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A Simple Reasoning Problem 

? 

Probability that Card1 is Hearts? 

[Van den Broeck; AAAI-KRR‟15] 
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A Simple Reasoning Problem 

? 

Probability that Card1 is Hearts? 1/4 

[Van den Broeck; AAAI-KRR‟15] 
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Automated Reasoning 

Let us automate this: 

1. Probabilistic graphical model (e.g., factor graph) 
 
 
 
 
 
 

2. Probabilistic inference algorithm 
 (e.g., variable elimination or junction tree)  



Automated Reasoning 

(artist's impression) 

Let us automate this: 
1.  Probabilistic graphical model (e.g., factor graph) 

  is fully connected! 
 
 
 
 
 
 
 

2.  Probabilistic inference algorithm 
 (e.g., variable elimination or junction tree) 
 builds a table with 5252 rows 

[Van den Broeck; AAAI-KRR’15] 
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What's Going On Here? 

? 
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... 

Tractable Probabilistic Inference 

Which property makes inference tractable? 
Traditional belief: Independence 
What's going on here? 

 

[Niepert, Van den Broeck; AAAI‟14], [Van den Broeck; AAAI-KRR‟15] 



... 

Tractable Probabilistic Inference 

Which property makes inference tractable? 
Traditional belief: Independence 
What's going on here? 

 

⇒ Lifted Inference 

 High-level (first-order) reasoning 
 Symmetry 
 Exchangeability 

[Niepert, Van den Broeck; AAAI‟14], [Van den Broeck; AAAI-KRR‟15] 



Let us automate this: 
 Relational model 

 
 
 

 
 Lifted probabilistic inference algorithm 

∀p, ∃c, Card(p,c) 
∀c, ∃p, Card(p,c) 

∀p, ∀c, ∀c‟, Card(p,c) ∧ Card(p,c‟) ⇒ c = c‟ 

... 
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Playing Cards Revisited 

Let us automate this: 

∀p, ∃c, Card(p,c) 
∀c, ∃p, Card(p,c)  

∀p, ∀c, ∀c’, Card(p,c) ∧ Card(p,c’) ⇒ c = c’ 

[Van den Broeck.; AAAI-KR‟15] 
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Playing Cards Revisited 

Let us automate this: 

∀p, ∃c, Card(p,c) 
∀c, ∃p, Card(p,c)  

∀p, ∀c, ∀c’, Card(p,c) ∧ Card(p,c’) ⇒ c = c’ 

[Van den Broeck.; AAAI-KR‟15] 



... 

Playing Cards Revisited 

Let us automate this: 

∀p, ∃c, Card(p,c) 
∀c, ∃p, Card(p,c)  

∀p, ∀c, ∀c’, Card(p,c) ∧ Card(p,c’) ⇒ c = c’ 

Computed in time polynomial in n 

[Van den Broeck.; AAAI-KR‟15] 



Model Counting 

• Model = solution to a propositional logic formula Δ 
• Model counting = #SAT 

Rain Cloudy Model? 
T T Yes 

T F No 

F T Yes 

F F Yes 

#SAT = 3 
+ 

  Δ = (Rain ⇒ Cloudy) 

[Valiant]  #P-hard, even for 2CNF 



First-Order Model Counting 
Model = solution to first-order logic formula Δ 

Δ = ∀d (Rain(d)  
            ⇒ Cloudy(d))  

Days = {Monday} 



First-Order Model Counting 
Model = solution to first-order logic formula Δ 

Rain(M) Cloudy(M) Model? 

T T Yes 

T F No 

F T Yes 

F F Yes 

FOMC = 3 
+ 

Δ = ∀d (Rain(d)  
            ⇒ Cloudy(d))  

Days = {Monday} 



First-Order Model Counting 
Model = solution to first-order logic formula Δ 
 

Rain(M) Cloudy(M) Rain(T) Cloudy(T) Model? 
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F T T T Yes 

F F T T Yes 

T T T F No 

T F T F No 

F T T F No 

F F T F No 
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F T F T Yes 
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F F F F Yes 
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First-Order Model Counting 
Model = solution to first-order logic formula Δ 
 

Rain(M) Cloudy(M) Rain(T) Cloudy(T) Model? 

