Symmetry in Probabilistic Databases

Guy Van den Broeck KU Leuven

Joint work with

Dan Suciu, Paul Beame, Eric Gribkoff, Wannes Meert, Adnan Darwiche

Based on NIPS 2011, KR 2014, and upcoming PODS 2015 paper

Overview

- Motivation and convergence of
- The artificial intelligence story (recap)
- The machine learning story (recap)
- The probabilistic database story
- The database theory story
- Main theoretical results and proof outlines
- Discussion and conclusions
- Dessert

Overview

- Motivation and convergence of
- The artificial intelligence story (recap)
- The machine learning story (recap)
- The probabilistic database story
- The database theory story
- Main theoretical results and proof outlines
- Discussion and conclusions
- Dessert

A Simple Reasoning Problem

Probability that Card1 is Hearts?

A Simple Reasoning Problem

Probability that Card1 is Hearts?
1/4

A Simple Reasoning Problem

Probability that Card52 is Spades given that Card1 is QH?

A Simple Reasoning Problem

Probability that Card52 is Spades given that Card1 is QH?

13/51

Automated Reasoning

Let us automate this:

1. Probabilistic graphical model (e.g., factor graph)

2. Probabilistic inference algorithm (e.g., variable elimination or junction tree)

Automated Reasoning

Let us automate this:

1. Probabilistic graphical model (e.g., factor graph) is fully connected!

2. Probabilistic inference algorithm (e.g., variable elimination or junction tree) builds a table with 52^{52} rows

What's Going On Here?

Probability that Card52 is Spades given that Card1 is QH?

What's Going On Here?

Probability that Card52 is Spades given that Card1 is QH?

What's Going On Here?

Probability that Card52 is Spades given that Card2 is QH?

What's Going On Here?

Probability that Card52 is Spades given that Card2 is QH?

13/51

What's Going On Here?

Probability that Card52 is Spades given that Card3 is QH?

What's Going On Here?

Probability that Card52 is Spades given that Card3 is QH?

Tractable Probabilistic Inference

Which property makes inference tractable? Traditional belief: Independence What's going on here?

Tractable Probabilistic Inference

Which property makes inference tractable?

Traditional belief: Independence
What's going on here?

- High-level (first-order) reasoning
- Symmetry
- Exchangeability

\Rightarrow Lifted Inference

Let us automate this:
 - Relational model

$$
\begin{gathered}
\forall \mathrm{p}, \exists \mathrm{c}, \operatorname{Card}(\mathrm{p}, \mathrm{c}) \\
\forall \mathrm{c}, \exists \mathrm{p}, \operatorname{Card}(\mathrm{p}, \mathrm{c}) \\
\forall \mathrm{p}, \forall \mathrm{c}, \forall \mathrm{c}^{\prime}, \operatorname{Card}(\mathrm{p}, \mathrm{c}) \wedge \operatorname{Card}\left(\mathrm{p}, \mathrm{c}^{\prime}\right) \Rightarrow \mathrm{c}=\mathrm{c}^{\prime}
\end{gathered}
$$

- Lifted probabilistic inference algorithm

Playing Cards Revisited

Let us automate this:

$\forall p, \exists c, \operatorname{Card}(p, c)$
$\forall c, \exists p, \operatorname{Card}(p, c)$
$\forall p, \forall c, \forall c^{\prime}, \operatorname{Card}(p, c) \wedge \operatorname{Card}\left(p, c^{\prime}\right) \Rightarrow c=c^{\prime}$

Playing Cards Revisited

Let us automate this:

$$
\begin{gathered}
\forall p, \exists \mathrm{c}, \operatorname{Card}(\mathrm{p}, \mathrm{c}) \\
\forall \mathrm{c}, \exists \mathrm{p}, \operatorname{Card}(\mathrm{p}, \mathrm{c}) \\
\forall \mathrm{p}, \forall \mathrm{c}, \forall \mathrm{c}^{\prime}, \operatorname{Card}(\mathrm{p}, \mathrm{c}) \wedge \operatorname{Card}\left(\mathrm{p}, \mathrm{c}^{\prime}\right) \Rightarrow \mathrm{c}=\mathrm{c}^{\prime}
\end{gathered}
$$

$$
\text { \#SAT }=\sum_{k=0}^{n}\binom{n}{k} \sum_{l=0}^{n}\binom{n}{l}(l+1)^{k}(-1)^{2 n-k-l}=\mathrm{n}!
$$

Playing Cards Revisited

Let us automate this:

$$
\begin{gathered}
\forall p, \exists c, \operatorname{Card}(\mathrm{p}, \mathrm{c}) \\
\forall \mathrm{c}, \exists \mathrm{p}, \operatorname{Card}(\mathrm{p}, \mathrm{c}) \\
\forall \mathrm{p}, \forall \mathrm{c}, \forall \mathrm{c}^{\prime}, \operatorname{Card}(\mathrm{p}, \mathrm{c}) \wedge \operatorname{Card}\left(\mathrm{p}, \mathrm{c}^{\prime}\right) \Rightarrow \mathrm{c}=\mathrm{c}^{\prime}
\end{gathered}
$$

$$
\text { \#SAT }=\sum_{k=0}^{n}\binom{n}{k} \sum_{l=0}^{n}\binom{n}{l}(l+1)^{k}(-1)^{2 n-k-l}=\mathrm{n}!
$$

Computed in time polynomial in n

Model Counting

- Model $=$ solution to a propositional logic formula Δ
- Model counting = \#SAT

[Valiant] \#P-hard, even for 2CNF

First-Order Model Counting

Model $=$ solution to first-order logic formula Δ

```
\Delta= \foralld (Rain(d)
    => Cloudy(d))
```

Days $=\{$ Monday $\}$

First-Order Model Counting

Model = solution to first-order logic formula Δ

FOMC = 3

First-Order Model Counting

Model = solution to first-order logic formula Δ

$\Delta=\forall d$	$($ Rain (d)
$\Rightarrow \operatorname{Cloudy}(\mathrm{d}))$	

$$
\begin{aligned}
\text { Days }= & \{\text { Monday } \\
& \text { Tuesday }\}
\end{aligned}
$$

Rain(M)	Cloudy(M)
T	T
T	F
F	T
F	F

Rain(T)	Cloudy(T)
T	T
T	T
T	T
T	T

Model?
Yes
No
Yes
Yes

T	T
T	F
F	T
F	F

T	F
T	F
T	F
T	F

No
No
No
No

T	T
T	F
F	T
F	F

F	T
F	T
F	T
F	T

T	T
T	F
F	T
F	F

F	F
F	F
F	F
F	F

Yes
No
Yes
Yes

First-Order Model Counting

Model = solution to first-order logic formula Δ

$\Delta=\forall d$	$($ Rain (d)
$\Rightarrow \operatorname{Cloudy}(\mathrm{d}))$	

$$
\begin{aligned}
\text { Days }= & \{\text { Monday } \\
& \text { Tuesday }\}
\end{aligned}
$$

