Symmetry in Probabilistic Databases

Guy Van den Broeck KU Leuven

Joint work with

Dan Suciu, Paul Beame, Eric Gribkoff, Wannes Meert, Adnan Darwiche

Based on NIPS 2011, KR 2014, and upcoming PODS 2015 paper

Overview

- Motivation and convergence of
 - The artificial intelligence story (recap)
 - The machine learning story (recap)
 - The probabilistic database story
 - The database theory story
- Main theoretical results and proof outlines
- Discussion and conclusions
- Dessert

Overview

- Motivation and convergence of
 - The artificial intelligence story (recap)
 - The machine learning story (*recap*)
 - The probabilistic database story
 - The database theory story
- Main theoretical results and proof outlines
- Discussion and conclusions
- Dessert

Probability that Card1 is Hearts?

Probability that Card1 is Hearts? 1/4

Probability that Card52 is Spades given that Card1 is QH?

Probability that Card52 is Spades given that Card1 is QH?

13/51

Automated Reasoning

Let us automate this:

1. Probabilistic graphical model (e.g., factor graph)

 Probabilistic inference algorithm (e.g., variable elimination or junction tree)

Automated Reasoning

Let us automate this:

1. Probabilistic graphical model (e.g., factor graph) is fully connected!

Probabilistic inference algorithm

 (e.g., variable elimination or junction tree)
 builds a table with 52⁵² rows

Probability that Card52 is Spades given that Card1 is QH?

Probability that Card52 is Spades given that Card1 is QH?

13/51

Probability that Card52 is Spades given that Card2 is QH?

Probability that Card52 is Spades given that Card2 is QH?

13/51

Probability that Card52 is Spades given that Card3 is QH?

Probability that Card52 is Spades given that Card3 is QH?

13/51

Tractable Probabilistic Inference

Which property makes inference tractable? Traditional belief: Independence What's going on here?

[Niepert, Van den Broeck; AAAI'14], [Van den Broeck; AAAI-KRR'15]

Tractable Probabilistic Inference

Which property makes inference tractable? Traditional belief: Independence

What's going on here?

- High-level (first-order) reasoning
- Symmetry
- Exchangeability

⇒ Lifted Inference

[Niepert, Van den Broeck; AAAI'14], [Van den Broeck; AAAI-KRR'15]

Let us automate this:

- Relational model

 $\begin{array}{l} \forall p, \ \exists c, \ Card(p,c) \\ \forall c, \ \exists p, \ Card(p,c) \\ \forall p, \ \forall c, \ \forall c', \ Card(p,c) \land \ Card(p,c') \Rightarrow c = c' \end{array}$

- Lifted probabilistic inference algorithm

Playing Cards Revisited

Let us automate this:

 $\begin{array}{l} \forall p, \exists c, Card(p,c) \\ \forall c, \exists p, Card(p,c) \\ \forall p, \forall c, \forall c', Card(p,c) \land Card(p,c') \Rightarrow c = c' \end{array}$

$$AT = \sum_{k=0}^{n} \binom{n}{k} \sum_{l=0}^{n} \binom{n}{l} (l+1)^k (-1)^{2n-k-l} = n!$$

$$\oint \#SAT = \sum_{k=0}^{n} {n \choose k} \sum_{l=0}^{n} {n \choose l} (l+1)^{k} (-1)^{2n-k-l} = n!$$

Computed in time polynomial in n

Model Counting

- Model = solution to a propositional logic formula Δ
- Model counting = #SAT

Model = solution to first-order logic formula Δ

 $\Delta = \forall d (Rain(d))$ $\Rightarrow Cloudy(d))$

Days = {Monday}

Model = solution to first-order logic formula Δ

Model = solution to first-order logic formula Δ

Model = solution to first-order logic formula Δ

FOMC = 9

3. $\Delta = \forall x, (Stress(x) \Rightarrow Smokes(x))$

Domain = {n people}

3. $\Delta = \forall x$, (Stress(x) \Rightarrow Smokes(x))