T T T T Yes 

T F T T No 

F T T T Yes 

F F T T Yes 

T T T F No 

T F T F No 

F T T F No 

F F T F No 

T T F T Yes 

T F F T No 

F T F T Yes 

F F F T Yes 

T T F F Yes 

T F F F No 

F T F F Yes 

F F F F Yes 

FOMC = 9 
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Δ = ∀d (Rain(d)  
            ⇒ Cloudy(d)) 

Days = {Monday 
              Tuesday} 



FOMC Inference: Example 1 
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→ 3n + 4n models 

2.  Δ = ∀y, (ParentOf(y) ∧ Female ⇒ MotherOf(y)) 
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→ 3n models 

3.  Δ = ∀x, (Stress(x) ⇒ Smokes(x)) Domain = {n people} 

FOMC Inference: Example 1 

→ 3n + 4n models 

→ (3n + 4n)
n models 

2.  Δ = ∀y, (ParentOf(y) ∧ Female ⇒ MotherOf(y)) 

1.  Δ = ∀x,y, (ParentOf(x,y) ∧ Female(x) ⇒ MotherOf(x,y)) D = {n people} 

D = {n people} 

If Female = true?   Δ = ∀y, (ParentOf(y) ⇒ MotherOf(y)) → 3n models 

→ 4n models If Female = false?  Δ = true 



FOMC Inference : Example 2 

Δ = ∀x,y, (Smokes(x) ∧ Friends(x,y) ⇒ Smokes(y)) Domain = {n people} 
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Statistical Relational Models 

• An MLN = set of constraints (w, Γ(x)) 
 

• Weight of a world = product of w, for all rules (w, Γ(x)) 
and groundings Γ(a) that hold in the world 

∞   Smoker(x) ⇒ Person(x) 

3.75   Smoker(x)∧Friend(x,y) ⇒ Smoker(y) 

PMLN(Q) = [sum of weights of models of Q] / Z 

Soft constraint 

Hard constraint 

Applications: large KBs, e.g. DeepDive 



Weighted Model Counting 

• Model = solution to a propositional logic formula Δ 
• Model counting = #SAT 

Rain Cloudy Model? 
T T Yes 

T F No 

F T Yes 

F F Yes 

#SAT = 3 
+ 

  Δ = (Rain ⇒ Cloudy) 



Weighted Model Counting 

• Model = solution to a propositional logic formula Δ 
• Model counting = #SAT 

Rain Cloudy Model? 
T T Yes 

T F No 

F T Yes 

F F Yes 

#SAT = 3 

Weight 
1 * 3 =   3  

              0 

2 * 3 =   6 

2 * 5 = 10 

• Weighted model counting (WMC) 
– Weights for assignments to variables 
– Model weight is product of variable weights w(.) 
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  Δ = (Rain ⇒ Cloudy) 

w( R)=1 
 w(¬R)=2 
   w( C)=3 
 w(¬C)=5 



Weighted Model Counting 

• Model = solution to a propositional logic formula Δ 
• Model counting = #SAT 

Rain Cloudy Model? 
T T Yes 

T F No 

F T Yes 

F F Yes 

#SAT = 3 

Weight 
1 * 3 =   3  

              0 

2 * 3 =   6 

2 * 5 = 10 

WMC = 19 

• Weighted model counting (WMC) 
– Weights for assignments to variables 
– Model weight is product of variable weights w(.) 