Rain(M)	Cloudy(M)
T	T
T	F
F	T
F	F

Rain(T)	Cloudy(T)
T	T
T	T
T	T
T	T

Model?
Yes
No
Yes
Yes

T	T
T	F
F	T
F	F

T	F
T	F
T	F
T	F

No
No
No
No

T	T
T	F
F	T
F	F

F	T
F	T
F	T
F	T

Yes
No
Yes
Yes

T	T
T	F
F	T
F	F

F	F
F	F
F	F
F	F

Yes
No
Yes
Yes
${=9} }$

FOMC Inference: Example 1

FOMC Inference: Example 1

3. $\Delta=\forall x,(\operatorname{Stress}(x) \Rightarrow \operatorname{Smokes}(\mathrm{x}))$

FOMC Inference: Example 1

3. $\Delta=\forall x,(\operatorname{Stress}(x) \Rightarrow \operatorname{Smokes}(\mathrm{x}))$
$\rightarrow 3^{n}$ models

FOMC Inference: Example 1

3. $\Delta=\forall x,(\operatorname{Stress}(\mathrm{x}) \Rightarrow \operatorname{Smokes}(\mathrm{x}))$
$\rightarrow 3^{n}$ models
4. $\Delta=\forall y$, (ParentOf $(\mathrm{y}) \wedge$ Female \Rightarrow MotherOf $(\mathrm{y}))$

FOMC Inference: Example 1

3. $\Delta=\forall x,(\operatorname{Stress}(x) \Rightarrow \operatorname{Smokes}(\mathrm{x}))$

$\rightarrow 3^{n}$ models

2. $\Delta=\forall y,($ ParentOf $(\mathrm{y}) \wedge$ Female \Rightarrow MotherOf $(\mathrm{y}))$
$D=\{n$ people $\}$

If Female $=$ true ?
$\Delta=\forall y,($ ParentOf $(\mathrm{y}) \Rightarrow$ MotherOf $(\mathrm{y}))$
$\rightarrow 3^{n}$ models

FOMC Inference: Example 1

3. $\Delta=\forall x,(\operatorname{Stress}(\mathrm{x}) \Rightarrow \operatorname{Smokes}(\mathrm{x}))$
$\rightarrow 3^{n}$ models
4. $\Delta=\forall y,($ ParentOf $(\mathrm{y}) \wedge$ Female \Rightarrow MotherOf $(\mathrm{y}))$
$D=\{n$ people $\}$

If Female $=$ true ?
$\Delta=\forall y,($ ParentOf $(\mathrm{y}) \Rightarrow$ MotherOf $(\mathrm{y}))$
$\rightarrow 3^{n}$ models
If Female = false?
$\Delta=$ true
$\rightarrow 4^{\mathrm{n}}$ models

FOMC Inference: Example 1

3. $\Delta=\forall x,(\operatorname{Stress}(x) \Rightarrow \operatorname{Smokes}(\mathrm{x}))$
$\rightarrow 3^{n}$ models
4. $\Delta=\forall y,($ ParentOf $(\mathrm{y}) \wedge$ Female \Rightarrow MotherOf $(\mathrm{y}))$
$D=\{n$ people $\}$

If Female $=$ true ?
If Female = false?

$$
\begin{array}{ll}
\Delta=\forall y,(\text { ParentOf }(y) \Rightarrow \text { MotherOf }(y)) & \rightarrow 3^{n} \text { models } \\
\Delta=\text { true } & \rightarrow 4^{n} \text { models }
\end{array}
$$

$\rightarrow 3^{n}+4^{n}$ models

FOMC Inference: Example 1

3. $\Delta=\forall x,(\operatorname{Stress}(\mathrm{x}) \Rightarrow \operatorname{Smokes}(\mathrm{x}))$

Domain $=\{n$ people $\}$

$\rightarrow 3^{n}$ models
2. $\Delta=\forall y,($ ParentOf $(\mathrm{y}) \wedge$ Female \Rightarrow MotherOf $(\mathrm{y}))$
$D=\{n$ people $\}$

If Female $=$ true ?
$\Delta=\forall y,($ ParentOf $(\mathrm{y}) \Rightarrow$ MotherOf $(\mathrm{y}))$
$\rightarrow 3^{n}$ models
If Female = false?
$\Delta=$ true
$\rightarrow 4^{\mathrm{n}}$ models
$\rightarrow 3^{n}+4^{n}$ models

1. $\Delta=\forall x, y,(\operatorname{ParentOf}(x, y) \wedge$ Female $(x) \Rightarrow \operatorname{MotherOf}(x, y)) \quad D=\{n$ people $\}$

FOMC Inference: Example 1

3. $\Delta=\forall x,(\operatorname{Stress}(x) \Rightarrow \operatorname{Smokes}(\mathrm{x}))$

Domain $=\{n$ people $\}$

$\rightarrow 3^{n}$ models
2. $\Delta=\forall y,($ ParentOf $(\mathrm{y}) \wedge$ Female \Rightarrow MotherOf $(\mathrm{y}))$
$D=\{n$ people $\}$

If Female $=$ true ?
$\Delta=\forall y,($ ParentOf $(\mathrm{y}) \Rightarrow$ MotherOf $(\mathrm{y}))$
$\rightarrow 3^{n}$ models
If Female = false?
$\Delta=$ true
$\rightarrow 4^{\mathrm{n}}$ models
$\rightarrow 3^{n}+4^{n}$ models

1. $\Delta=\forall x, y,(\operatorname{ParentOf}(x, y) \wedge$ Female $(x) \Rightarrow \operatorname{MotherOf}(x, y)) \quad D=\{n$ people $\}$
$\rightarrow\left(3^{n}+4^{n}\right)^{n}$ models

FOMC Inference : Example 2

$\Delta=\forall x, y,(\operatorname{Smokes}(x) \wedge$ Friends $(x, y) \Rightarrow \operatorname{Smokes}(y))$
Domain $=\{n$ people $\}$

FOMC Inference : Example 2

$\Delta=\forall x, y,(\operatorname{Smokes}(x) \wedge$ Friends $(x, y) \Rightarrow \operatorname{Smokes}(\mathrm{y}))$

 Domain $=\{n$ people $\}$- If we know precisely who smokes, and there are k smokers?