\rightarrow 3ⁿ models

Domain = {n people}

3.
$$\Delta = \forall x, (Stress(x) \Rightarrow Smokes(x))$$

 \rightarrow 3ⁿ models

2. $\Delta = \forall y$, (ParentOf(y) \land Female \Rightarrow MotherOf(y))

Domain = {n people}

D = {n people}

3.
$$\Delta = \forall x, (Stress(x) \Rightarrow Smokes(x))$$

 \rightarrow 3ⁿ models

2. $\Delta = \forall y$, (ParentOf(y) \land Female \Rightarrow MotherOf(y))

D = {n people}

Domain = {n people}

If Female = true? $\Delta = \forall y$, (ParentOf(y) \Rightarrow MotherOf(y)) $\rightarrow 3^{n}$ models

3.
$$\Delta = \forall x, (Stress(x) \Rightarrow Smokes(x))$$

 \rightarrow 3ⁿ models

2. $\Delta = \forall y$, (ParentOf(y) \land Female \Rightarrow MotherOf(y))

D = {n people}

Domain = {n people}

If Female = true? $\Delta = \forall y$, (ParentOf(y) \Rightarrow MotherOf(y)) $\Rightarrow 3^{n}$ models If Female = false? $\Delta = true \qquad \Rightarrow 4^{n}$ models

3.
$$\Delta = \forall x, (Stress(x) \Rightarrow Smokes(x))$$

 \rightarrow 3ⁿ models

2. $\Delta = \forall y$, (ParentOf(y) \land Female \Rightarrow MotherOf(y))

D = {n people}

If Female = true? $\Delta = \forall y$, (ParentOf(y) \Rightarrow MotherOf(y)) $\Rightarrow 3^{n}$ modelsIf Female = false? $\Delta = true$ $\Rightarrow 4^{n}$ models

 \rightarrow 3ⁿ + 4ⁿ models

Domain = {n people}

3.
$$\Delta = \forall x, (Stress(x) \Rightarrow Smokes(x))$$

 \rightarrow 3ⁿ models

2. $\Delta = \forall y$, (ParentOf(y) \land Female \Rightarrow MotherOf(y))

D = {n people}

If Female = true? $\Delta = \forall y$, (ParentOf(y) \Rightarrow MotherOf(y)) $\Rightarrow 3^{n}$ models

If Female = false? Δ = true $\rightarrow 4^{n}$ models

 \rightarrow 3ⁿ + 4ⁿ models

Domain = {n people}

1. $\Delta = \forall x, y, (ParentOf(x, y) \land Female(x) \Rightarrow MotherOf(x, y))$

D = {n people}

3.
$$\Delta = \forall x, (Stress(x) \Rightarrow Smokes(x))$$

 \rightarrow 3ⁿ models

2. $\Delta = \forall y$, (ParentOf(y) \land Female \Rightarrow MotherOf(y))

D = {n people}

If Female = true? $\Delta = \forall y$, (ParentOf(y) \Rightarrow MotherOf(y)) $\Rightarrow 3^{n}$ models

If Female = false? Δ = true \rightarrow 4ⁿ models

 \rightarrow 3ⁿ + 4ⁿ models

Domain = {n people}

1.

 $\Delta = \forall x, y, (ParentOf(x, y) \land Female(x) \Rightarrow MotherOf(x, y))$

D = {n people}

 \rightarrow (3ⁿ + 4ⁿ)ⁿ models

 $\Delta = \forall x, y, (Smokes(x) \land Friends(x, y) \Rightarrow Smokes(y))$

Domain = {n people}
$\Delta = \forall x, y, (Smokes(x) \land Friends(x, y) \Rightarrow Smokes(y))$

Domain = {n people}

• If we know precisely who smokes, and there are *k* smokers?

Database:

...

 $\Delta = \forall x, y, (Smokes(x) \land Friends(x, y) \Rightarrow Smokes(y))$

Domain = {n people}

• If we know precisely who smokes, and there are *k* smokers?

Database:

...

