency for distributed tasks. With the Extended BG-
simulation we can reduce questions about t-resilient solv-
ability to questions about wait-free solvability. The latter is
characterized by the HS conditions [11].

Thus this paper “closes” an area with no open questions
remaining.

Acknowledgment I am greatly in debt to Hagit Attiya
who back in the summer of 2005 made me aware of the seem-
ingly inapplicability of the BG-simulation to the t-resilient
Weak-Renaming problem.

Extensive comments, questions, and editorial help by Petr
Kuznetsov improved the readability of the paper consider-
ably.

6. REFERENCES
[1] Afek Y., H. Attiya, Dolev D., Gafni E., Merrit M. and

Shavit N., Atomic Snapshots of Shared Memory. Proc.
9th ACM Symposium on Principles of Distributed
Computing (PODC’90), ACM Press, pp. 1–13, 1990.

[2] Borowsky E. and Gafni E., Generalized FLP
Impossibility Results for t-Resilient Asynchronous
Computations. Proc. 25th ACM Symposium on the
Theory of Computing (STOC’93), ACM Press, pp.
91-100, 1993.

[3] BERGE, C., Graphs and Hypergraphs.,
North-Holland, Amsterdam, 1973

[4] M Loui, H Abu-Amara, Memory Requirements for
Agreement Among Unreliable Asynchronous
Processes, Advances in Computing Research, JAI
(1987).

[5] Gafni E., Rajsbaum S. and Herlihy M., Subconsensus
Tasks: Renaming Is Weaker Than Set Agreement.,
DISC 2006: 329-338

[6] Borowsky E., Gafni E., Lynch N. and Rajsbaum S.,
The BG Distributed Simulation Algorithm.
Distributed Computing, 14(3):127–146, 2001.

[7] Armando Castañeda and Sergio Rajsbaum, New
Combinatorial Topology Upper and Lower Bounds for
Renaming. to appear in PODC 2008.

[8] Hagit Attiya , Amotz Bar-Noy and Danny Dolev,
Sharing memory robustly in message-passing systems.
Journal of the ACM (JACM), v.42 n.1, p.124-142,
Jan. 1995.

[9] Fischer M.J., Lynch N.A. and Paterson M.S.,
Impossibility of Distributed Consensus with One
Faulty Process. Journal of the ACM, 32(2):374-382,
1985.

[10] Attiya H., Private Communication, August, 2005.

[11] Herlihy M.P. and Shavit N., The Topological
Structure of Asynchronous Computability. Journal of
the ACM, 46(6):858-923, 1999.

[12] Hagit Attiya, Amotz Bar-Noy, Danny Dolev, David
Peleg, Rdiger Reischuk: Renaming in an
Asynchronous Environment J. ACM 37(3): 524-548
(1990)

[13] Eli Gafni, Round-by-Round Fault Detectors: Unifying
Synchrony and Asynchrony (Extended Abstract).
PODC 1998: 143-152

[14] Ofer Biran, Shlomo Moran and Shmuel Zaks, A
combinatorial characterization of the distributed tasks
that are solvable in the presence of one faulty
processor. In Proceedings of the Seventh ACM
Symposium on Principles of Distributed Computing
(PODC’08), ACM Press, 1988.

[15] Maurice Herlihy, Sergio Rajsbaum: The Decidability
of Distributed Decision Tasks (Extended Abstract).
STOC 1997: 589-598

[16] Eli Gafni, Elias Koutsoupias: 3-Processor Tasks Are
Undecidable (Abstract). PODC 1995: 271

[17] Eli Gafni, Elias Koutsoupias: Three-Processor Tasks
Are Undecidable. SIAM J. Comput. 28(3): 970-983
(1999)