Database:

$$
\begin{aligned}
& \text { Smokes(Alice) = } 1 \\
& \text { Smokes(Bob) = } 0 \\
& \text { Smokes(Charlie) = } 0 \\
& \text { Smokes(Dave) }=1 \\
& \text { Smokes(Eve) }=0
\end{aligned}
$$

Smokes

Friends
Smokes

FOMC Inference : Example 2

$\Delta=\forall x, y,(\operatorname{Smokes}(x) \wedge$ Friends $(x, y) \Rightarrow \operatorname{Smokes}(\mathrm{y}))$

 Domain $=\{n$ people $\}$- If we know precisely who smokes, and there are k smokers?

Database:

$$
\begin{aligned}
& \text { Smokes(Alice) = } 1 \\
& \text { Smokes(Bob) = } 0 \\
& \text { Smokes(Charlie) =0 } \\
& \text { Smokes(Dave) } 1 \\
& \text { Smokes(Eve) }=0
\end{aligned}
$$

Smokes

Friends

FOMC Inference : Example 2

$\Delta=\forall x, y,(\operatorname{Smokes}(x) \wedge$ Friends $(x, y) \Rightarrow \operatorname{Smokes}(\mathrm{y}))$

 Domain $=\{n$ people $\}$- If we know precisely who smokes, and there are k smokers?

Database:

$$
\begin{aligned}
& \text { Smokes(Alice) = } 1 \\
& \text { Smokes(Bob) = } 0 \\
& \text { Smokes(Charlie) =0 } \\
& \text { Smokes(Dave) } 1 \\
& \text { Smokes(Eve) }=0
\end{aligned}
$$

Smokes

Friends

FOMC Inference : Example 2

$\Delta=\forall x, y,(\operatorname{Smokes}(x) \wedge$ Friends $(x, y) \Rightarrow \operatorname{Smokes}(\mathrm{y}))$

 Domain $=\{n$ people $\}$- If we know precisely who smokes, and there are k smokers?

Database:

Smokes(Alice) = 1

Smokes(Bob) = 0
Smokes(Charlie) $=0$
Smokes(Dave) = 1
Smokes(Eve) $=0$

Smokes

Friends

FOMC Inference : Example 2

$\Delta=\forall x, y,(\operatorname{Smokes}(x) \wedge$ Friends $(x, y) \Rightarrow \operatorname{Smokes}(\mathrm{y}))$

 Domain $=\{n$ people $\}$- If we know precisely who smokes, and there are k smokers?

Database:

Smokes(Alice) = 1

Smokes(Bob) = 0
Smokes(Charlie) $=0$
Smokes(Dave) = 1
Smokes(Eve) $=0$

Smokes

Friends

FOMC Inference : Example 2

$\Delta=\forall x, y,(\operatorname{Smokes}(x) \wedge$ Friends $(x, y) \Rightarrow \operatorname{Smokes}(\mathrm{y}))$

 Domain $=\{n$ people $\}$- If we know precisely who smokes, and there are k smokers?

Database:

Smokes(Alice) $=1$

Smokes(Bob) $=0$
Smokes(Charlie) $=0$
Smokes(Dave) = 1
Smokes(Eve) $=0$

Smokes

FOMC Inference : Example 2

$\Delta=\forall x, y,(\operatorname{Smokes}(x) \wedge$ Friends $(x, y) \Rightarrow \operatorname{Smokes}(\mathrm{y}))$

 Domain $=\{n$ people $\}$- If we know precisely who smokes, and there are k smokers?

Database:

Smokes(Alice) $=1$

Smokes(Bob) $=0$
Smokes(Charlie) $=0$
Smokes(Dave) = 1
Smokes(Eve) $=0$

Smokes

FOMC Inference : Example 2

$\Delta=\forall x, y,(\operatorname{Smokes}(x) \wedge$ Friends $(x, y) \Rightarrow \operatorname{Smokes}(\mathrm{y}))$

 Domain $=\{n$ people $\}$- If we know precisely who smokes, and there are k smokers?

Database:

Smokes(Alice) $=1$

Smokes(Bob) $=0$
Smokes(Charlie) $=0$
Smokes(Dave) = 1
Smokes(Eve) $=0$

Smokes

FOMC Inference : Example 2

$\Delta=\forall x, y,(\operatorname{Smokes}(x) \wedge$ Friends $(x, y) \Rightarrow \operatorname{Smokes}(\mathrm{y}))$

 Domain $=\{n$ people $\}$- If we know precisely who smokes, and there are k smokers?

Database:

Smokes(Alice) $=1$

Smokes(Bob) $=0$
Smokes(Charlie) $=0$
Smokes(Dave) = 1
Smokes(Eve) $=0$

Smokes

FOMC Inference : Example 2

$\Delta=\forall x, y,(\operatorname{Smokes}(x) \wedge$ Friends $(x, y) \Rightarrow \operatorname{Smokes}(\mathrm{y}))$

 Domain $=\{n$ people $\}$- If we know precisely who smokes, and there are k smokers?

Database:

Smokes(Alice) $=1$
Smokes(Bob) $=0$
Smokes(Charlie) $=0$
Smokes(Dave) = 1
Smokes(Eve) $=0$

$$
\rightarrow 2^{n^{2}-k(n-k)} \text { models }
$$

Smokes

FOMC Inference : Example 2

$\Delta=\forall x, y,(\operatorname{Smokes}(x) \wedge$ Friends $(x, y) \Rightarrow \operatorname{Smokes}(\mathrm{y}))$

 Domain $=\{n$ people $\}$- If we know precisely who smokes, and there are k smokers?

Database:

Smokes(Alice) $=1$
Smokes(Bob) $=0$
Smokes(Charlie) $=0$
Smokes(Dave) = 1
Smokes(Eve) $=0$

$$
\rightarrow 2^{n^{2}-k(n-k)} \text { models }
$$

Smokes

- If we know that there are k smokers?

FOMC Inference : Example 2

$\Delta=\forall x, y,(\operatorname{Smokes}(x) \wedge$ Friends $(x, y) \Rightarrow \operatorname{Smokes}(\mathrm{y}))$

 Domain $=\{n$ people $\}$- If we know precisely who smokes, and there are k smokers?

Database:

Smokes(Alice) = 1
Smokes(Bob) $=0$
Smokes(Charlie) $=0$
Smokes(Dave) = 1
Smokes(Eve) $=0$

$$
\rightarrow 2^{n^{2}-k(n-k)} \text { models }
$$

Smokes

- If we know that there are k smokers?