 $\Delta = \forall x, y, (Smokes(x) \land Friends(x, y) \Rightarrow Smokes(y))$

Domain = {n people}

• If we know precisely who smokes, and there are *k* smokers?

Database:

...

 $\Delta = \forall x, y, (Smokes(x) \land Friends(x, y) \Rightarrow Smokes(y))$

Domain = {n people}

• If we know precisely who smokes, and there are *k* smokers?

Database:

...

 $\Delta = \forall x, y, (Smokes(x) \land Friends(x, y) \Rightarrow Smokes(y))$

Domain = {n people}

• If we know precisely who smokes, and there are *k* smokers?

Database:

...

 $\Delta = \forall x, y, (Smokes(x) \land Friends(x, y) \Rightarrow Smokes(y))$

Domain = {n people}

• If we know precisely who smokes, and there are *k* smokers?

Database:

...

 $\Delta = \forall x, y, (Smokes(x) \land Friends(x, y) \Rightarrow Smokes(y))$

Domain = {n people}

• If we know precisely who smokes, and there are *k* smokers?

Database:

...

 $\Delta = \forall x, y, (Smokes(x) \land Friends(x, y) \Rightarrow Smokes(y))$

Domain = {n people}

• If we know precisely who smokes, and there are *k* smokers?

Database:

...

 $\Delta = \forall x, y, (Smokes(x) \land Friends(x, y) \Rightarrow Smokes(y))$

Domain = {n people}

• If we know precisely who smokes, and there are *k* smokers?

Database:

...

 $\Delta = \forall x, y, (Smokes(x) \land Friends(x, y) \Rightarrow Smokes(y))$

Domain = {n people}

• If we know precisely who smokes, and there are *k* smokers?

Database:

$$\rightarrow 2^{n^2 - k(n-k)}$$
 models

 $\Delta = \forall x, y, (Smokes(x) \land Friends(x, y) \Rightarrow Smokes(y))$

Domain = {n people}

• If we know precisely who smokes, and there are *k* smokers?

Database:

Smokes(Alice) = 1 Smokes(Bob) = 0 Smokes(Charlie) = 0 Smokes(Dave) = 1 Smokes(Eve) = 0 ... $\rightarrow 2^{n^2 - k(n-k)}$ models

• If we know that there are k smokers?

 $\Delta = \forall x, y, (Smokes(x) \land Friends(x, y) \Rightarrow Smokes(y))$

Domain = {n people}

• If we know precisely who smokes, and there are *k* smokers?

Database:

Smokes(Alice) = 1 Smokes(Bob) = 0 Smokes(Charlie) = 0 Smokes(Dave) = 1 Smokes(Eve) = 0 ... $\rightarrow 2^{n^2 - k(n-k)}$ models

• If we know that there are *k* smokers?

 $\Delta = \forall x, y, (Smokes(x) \land Friends(x, y) \Rightarrow Smokes(y))$

Domain = {n people}

• If we know precisely who smokes, and there are *k* smokers?

Database:

In total...

Smokes(Alice) = 1 Smokes(Bob) = 0 Smokes(Charlie) = 0 Smokes(Dave) = 1 Smokes(Eve) = 0 ... $\rightarrow 2^{n^2 - k(n-k)}$ models

• If we know that there are *k* smokers?

 $\Delta = \forall x, y, (Smokes(x) \land Friends(x, y) \Rightarrow Smokes(y))$

Domain = {n people}

• If we know precisely who smokes, and there are *k* smokers?

Smokes

k

n-k

Friends

- Database: Smokes(Alice) = 1 Smokes(Bob) = 0 Smokes(Charlie) = 0 Smokes(Dave) = 1 Smokes(Eve) = 0 ... → $2^{n^2 - k(n-k)}$ models
- If we know that there are *k* smokers?
- $\rightarrow \binom{n}{k} 2^{n^2 k(n-k)}$ models

Smokes

k

n-k

 $\rightarrow \sum_{k=0}^{n} \binom{n}{k} 2^{n^2 - k(n-k)} \text{ models}$

• In total...