+ + 

  Δ = (Rain ⇒ Cloudy) 

w( R)=1 
 w(¬R)=2 
   w( C)=3 
 w(¬C)=5 



Assembly language for  
probabilistic reasoning and learning 

Bayesian networks 
Factor graphs 

Probabilistic 
databases 

Relational Bayesian 
networks 

Probabilistic 
logic programs 

Markov Logic 

Weighted Model 
Counting 



Weighted First-Order Model Counting 
Model = solution to first-order logic formula Δ 

 
Rain(M) Cloudy(M) Rain(T) Cloudy(T) Model? 

T T T T Yes 

T F T T No 

F T T T Yes 

F F T T Yes 

T T T F No 

T F T F No 

F T T F No 

F F T F No 

T T F T Yes 

T F F T No 

F T F T Yes 

F F F T Yes 

T T F F Yes 

T F F F No 

F T F F Yes 

F F F F Yes 

Δ = ∀d (Rain(d)  
            ⇒ Cloudy(d)) 

Days = {Monday 
              Tuesday} 
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F F T F No 

T T F T Yes 
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F T F T Yes 

F F F T Yes 
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T F F F No 

F T F F Yes 

F F F F Yes 

#SAT = 9 
+ 

Δ = ∀d (Rain(d)  
            ⇒ Cloudy(d)) 

Days = {Monday 
              Tuesday} 



Weighted First-Order Model Counting 
Model = solution to first-order logic formula Δ 

 
Weight 

 1 * 1 * 3 * 3 =    9 

                          0 

2 * 1* 3 * 3 =   18 

2 * 1 * 5 * 3 =   30 

                          0 

                          0 

                          0 

                          0 

 1 * 2 * 3 * 3 =  18 

                          0 

 2 * 2 * 3 * 3 =  36 

 2 * 2 * 5 * 3 =  60 

 1 * 2 * 3 * 5 =   30  

                         0 

 2 * 2 * 3 * 5 =  60 

 2 * 2 * 5 * 5 = 100 
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Weighted First-Order Model Counting 
Model = solution to first-order logic formula Δ 

 
Weight 

 1 * 1 * 3 * 3 =    9 

                          0 

2 * 1* 3 * 3 =   18 

2 * 1 * 5 * 3 =   30 

                          0 

                          0 

                          0 

                          0 

 1 * 2 * 3 * 3 =  18 

                          0 

 2 * 2 * 3 * 3 =  36 

 2 * 2 * 5 * 3 =  60 

 1 * 2 * 3 * 5 =   30  

                         0 

 2 * 2 * 3 * 5 =  60 

 2 * 2 * 5 * 5 = 100 

WFOMC = 361 
+ 

Rain(M) Cloudy(M) Rain(T) Cloudy(T) Model? 

T T T T Yes 

T F T T No 

F T T T Yes 

F F T T Yes 

T T T F No 

T F T F No 

F T T F No 

F F T F No 

T T F T Yes 

T F F T No 

F T F T Yes 

F F F T Yes 

T T F F Yes 

T F F F No 

F T F F Yes 

F F F F Yes 

#SAT = 9 
+ 

Δ = ∀d (Rain(d)  
            ⇒ Cloudy(d)) 

Days = {Monday 
              Tuesday} 

w( R)=1 
 w(¬R)=2 
   w( C)=3 
 w(¬C)=5 



Assembly language for high-level 
probabilistic reasoning and learning 

Parfactor graphs 

Probabilistic 
databases 

Relational Bayesian 
networks 

Probabilistic 
logic programs 

Markov Logic 

Weighted First-Order 
Model Counting 

[VdB et al.; IJCAI‟11, PhD‟13, KR‟14, UAI‟14] 



Symmetric WFOMC 

Def. A weighted vocabulary is (R, w), where 

– R = (R1, R2, …, Rk) = relational vocabulary 

– w = (w1, w2, …, wk) = weights 

• Fix an FO formula Q, domain of size n 

• The weight of a ground tuple t in Ri is wi 

 
This talk: complexity of FOMC / WFOMC(Q, n) 
• Data complexity:  fixed Q, input n  / and w 
• Combined complexity: input (Q, n) / and w 