Friends
$\rightarrow\binom{n}{k} 2^{n^{2}-k(n-k)}$ models

FOMC Inference : Example 2

$\Delta=\forall x, y,(\operatorname{Smokes}(x) \wedge$ Friends $(x, y) \Rightarrow \operatorname{Smokes}(\mathrm{y}))$

 Domain $=\{n$ people $\}$- If we know precisely who smokes, and there are k smokers?

Database:

Smokes(Alice) = 1
Smokes(Bob) $=0$
Smokes(Charlie) $=0$
Smokes(Dave) = 1
Smokes(Eve) $=0$

$$
\rightarrow 2^{n^{2}-k(n-k)} \text { models }
$$

Smokes

- If we know that there are k smokers?
- In total...

FOMC Inference : Example 2

$\Delta=\forall x, y,(\operatorname{Smokes}(x) \wedge$ Friends $(x, y) \Rightarrow \operatorname{Smokes}(\mathrm{y}))$

 Domain $=\{n$ people $\}$- If we know precisely who smokes, and there are k smokers?

Database:

Smokes(Alice) = 1
Smokes(Bob) $=0$
Smokes(Charlie) $=0$
Smokes(Dave) = 1
Smokes(Eve) $=0$
$\rightarrow 2^{n^{2}-k(n-k)}$ models
Smokes

- If we know that there are k smokers?
- In total...

$$
\rightarrow \quad \sum_{k=0}^{n}\binom{n}{k} 2^{n^{2}-k(n-k)} \text { models }
$$

Overview

- Motivation and convergence of
- The artificial intelligence story (recap)
- The machine learning story (recap)
- The probabilistic database story
- The database theory story
- Main theoretical results and proof outlines
- Discussion and conclusions
- Dessert

Statistical Relational Models

- An MLN = set of constraints (w, $\Gamma(\mathbf{x})$)
- Weight of a world = product of w , for all rules $(\mathrm{w}, \Gamma(\mathbf{x})$) and groundings $\Gamma(\mathrm{a})$ that hold in the world

$$
\left.\mathrm{P}_{\mathrm{MLN}}(\mathrm{Q})=\text { [sum of weights of models of } \mathrm{Q}\right] / \mathrm{Z}
$$

Applications: large KBs, e.g. DeepDive

Weighted Model Counting

- Model = solution to a propositional logic formula Δ
- Model counting = \#SAT
$\Delta=$ (Rain \Rightarrow Cloudy)

Rain	Cloudy	Model?
T	T	Yes
T	F	No
F	T	Yes
F	F	Yes
		+\#SAT $=\mathbf{3}$

Weighted Model Counting

- Model = solution to a propositional logic formula Δ
- Model counting = \#SAT
- Weighted model counting (WMC)
- Weights for assignments to variables
- Model weight is product of variable weights $\mathrm{w}($.

$$
\begin{aligned}
& \Delta=(\text { Rain } \Rightarrow \text { Cloudy }) \\
& \hline w(R)=1 \\
& w(\neg R)=2 \\
& w(C)=3 \\
& w(\neg C)=5
\end{aligned}
$$

Rain	Cloudy
T	T
T	F
F	T
F	F

Model?
Yes
No
Yes
Yes
+ \#SAT $=\mathbf{3}$

Weighted Model Counting

- Model = solution to a propositional logic formula Δ
- Model counting = \#SAT
- Weighted model counting (WMC)
- Weights for assignments to variables
- Model weight is product of variable weights $\mathrm{w}($.

$$
\begin{aligned}
& \Delta=(\text { Rain } \Rightarrow \text { Cloudy }) \\
& \hline w(R)=1 \\
& w(\neg R)=2 \\
& w(C)=3 \\
& w(\neg C)=5
\end{aligned}
$$

Weight
$1 * 3=3$
$2 * 3=$
$2 * 5=10$
$+\cdots$
WMC $=19$

Assembly language for

 probabilistic reasoning and learning

Weighted First-Order Model Counting

Model = solution to first-order logic formula Δ
$\Delta=\forall d($ Rain (d)
$\Rightarrow \operatorname{Cloudy}(\mathrm{d}))$

Days $=\{$ Monday Tuesday\}

Rain(M)	Cloudy(M)
T	T
T	F
F	T
F	F

Rain(T)	Cloudy(T)
T	T
T	T
T	T
T	T

Model?
Yes
No
Yes
Yes

T	T
T	F
F	T
F	F

T	F
T	F
T	F
T	F

No
No
No
No

T	T
T	F
F	T
F	F

F	T
F	T
F	T
F	T

T	T
T	F
F	T
F	F

F	F
F	F
F	F
F	F

Yes
No
Yes
Yes

Weighted First-Order Model Counting

Model = solution to first-order logic formula Δ

$\Delta=\forall d$
$($ Rain (d)
$\Rightarrow \operatorname{Cloudy}(\mathrm{d}))$

Days $=\{$ Monday Tuesday\}

Rain(M)	Cloudy(M)
T	T
T	F
F	T
F	F

Rain(T)	Cloudy(T)
T	T
T	T
T	T
T	T

Model?
Yes
No
Yes
Yes

T	T
T	F
F	T
F	F

T	F
T	F
T	F
T	F

No
No
No
No

T	T
T	F
F	T
F	F

F	T
F	T
F	T
F	T

Yes
No
Yes
Yes

T	T
T	F
F	T
F	F

F	F
F	F
F	F
F	F

Yes
No
Yes
Yes

Weighted First-Order Model Counting

Model = solution to first-order logic formula Δ
$\Delta=\forall d$ (Rain(d)
$\Rightarrow \operatorname{Cloudy}(\mathrm{d}))$

Days $=\{$ Monday Tuesday\}

$$
\begin{aligned}
w(R) & =1 \\
w(\neg R) & =2 \\
w(C) & =3 \\
w(\neg C) & =5
\end{aligned}
$$

Rain(M)	Cloudy(M)	Rain(T)	Cloudy(T)	Model?	Weight
T	T	T	T	Yes	$1 * 1 * 3 * 3=9$
T	F	T	T	No	0
F	T	T	T	Yes	$2 * 1 * 3 * 3=18$
F	F	T	T	Yes	$2 * 1 * 5 * 3=30$
T	T	T	F	No	0
T	F	T	F	No	0
F	T	T	F	No	0
F	F	T	F	No	0
T	T	F	T	Yes	$1 * 2 * 3 * 3=18$
T	F	F	T	No	0
F	T	F	T	Yes	2 * 2 * 3 * $3=36$
F	F	F	T	Yes	2 * 2 * 5 * $3=60$
T	T	F	F	Yes	$1 * 2 * 3 * 5=30$
T	F	F	F	No	0
F	T	F	F	Yes	2 * 2 * 3 * $5=60$
F	F	F	F	Yes	2 * 2 * 5 * $5=100$