Overview

- Motivation and convergence of
 - The artificial intelligence story (recap)
 - The machine learning story (recap)
 - The probabilistic database story
 - The database theory story
- Main theoretical results and proof outlines
- Discussion and conclusions
- Dessert

Statistical Relational Models

- An MLN = set of constraints (w, $\Gamma(\mathbf{x})$)
- Weight of a world = product of w, for all rules (w, Γ(x)) and groundings Γ(a) that hold in the world

 $P_{MLN}(Q) = [sum of weights of models of Q] / Z$

Applications: large KBs, e.g. DeepDive

Weighted Model Counting

- Model = solution to a propositional logic formula Δ
- Model counting = #SAT

Weighted Model Counting

- Model = solution to a propositional logic formula Δ
- Model counting = #SAT
- Weighted model counting (WMC)
 - Weights for assignments to variables
 - Model weight is product of variable weights w(.)

Weighted Model Counting

- Model = solution to a propositional logic formula Δ
- Model counting = #SAT
- Weighted model counting (WMC)
 - Weights for assignments to variables
 - Model weight is product of variable weights w(.)

Assembly language for probabilistic reasoning and learning

Model = solution to first-order logic formula Δ

Model = solution to first-order logic formula Δ

#SAT = 9

Model = solution to first-order logic formula Δ

#SAT = 9

Model = solution to first-order logic formula Δ

Assembly language for high-level probabilistic reasoning and learning

[VdB et al.; IJCAI'11, PhD'13, KR'14, UAI'14]

Symmetric WFOMC

Def. A weighted vocabulary is (**R**, **w**), where

 $-\mathbf{R} = (\mathbf{R}_1, \mathbf{R}_2, ..., \mathbf{R}_k) = \text{relational vocabulary}$ $-\mathbf{w} = (\mathbf{w}_1, \mathbf{w}_2, ..., \mathbf{w}_k) = \text{weights}$

- Fix an FO formula Q, domain of size n
- The weight of a ground tuple t in R_i is w_i

This talk: complexity of FOMC / WFOMC(Q, n)

- Data complexity: fixed Q, input n / and w
- Combined complexity: input (Q, n) / and w

Computable in PTIME in n

 $\begin{array}{l} \mathsf{Q} = \forall \mathsf{x} \exists \mathsf{y} \ \mathsf{R}(\mathsf{x},\mathsf{y}) \\ \mathsf{FOMC}(\mathsf{Q},\mathsf{n}) = (2^{\mathsf{n}}-1)^{\mathsf{n}} \quad \mathsf{WOMC}(\mathsf{Q},\mathsf{n},\mathsf{w}_{\mathsf{R}}) = ((1+\mathsf{w}_{\mathsf{R}})^{\mathsf{n}}-1)^{\mathsf{n}} \end{array}$

 $Q = \exists x \exists y [R(x) \land S(x,y) \land T(y)]$ FOMC(Q, n) = $\sum_{i=0,n} \sum_{j=0,n} {n \choose i} {n \choose j} 2^{(n-i)(n-j)} (2^{ij} - 1)$

Computable in PTIME in n

 $\begin{array}{ll} \mathbf{Q} = \forall x \exists y \ \mathsf{R}(x,y) \\ \mathsf{FOMC}(\mathbf{Q},\mathbf{n}) = (2^{\mathsf{n}}-1)^{\mathsf{n}} & \mathsf{WOMC}(\mathbf{Q},\mathbf{n},\mathbf{w}_{\mathsf{R}}) = ((1+\mathbf{w}_{\mathsf{R}})^{\mathsf{n}}-1)^{\mathsf{n}} \end{array}$

$Q = \exists x \exists y [R(x) \land S(x,y) \land T(y)]$ FOMC(Q, n) = $\sum_{i=0,n} \sum_{j=0,n} {n \choose i} {n \choose j} 2^{(n-i)(n-j)} (2^{ij} - 1)$

 $\mathsf{WFOMC}(Q, n, w_R, w_S, w_T) =$

 $\sum_{i=0,n} \sum_{j=0,n} \binom{n}{i} \binom{n}{j} \binom{n}{j} w_R^{i} w_T^{j} (1+w_S)^{(n-i)(n-j)} \left((1+w_S)^{ij} - 1 \right)$

Computable in PTIME in n

$\mathbf{Q} = \exists x \exists y \exists z \ [R(x,y) \land S(y,z) \land T(z,x)]$

Can we compute FOMC(Q, n) in PTIME?