Example 

Computable in PTIME in n 

Q = ∀x∃y R(x,y) 
FOMC(Q,n) = (2n-1)n     WOMC(Q,n,wR) = ((1+wR)n-1)n 



Example 

Q = ∃x∃y [R(x) ∧ S(x,y) ∧T(y)] 

Computable in PTIME in n 

Q = ∀x∃y R(x,y) 
FOMC(Q,n) = (2n-1)n     WOMC(Q,n,wR) = ((1+wR)n-1)n 



Example 

Q = ∃x∃y [R(x) ∧ S(x,y) ∧T(y)] 

Computable in PTIME in n 

Q = ∀x∃y R(x,y) 
FOMC(Q,n) = (2n-1)n     WOMC(Q,n,wR) = ((1+wR)n-1)n 



Example 

Q = ∃x∃y∃z [R(x,y) ∧ S(y,z) ∧T(z,x)] 

Conjecture FOMC(Q, n) not computable in PTIME in n 

Can we compute FOMC(Q, n)  in PTIME? 
 
Open problem… 



From MLN to WFOMC 

∞ Smoker(x) ⇒ Person(x) 
w ~Smoker(x)∨~Friend(x,y)∨Smoker(y) 

Theorem  PMLN(Q) = P(Q | hard constraints in MLN‟) 
                       = WFOMC(Q ∧ MLN‟) / WFOMC(MLN‟) 

∞ Smoker(x) ⇒ Person(x) 
∞ R(x,y) ⟺ ~Smoker(x)∨ ~Friend(x,y) ∨ Smoker(y) 
 
w    R(x,y)  

MLN: 

 MLN‟: 

[Van den Broeck‟2011, Gogate‟2011] 

R is a symmetric relation 
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Probabilistic Databases 

• Weights or probabilities given explicitly, for 
each tuple 
 

• Examples: Knowledge Vault, Nell, Yago 
 
• Dichotomy theorem:  

for any query in UCQ/FO(∃,∧,∨) (or 
FO(∀,∧,∨), asymmetric WFOMC is in 
PTIME or #P-hard. 



Motivation 2: Probabilistic 
Databases 
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a1 b1 p1 
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Probabilistic database D: 
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Probabilistic Database Inference 

Preprocess Q (omitted from this talk; see book [S.‟2011]) 

• P(Q1 ∧ Q2) = P(Q1)P(Q2) 
P(Q1 ∨ Q2) =1 – (1 –  P(Q1))(1 – P(Q2)) 
 

• P(∃z Q) = 1 – Πa ∈Domain (1–  P(Q[a/z]) 
P(∀z Q) = Πa ∈Domain  P(Q[a/z] 
 

• P(Q1 ∧ Q2) = P(Q1) + P(Q2)- P(Q1 ∨ Q2) 
P(Q1 ∨ Q2) = P(Q1) + P(Q2)- P(Q1 ∧ Q2) 

If rules succeed, WFOMC(Q,n) in PTIME; else, #P-hard 
 

#P-hardness no longer holds for symmetric WFOMC 

Independent 
join / union 

Independent 
project 

Inclusion/ 
exclusion 



Overview 

• Motivation and convergence of 
– The artificial intelligence story (recap) 
– The machine learning story (recap) 
– The probabilistic database story 
– The database theory story 

• Main theoretical results and proof outlines 
• Discussion and conclusions 
• Dessert 

 



Motivation: 0/1 Laws 

Definition. μn(Q) = fraction of all structures over a 
domain of size n that are models of Q 
 
μn(Q) = FOMC(Q, n)  / FOMC(TRUE, n)  
 
 
Theorem.  
 For every Q in FO, limn ∞ μn(Q) = 0 or 1 
 
Example: Q = ∀x∃y R(x,y);   
 FOMC(Q,n) = (2n-1)n 
 μn(Q)  = (2n-1)n / 2n^2   1 
 



Motivation: 0/1 Laws 

In 1976 Fagin proved the 0/1 law for FO 
using a transfer theorem. 
 