Weighted First-Order Model Counting

Model = solution to first-order logic formula Δ
$\Delta=\forall d$ (Rain(d)
$\Rightarrow \operatorname{Cloudy}(\mathrm{d}))$

Days $=\{$ Monday Tuesday\}

$$
\begin{aligned}
w(R) & =1 \\
w(\neg R) & =2 \\
w(C) & =3 \\
w(\neg C) & =5
\end{aligned}
$$

Rain(M)	Cloudy(M)	Rain(T)	Cloudy(T)	Model?	Weight
T	T	T	T	Yes	$1 * 1 * 3 * 3=9$
T	F	T	T	No	0
F	T	T	T	Yes	$2 * 1 * 3 * 3=18$
F	F	T	T	Yes	2*1*5*3 = 30
T	T	T	F	No	0
T	F	T	F	No	0
F	T	T	F	No	0
F	F	T	F	No	0
T	T	F	T	Yes	$1 * 2 * 3 * 3=18$
T	F	F	T	No	0
F	T	F	T	Yes	2 * 2 * 3 * $3=36$
F	F	F	T	Yes	2 * 2 * 5 * $3=60$
T	T	F	F	Yes	1*2*3*5 $=30$
T	F	F	F	No	0
F	T	F	F	Yes	2 * 2 * 3 * $5=60$
F	F	F	F	Yes	2 * 2 * 5 * $5=100$

Assembly language for high-level probabilistic reasoning and learning

[VdB et al.; IJCAl'11, PhD'13, KR'14, UAl'14]

Symmetric WFOMC

Def. A weighted vocabulary is (\mathbf{R}, \mathbf{w}), where
$-R=\left(R_{1}, R_{2}, \ldots, R_{k}\right)=$ relational vocabulary
$-\mathbf{w}=\left(w_{1}, w_{2}, \ldots, w_{k}\right)=$ weights

- Fix an FO formula Q, domain of size n
- The weight of a ground tuple t in R_{i} is w_{i}

This talk: complexity of FOMC / WFOMC(Q, n)

- Data complexity: fixed Q, input n / and w
- Combined complexity: input (Q, n) / and w

Example

$Q=\forall x \exists y R(x, y)$
$\operatorname{FOMC}(\mathrm{Q}, \mathrm{n})=\left(2^{\mathrm{n}}-1\right)^{\mathrm{n}}$

$$
\operatorname{WOMC}\left(Q, n, w_{R}\right)=\left(\left(1+w_{R}\right)^{n}-1\right)^{n}
$$

Computable in PTIME in n

Example

$Q=\forall x \exists y R(x, y)$
$\operatorname{FOMC}(\mathrm{Q}, \mathrm{n})=\left(2^{n}-1\right)^{\mathrm{n}} \quad \operatorname{WOMC}\left(\mathrm{Q}, \mathrm{n}, \mathrm{w}_{\mathrm{R}}\right)=\left(\left(1+\mathrm{w}_{\mathrm{R}}\right)^{\mathrm{n}-1)^{\mathrm{n}} .}\right.$
$Q=\exists x \exists y[R(x) \wedge S(x, y) \wedge T(y)]$
$\operatorname{FOMC}(Q, n)=\sum_{i=0, n} \sum_{j=0, n}\binom{n}{i}\binom{n}{j} 2^{(n-i)(n-j)}\left(2^{i j}-1\right)$

Example

$Q=\forall x \exists y R(x, y)$
$\operatorname{FOMC}(\mathrm{Q}, \mathrm{n})=\left(2^{n}-1\right)^{\mathrm{n}} \quad \operatorname{WOMC}\left(\mathrm{Q}, \mathrm{n}, \mathrm{w}_{\mathrm{R}}\right)=\left(\left(1+\mathrm{w}_{\mathrm{R}}\right)^{\mathrm{n}-1)^{\mathrm{n}} .}\right.$
$Q=\exists x \exists y[R(x) \wedge S(x, y) \wedge T(y)]$
$\operatorname{FOMC}(Q, n)=\sum_{i=0, n} \sum_{j=0, n}\binom{n}{i}\binom{n}{j} 2^{(n-i)(n-j)}\left(2^{i j}-1\right)$
$\operatorname{WFOMC}\left(Q, n, w_{R}, w_{S}, w_{T}\right)=$

$$
\sum_{i=0, n} \sum_{j=0, n}\binom{n}{i}\binom{n}{j} w_{R}{ }^{i} w_{T}{ }^{j}\left(1+w_{S}\right)^{(n-i)(n-j)}\left(\left(1+w_{S}\right)^{i j}-1\right)
$$

Computable in PTIME in n

Example

$$
Q=\exists x \exists y \exists z[R(x, y) \wedge S(y, z) \wedge T(z, x)]
$$

Can we compute $\operatorname{FOMC}(\mathrm{Q}, \mathrm{n})$ in PTIME?
Open problem...

Conjecture FOMC(Q, n) not computable in PTIME in n
[Van den Broeck'2011, Gogate'2011]

From MLN to WFOMC

$$
\begin{array}{rll}
& \text { MLN: } & \quad \begin{array}{ll}
\infty & \operatorname{Smoker}(x) \Rightarrow \operatorname{Person}(x) \\
w & \sim \operatorname{Smoker}(x) V \sim \operatorname{Friend}(x, y) \vee \text { Smoker }(y)
\end{array} \\
\rightarrow & \text { MLN': } &
\end{array}
$$

∞	Smoker $(x) \Rightarrow \operatorname{Person}(x)$
∞	$R(x, y) \Leftrightarrow \sim \operatorname{Smoker}(x) \vee \sim$ Friend $(x, y) \vee \operatorname{Smoker}(y)$
w	$R(x, y)$

Theorem $P_{M L N}(Q)=P(Q \mid$ hard constraints in MLN') $=\mathrm{WFOMC}(\mathrm{Q} \wedge$ MLN') / WFOMC(MLN')
R is a symmetric relation

Overview

- Motivation and convergence of
- The artificial intelligence story (recap)
- The machine learning story (recap)
- The probabilistic database story
- The database theory story
- Main theoretical results and proof outlines
- Discussion and conclusions
- Dessert

Probabilistic Databases

- Weights or probabilities given explicitly, for each tuple
- Examples: Knowledge Vault, Nell, Yago
- Dichotomy theorem: for any query in UCQ/FO (\exists, \wedge, v) (or $\mathrm{FO}(\forall, \wedge, \mathrm{v})$, asymmetric WFOMC is in PTIME or \#P-hard.

Motivation 2: Probabilistic Databases

Probabilistic database D:

x	y	P
a 1	b 1	p_{1}
a 1	b 2	p_{2}
a 2	b 2	p_{3}

Motivation 2: Probabilistic Databases

Probabilistic database D:

x	y	P
a 1	b 1	p_{1}
a 1	b 2	p_{2}
a 2	b 2	p_{3}

Possible worlds semantics:

Motivation 2: Probabilistic Databases

Probabilistic database D:

x	y	P
a 1	b 1	p_{1}
a 1	b 2	p_{2}
a 2	b 2	p_{3}

Possible worlds semantics:

Motivation 2: Probabilistic Databases

Probabilistic database D:

x	y	P
$a 1$	b 1	p_{1}
a 1	b 2	p_{2}
a 2	b 2	p_{3}

Possible worlds semantics:

$Q=\exists x \exists y \mathrm{R}(\mathrm{x}) \wedge \mathrm{S}(\mathrm{x}, \mathrm{y})$

An Example

$P(Q)=$

R| x | p |
| :---: | :---: |
| a_{1} | p_{1} |
| a_{2} | p_{2} |
| a_{3} | p_{3} |

S | x | y | P |
| :---: | :---: | :---: |
| a_{1} | b_{1} | q_{1} |
| a_{1} | b_{2} | a_{2} |
| a_{2} | b_{3} | a_{3} |
| a_{2} | b_{4} | a_{4} |
| a_{2} | b_{5} | a_{5} |

$Q=\exists x \exists y R(x) \wedge S(x, y)$

An Example

$P(Q)=$

$$
1-\left(1-q_{1}\right)^{*}\left(1-q_{2}\right)
$$

$R \quad$| x | P |
| :---: | :---: |
| a_{1} | p_{1} |
| a_{2} | p_{2} |
| a_{3} | p_{3} |

S $\left\{\begin{array}{|c|c|c|}\hline x & y & P \\ \hline a_{1} & b_{1} & q_{1} \\ \hline a_{1} & b_{2} & q_{2} \\ \hline a_{2} & b_{3} & q_{3} \\ \hline a_{2} & b_{4} & a_{4} \\ \hline a_{2} & b_{5} & q_{5} \\ \hline\end{array}\right.$

$Q=\exists x \exists y R(x) \wedge S(x, y)$

 An Example$$
P(Q)=\quad p_{1}{ }^{*}\left[1-\left(1-q_{1}\right)^{*}\left(1-q_{2}\right)\right]
$$

$Q=\exists x \exists y R(x) \wedge S(x, y)$

 An Example$$
P(Q)=\quad p_{1}{ }^{*}\left[\begin{array}{l}
\left.1-\left(1-q_{1}\right)^{*}\left(1-q_{2}\right)\right] \\
1-\left(1-q_{3}\right)^{*}\left(1-q_{4}\right)^{*}\left(1-q_{5}\right)
\end{array}\right.
$$

R

x	p
a_{1}	p_{1}
a_{2}	p_{2}
a_{3}	p_{3}

S | x | y | P |
| :--- | :--- | :--- |
| a_{1} | b_{1} | a_{1} |
| a_{1} | b_{2} | a_{2} |
| a_{2} | b_{3} | a_{3} |
| a_{2} | b_{4} | a_{4} |
| a_{2} | b_{5} | a_{5} |

$Q=\exists x \exists y R(x) \wedge S(x, y)$

An Example

$P(Q)=$

$$
\begin{array}{ll}
p_{1}{ }^{*}\left[1-\left(1-q_{1}\right)^{*}\left(1-q_{2}\right)\right] \\
p_{2}{ }^{*}\left[1-\left(1-q_{3}\right)^{*}\left(1-q_{4}\right)^{*}\left(1-q_{5}\right)\right]
\end{array}
$$

R

x	p
a_{1}	p_{1}
a_{2}	p_{2}
a_{3}	p_{3}

$Q=\exists x \exists y R(x) \wedge S(x, y)$

 An Example$P(Q)=1-\left\{1-p_{1}{ }^{*}\left[1-\left(1-q_{1}\right)^{*}\left(1-q_{2}\right)\right]\right\}^{*}$

$$
\left\{1-p_{2}{ }^{*}\left[1-\left(1-q_{3}\right)^{*}\left(1-q_{4}\right)^{\star}\left(1-q_{5}\right)\right]\right\}
$$

$Q=\exists x \exists y R(x) \wedge S(x, y)$

An Example

$$
\begin{aligned}
& P(Q)=1-\left\{1-p_{1}{ }^{*}\left[1-\left(1-q_{1}\right)^{*}\left(1-q_{2}\right)\right]\right\}^{*} \\
&\left\{1-p_{2}{ }^{*}\left[1-\left(1-q_{3}\right)^{*}\left(1-q_{4}\right)^{*}\left(1-q_{5}\right)\right]\right\}
\end{aligned}
$$

One can compute $P(Q)$ in PTIME

 in the size of the database $D$$R \quad$| x | p |
| :---: | :---: |
| a_{1} | p_{1} |
| a_{2} | p_{2} |
| a_{3} | p_{3} |

x	y	p
a_{1}	b_{1}	a_{1}
a_{1}	b_{2}	a_{2}
a_{2}	b_{3}	a_{3}
a_{2}	b_{4}	a_{4}
a_{2}	b_{5}	a_{5}

$Q=\exists x \exists y R(x) \wedge S(x, y)$

An Example

$$
\begin{aligned}
& P(Q)=1-\left\{1-p_{1}{ }^{*}\left[1-\left(1-q_{1}\right)^{*}\left(1-q_{2}\right)\right]\right\}^{*} \\
&\left\{1-p_{2}{ }^{*}\left[1-\left(1-q_{3}\right)^{*}\left(1-q_{4}\right)^{*}\left(1-q_{5}\right)\right]\right\}
\end{aligned}
$$

One can compute $P(Q)$ in PTIME

 in the size of the database DR

x	P	
a_{1}	p_{1}	x
a_{2}	p_{2}	x_{2}
a_{3}	p_{3}	x_{3}

Probabilistic Database Inference

Preprocess Q (omitted from this talk; see book [S.'2011])

- $P(Q 1 \wedge Q 2)=P(Q 1) P(Q 2)$
$P(Q 1 \vee Q 2)=1-(1-P(Q 1))(1-P(Q 2)) \sum \begin{aligned} & \text { Independent } \\ & \text { join } / \text { union }\end{aligned}$
- $P(\exists z Q)=1-\Pi_{a \in \operatorname{Domain}}(1-P(Q[a / z])$ $\mathrm{P}(\forall z \mathrm{Q})=\Pi_{\mathrm{a} \in \operatorname{Domain}} \mathrm{P}(\mathrm{Q}[\mathrm{a} / \mathrm{z}]$