But is there an elementary proof? Find 
explicit formula for μn(Q), then compute the 
limit. [Fagin communicated to us that he 
tried this first] 
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Class FO2 

• FO2  =   FO restricted to two variables 
 

• Intuition: SQL queries that have a plan 
where all temp tables have arity ≤ 2 
 

• “The graph has a path of length 10”: 
 
 ∃x∃y(R(x,y) ∧∃x (R(y,x) ∧∃y (R(x,y) ∧…))) 



Main Positive Results 

Data complexity: 
• for any formula Q in FO2, WFOMC(Q, n) is 

in PTIME   [see NIPS‟11, KR‟13] 

• for any γ-acyclic conjunctive query w/o 
self-joins Q, WFOMC(Q, n) is in PTIME 

 
 



Main Negative Results 

Data complexity: 
• There exists an FO formula Q s.t. symmetric 

FOMC(Q, n) is #P1 hard 
• There exists Q in FO3 s.t. FOMC(Q, n) is #P1 hard 
• There exists a conjunctive query Q s.t. symmetric 

WFOMC(Q, n) is #P1 hard 
• There exists a positive clause Q w.o. „=„ s.t. 

symmetric WFOMC(Q, n) is #P1 hard 
 

Combined complexity:  
• FOMC(Q, n)  is #P-hard 

 
 
 



Review: #P1 

• #P1 = class of functions in #P over a unary input  
          alphabet 
 

• Valiant 1979: there exists #P1 complete problems 
 

• Bertoni, Goldwurm, Sabatini 1988:  
counting strings of a given length in some CFG is 
#P1 complete 
 

• Goldberg: “no natural combinatorial problems 
known to be #P1 complete” 



Main Result 1 

Theorem 1.  There exists an FO3 sentence Q 
s.t. FOMC(Q,n)  is #P1-hard 
 
Proof 
• Step 1. Construct a Turing Machine U s.t. 

– U is in #P1 and runs in linear time in n 
– U computes a #P1 –hard function 

• Step 2. Construct an FO3 sentence Q s.t. 
FOMC(Q,n) / n!  =  U(n) 
 



Main Result 2 

Theorem 2 There exists a Conjunctive Query 
Q s.t. WFOMC(Q,n)  is #P1-hard 

 
• Note: the decision problem is trivial 

(Q has a model iff n > 0) 
• Unweighted Model Counting for CQ: open 

 
Proof Start with a formula Q that is #P1-hard 
for FOMC, and transform it to a CQ in five 
steps (next) 



Step 1: Remove ∃ 

Rewrite  Q = ∀x∃y ψ(x,y) 
to    Q‟ = ∀x ∀y (¬ψ(x,y) ∨ ¬A(x)) 
 
   where A = new symbol with weight w = -1 

 
Claim: WFOMC(Q, n) = WFOMC(Q‟, n) 
Proof Consider a model for Q‟, and a constant x=a 

 
• If ∃b ψ(a,b), then A(a)=false; contributes w=1 

 
• Otherwise, A(a) can be either true or false, contributing 

either w=1 or w=-1, and 1 – 1 = 0. 
 

Start: Q  s.t. FOMC(Q, n)  is #P1-hard 

Q = ∀* …,     WFOMC(Q, n)  is #P1-hard 



Step 2: Remove Negation 

• Transform Q to Q‟ w/o negation s.t. 
WFOMC(Q, n) = WFOMC(Q‟, n) 
 

• Similarly to step 1 and omitted 

Q = ∀*[positive],     WFOMC(Q, n)  is #P1-hard 

Start: Q  s.t. FOMC(Q, n)  is #P1-hard 



Step 3: Remove “=“ 

Rewrite Q to Q‟ as follows: 
• Add new binary symbol E with weight w 

• Define: Q‟  = Q[ E / “=“ ] ∧ (∀x E(x,x)) 
 

Claim: WFOMC(Q,n)  computable using 
oracle for WFOMC(Q‟, n)    
(coefficient of wn in polynomial WFOMC(Q‟, n) 

Q = ∀*[positive, w/o =],      WFOMC(Q, n)  is #P1-hard 

Start: Q  s.t. FOMC(Q, n)  is #P1-hard 



Step 4: To UCQ 

• Write Q = ∀* (C1 ∧ C2 ∧ …)  
where each Ci is a positive clause 
 

• The dual Q‟ = ∃* (C1„ ∨ C2„ ∨ …) 
is a UCQ 
 

UCQ Q,     WFOMC(Q, n)  is #P1-hard 

Start: Q  s.t. FOMC(Q, n)  is #P1-hard 



Step 5: from UCQ to CQ 

• UCQ:  Q = C1 ∨ C2 ∨ …∨ Ck  
 

• P(Q) = …. + (-1)S P(∧i ∈S Ci) + …. 
 

• 2k-1 CQs  P(Q1), P(Q2), … P(Q2^k-1)   
 

• 1 CQ (using fresh copies of symbols): 
P(Q‟1Q‟2…Q‟2^k-1) =P(Q‟1)P(Q‟2)…P(Q‟2^k-1) 
 

CQ  Q‟  (=Q‟1Q‟2…Q‟2^k-1)    WFOMC(Q‟, n)  is #P1-hard 

Start: Q  s.t. FOMC(Q, n)  is #P1-hard 
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Motivation: 0/1 Laws 

In 1976 Fagin proved the 0/1 law for FO 
using a transfer theorem. 
 
But is there an elementary proof? Find 
explicit formula for μn(Q), then compute the 
limit. [Fagin communicated to us that he 
tried this first] 
 
A: unlikely when FOMC(Q,n)  is #P1-hard 



Discussion 

Fagin (1974) restated: 
1. NP = ∃SO      

(Fagin‟s classical characterization of NP) 
2. NP1 = {Spec(Φ) | Φ ∈ FO} in tally notation 

(less well known!) 

We show:  #P1 corresponds to {FOMC(Q,n) | Q in FO } 



Discussion 

• Convergence of AI/ML/DB/theory 
• First-order model counting is a basic problem 

that touches all these areas 
• Under-investigated 
• Hardness proofs are more difficult than for #P 

 
Open problems: 
• New algorithm for symmetric model counting 
• New hardness reduction techniques 
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The Decision Problem 

• Counting problem 
 “count the number of XXX s.t…”  
 

• Decision problem 
 “does there exists an XXX s.t. …?” 
 

• #3SAT and 3SAT: 
– counting is #P-complete, decision is NP-hard 

• #2SAT and 2SAT: 
– counting is #P-hard, decision is in PTIME 



Counting/Decision Problems for FO 

• Counting: given Q,n, count the number of 
models of Q over a domain of size n 

 

• Decision: given Q,n, does there exists a model 
of Q over a domain of size n? 

 

• Data complexity: fix Q, input = n 

• Combined complexity: input = Q, n 

 



The Spectrum 

Definition. [Scholz 1952]  
Spec(Q)= {n | Q has a model over domain [n]} 

 

Example: Q says “(D, +, *, 0, 1) is a field”:  
 Spec(Q) = {pk | p prime, k ≥ 1} 

 

Spectra studied intensively for over 50 years 

The FO decision problem is precisely spectrum membership 



The Data Complexity 

Suppose n is given in binary representation: 

• Jones&Selman’72: spectra = NETIME 

 

 

 

Suppose n is given in unary representation: 

• Fagin’74:  spectra =  NP1 



Combined Complexity 

Consider the combined complexity for FO2 

“given Q, n, check if n ∈ Spec(Q)” 

 

We prove its complexity: 

• NP-complete for FO2,  

• PSPACE-complete for FO 



Thanks! 

 