- $\mathrm{P}(\mathrm{Q} 1 \wedge \mathrm{Q} 2)=\mathrm{P}(\mathrm{Q} 1)+\mathrm{P}(\mathrm{Q} 2)-\mathrm{P}(\mathrm{Q} 1 \vee \mathrm{Q} 2)$ Inclusion/ $P(Q 1 \vee Q 2)=P(Q 1)+P(Q 2)-P(Q 1 \wedge Q 2)$
If rules succeed, WFOMC(Q,n) in PTIME; else, \#P-hard
\#P-hardness no longer holds for symmetric WFOMC

Overview

- Motivation and convergence of
- The artificial intelligence story (recap)
- The machine learning story (recap)
- The probabilistic database story
- The database theory story
- Main theoretical results and proof outlines
- Discussion and conclusions
- Dessert

Motivation: 0/1 Laws

Definition. $\mu_{n}(Q)=$ fraction of all structures over a domain of size n that are models of Q
$\mu_{\mathrm{n}}(\mathrm{Q})=\operatorname{FOMC}(\mathrm{Q}, \mathrm{n}) / \operatorname{FOMC}(T R U E, n)$

Theorem.
For every Q in FO, $\lim _{n \rightarrow \infty} \mu_{n}(Q)=0$ or 1
Example: $Q=\forall x \exists y R(x, y)$;

$$
\begin{aligned}
& \operatorname{FOMC}(Q, n)=\left(2^{n}-1\right)^{n} \\
& \mu_{n}(Q)=\left(2^{n}-1\right)^{n} / 2^{n^{\wedge} 2} \rightarrow 1
\end{aligned}
$$

Motivation: 0/1 Laws

In 1976 Fagin proved the 0/1 law for FO using a transfer theorem.

But is there an elementary proof? Find explicit formula for $\mu_{n}(Q)$, then compute the limit. [Fagin communicated to us that he tried this first]

Overview

- Motivation and convergence of
- The artificial intelligence story (recap)
- The machine learning story (recap)
- The probabilistic database story
- The database theory story
- Main theoretical results and proof outlines
- Discussion and conclusions
- Dessert

Class FO²

- $\mathrm{FO}^{2}=\mathrm{FO}$ restricted to two variables
- Intuition: SQL queries that have a plan where all temp tables have arity ≤ 2
- "The graph has a path of length 10 ":
$\exists x \exists y(R(x, y) \wedge \exists x(R(y, x) \wedge \exists y(R(x, y) \wedge \ldots)))$

Main Positive Results

Data complexity:

- for any formula Q in $\mathrm{FO}^{2}, \mathrm{WFOMC}(\mathrm{Q}, \mathrm{n})$ is in PTIME [see NIPS'11, KR'13]
- for any Y -acyclic conjunctive query w/o self-joins Q, WFOMC(Q, n) is in PTIME

Main Negative Results

Data complexity:

- There exists an FO formula Q s.t. symmetric $\operatorname{FOMC}(\mathrm{Q}, \mathrm{n})$ is $\# \mathrm{P}_{1}$ hard
- There exists Q in FO^{3} s.t. $\operatorname{FOMC}(\mathrm{Q}, \mathrm{n})$ is $\# \mathrm{P}_{1}$ hard
- There exists a conjunctive query Q s.t. symmetric WFOMC(Q, n) is \# P_{1} hard
- There exists a positive clause Q w.o. '=’ s.t. symmetric $\operatorname{WFOMC}(Q, n)$ is $\# P_{1}$ hard

Combined complexity:

- $\operatorname{FOMC}(Q, n)$ is \#P-hard

Review: \#P 1

- \# P_{1} = class of functions in \#P over a unary input alphabet
- Valiant 1979: there exists \#P ${ }_{1}$ complete problems
- Bertoni, Goldwurm, Sabatini 1988: counting strings of a given length in some CFG is $\# \mathrm{P}_{1}$ complete
- Goldberg: "no natural combinatorial problems known to be \# P_{1} complete"

Main Result 1

Theorem 1. There exists an FO^{3} sentence Q s.t. $\operatorname{FOMC}(Q, n)$ is $\# P_{1}$-hard

Proof

- Step 1. Construct a Turing Machine U s.t.
$-U$ is in $\# P_{1}$ and runs in linear time in n
- U computes a $\# \mathrm{P}_{1}$-hard function
- Step 2. Construct an FO^{3} sentence Q s.t. $\operatorname{FOMC}(Q, n) / n!=U(n)$

Main Result 2

Theorem 2 There exists a Conjunctive Query Q s.t. WFOMC(Q,n) is \# P_{1}-hard

- Note: the decision problem is trivial (Q has a model iff $n>0$)
- Unweighted Model Counting for CQ: open

Proof Start with a formula Q that is \# P_{1}-hard for FOMC, and transform it to a CQ in five steps (next)

Start: Q s.t. $\operatorname{FOMC}(\mathrm{Q}, \mathrm{n})$ is \# P_{1}-hard

Step 1: Remove \exists

Rewrite

$$
\begin{aligned}
& \mathrm{Q}=\forall \mathrm{x} \exists \mathrm{y} \Psi(\mathrm{x}, \mathrm{y}) \\
& \mathrm{Q}^{\prime}=\forall \mathrm{x} \forall \mathrm{y}(\neg \Psi(\mathrm{x}, \mathrm{y}) \vee \neg \mathrm{A}(\mathrm{x}))
\end{aligned}
$$

where $A=$ new symbol with weight $w=-1$
Claim: WFOMC(Q, n) = WFOMC(Q', n) Proof Consider a model for Q^{\prime}, and a constant $\mathrm{x}=\mathrm{a}$

- If $\exists \mathrm{b} \psi(\mathrm{a}, \mathrm{b})$, then $\mathrm{A}(\mathrm{a})=$ false; contributes $\mathrm{w}=1$
- Otherwise, $\mathrm{A}(\mathrm{a})$ can be either true or false, contributing either $w=1$ or $w=-1$, and $1-1=0$.

$$
\mathrm{Q}=\forall^{*} \ldots, \quad \operatorname{WFOMC}(\mathrm{Q}, \mathrm{n}) \text { is } \# \mathrm{P}_{1} \text {-hard }
$$

Step 2: Remove Negation

- Transform Q to Q' w/o negation s.t. WFOMC(Q, n) = WFOMC(Q', n)
- Similarly to step 1 and omitted
$Q=\forall^{*}[p o s i t i v e], \quad \operatorname{WFOMC}(Q, n)$ is $\# P_{1}$-hard

Start: Q s.t. $\operatorname{FOMC}(\mathrm{Q}, \mathrm{n})$ is \# P_{1}-hard

Step 3: Remove "="

Rewrite Q to Q' as follows:

- Add new binary symbol E with weight w
- Define: Q’ = Q[E / "="] $\wedge(\forall x ~ E(x, x))$

Claim: WFOMC(Q,n) computable using oracle for WFOMC(Q', n)
(coefficient of w^{n} in polynomial WFOMC(Q', n)

$$
\mathrm{Q}=\forall^{*}[\text { positive }, \mathrm{w} / \mathrm{o}=], \quad \mathrm{WFOMC}(\mathrm{Q}, \mathrm{n}) \text { is } \# \mathrm{P}_{1} \text {-hard }
$$

Step 4: To UCQ

- Write $Q=\forall^{*}\left(C_{1} \wedge C_{2} \wedge \ldots\right)$ where each C_{i} is a positive clause
- The dual $Q^{\prime}=\exists^{*}\left(C_{1}{ }^{`} \vee C_{2}^{\prime} \vee \ldots\right)$ is a UCQ
$\operatorname{UCQ} Q, \quad \operatorname{WFOMC}(Q, n)$ is $\# P_{1}$-hard

Step 5: from UCQ to CQ

- UCQ: $\mathrm{Q}=\mathrm{C}_{1} \vee \mathrm{C}_{2} \vee \ldots \vee \mathrm{C}_{\mathrm{k}}$
- $P(Q)=\ldots .+(-1)^{S} P\left(\Lambda_{i \in S} C_{i}\right)+\ldots$.
- $2^{k}-1 \operatorname{CQs} P\left(Q_{1}\right), P\left(Q_{2}\right), \ldots P\left(Q_{2^{n-1}}\right)$
- 1 CQ (using fresh copies of symbols):

$$
P\left(Q_{1}^{\prime} Q_{2}^{\prime} \ldots Q_{2^{\wedge}-1}^{\prime}\right)=P\left(Q_{1}^{\prime}\right) P\left(Q_{2}^{\prime}\right) \ldots P\left(Q_{2^{\wedge} k-1}^{\prime}\right)
$$

$\operatorname{CQ~Q} Q^{\prime}\left(=Q_{1}^{\prime} Q_{2}^{\prime} \ldots Q_{2 k-1}^{\prime}\right) \quad \operatorname{WFOMC}\left(Q^{\prime}, n\right)$ is \#P P_{1}-hard

Overview

- Motivation and convergence of
- The artificial intelligence story (recap)
- The machine learning story (recap)
- The probabilistic database story
- The database theory story
- Main theoretical results and proof outlines
- Discussion and conclusions
- Dessert

Motivation: 0/1 Laws

In 1976 Fagin proved the 0/1 law for FO using a transfer theorem.

But is there an elementary proof? Find explicit formula for $\mu_{n}(Q)$, then compute the limit. [Fagin communicated to us that he tried this first]

Motivation: 0/1 Laws

In 1976 Fagin proved the 0/1 law for FO using a transfer theorem.

But is there an elementary proof? Find explicit formula for $\mu_{n}(Q)$, then compute the limit. [Fagin communicated to us that he tried this first]

A: unlikely when $\operatorname{FOMC}(\mathrm{Q}, \mathrm{n})$ is $\# \mathrm{P}_{1}$-hard

Discussion

Fagin (1974) restated:

1. $N P=\exists S O$
(Fagin's classical characterization of NP)
2. $\mathrm{NP}_{1}=\{\operatorname{Spec}(\Phi) \mid \Phi \in \mathrm{FO}\}$ in tally notation (less well known!)

We show: \#P ${ }_{1}$ corresponds to $\{F O M C(Q, n) \mid Q$ in FO \}

Discussion

- Convergence of $\mathrm{Al} / \mathrm{ML} / \mathrm{DB} /$ theory
- First-order model counting is a basic problem that touches all these areas
- Under-investigated
- Hardness proofs are more difficult than for \#P

Open problems:

- New algorithm for symmetric model counting
- New hardness reduction techniques

Fertile Ground

Fertile Ground

[VdB; NIPS'11], [VdB et al.; KR'14], [Gribkoff, VdB, Suciu; UAI'15], [Beame, VdB, Gribkoff, Suciu; PODS'15], etc.

Overview

- Motivation and convergence of
- The artificial intelligence story (recap)
- The machine learning story (recap)
- The probabilistic database story
- The database theory story
- Main theoretical results and proof outlines
- Discussion and conclusions
- Dessert

The Decision Problem

- Counting problem "count the number of XXX s.t..."
- Decision problem "does there exists an XXX s.t. ...?"
- \#3SAT and 3SAT:
- counting is \#P-complete, decision is NP-hard
- \#2SAT and 2SAT:
- counting is \#P-hard, decision is in PTIME

Counting/Decision Problems for FO

- Counting: given Q, n, count the number of models of Q over a domain of size n
- Decision: given Q, n, does there exists a model of Q over a domain of size n ?
- Data complexity: fix Q , input = n
- Combined complexity: input $=\mathrm{Q}, \mathrm{n}$

The Spectrum

Definition. [Scholz 1952]
$\operatorname{Spec}(\mathrm{Q})=\{\mathrm{n} \mid \mathrm{Q}$ has a model over domain [n]\}

Example: Q says " $\left(D,+,{ }^{*}, 0,1\right)$ is a field":

$$
\operatorname{Spec}(\mathrm{Q})=\left\{p^{\mathrm{k}} \mid \mathrm{p} \text { prime, } \mathrm{k} \geq 1\right\}
$$

Spectra studied intensively for over 50 years

The FO decision problem is precisely spectrum membership

The Data Complexity

Suppose n is given in binary representation:

- Jones\&Selman'72: spectra = NETIME
$\operatorname{NETIME}=\bigcup_{c \geq 0} \operatorname{NTIME}\left(2^{c n}\right)$
$\operatorname{NEXPTIME}=\bigcup_{c \geq 0} \operatorname{NTIME}\left(2^{c^{n}}\right)$
Suppose n is given in unary representation:
- Fagin'74: spectra $=\mathrm{NP}_{1}$

Combined Complexity

Consider the combined complexity for FO^{2} "given Q, n, check if $n \in \operatorname{Spec}(Q)$ "

We prove its complexity:

- NP-complete for FO²,
- PSPACE-complete for FO

Thanks!