Open problem...

Conjecture FOMC(Q, n) not computable in PTIME in n

[Van den Broeck'2011, Gogate'2011]

From MLN to WFOMC

MLN: \rightarrow MLN': $\stackrel{\infty}{\rightarrow}$ MLN': $\stackrel{\infty}{\longrightarrow}$ Smoker(x) \Rightarrow Person(x) $\stackrel{\infty}{\longrightarrow}$ Smoker(x) \Rightarrow Person(x) $\stackrel{\infty}{\longrightarrow}$ R(x,y) \Leftrightarrow \sim Smoker(x) \lor \sim Friend(x,y) \lor Smoker(y) $\stackrel{W}{\longrightarrow}$ R(x,y)

Theorem $P_{MLN}(Q) = P(Q | hard constraints in MLN')$ = WFOMC(Q \land MLN') / WFOMC(MLN')

R is a symmetric relation

Overview

- Motivation and convergence of
 - The artificial intelligence story (recap)
 - The machine learning story (recap)

- The probabilistic database story

- The database theory story
- Main theoretical results and proof outlines
- Discussion and conclusions
- Dessert

Probabilistic Databases

- Weights or probabilities given explicitly, for each tuple
- Examples: Knowledge Vault, Nell, Yago
- Dichotomy theorem: for any query in UCQ/FO(∃,∧,∨) (or FO(∀,∧,∨), asymmetric WFOMC is in PTIME or #P-hard.

Motivation 2: Probabilistic Databases

Probabilistic database D:

X	у	Р
a1	b1	p ₁
a1	b2	p ₂
a2	b2	p ₃

Motivation 2: Probabilistic Databases

Probabilistic database D:

Possible worlds semantics:

Motivation 2: Probabilistic Databases

Probabilistic database D:

X	у	Р
a1	b1	p ₁
a1	b2	p ₂
a2	b2	p ₃

Possible worlds semantics:

Motivation 2: Probabilistic Databases

Probabilistic database D:

X	у	Р
a1	b1	p ₁
a1	b2	p ₂
a2	b2	p ₃

Possible worlds semantics:

P(Q) =

S

Х	у	Ρ
a ₁	b ₁	q ₁
a ₁	b ₂	q ₂
a ₂	b ₃	q ₃
a ₂	b ₄	q ₄
a_2	b_5	q ₅

R

Х	Ρ
a ₁	p ₁
a ₂	p ₂
a ₃	p ₃

$P(Q) = 1 - (1 - q_1)^* (1 - q_2)$

x	Ρ
a ₁	p ₁
a_2	p ₂
a ₃	p ₃

$P(Q) = p_1^* [1 - (1 - q_1)^* (1 - q_2)]$

$P(Q) = p_1^* [1 - (1 - q_1)^* (1 - q_2)]$ $p_2^* [1 - (1 - q_3)^* (1 - q_4)^* (1 - q_5)]$

$P(Q) = 1 - \{1 - p_1^*[1 - (1 - q_1)^*(1 - q_2)] \}^* \\ \{1 - p_2^*[1 - (1 - q_3)^*(1 - q_4)^*(1 - q_5)] \}$

$P(Q) = 1 - \{1 - p_1^*[1 - (1 - q_1)^*(1 - q_2)] \}^* \\ \{1 - p_2^*[1 - (1 - q_3)^*(1 - q_4)^*(1 - q_5)] \}$

$P(Q) = 1 - \{1 - p_1^*[1 - (1 - q_1)^*(1 - q_2)] \}^* \\ \{1 - p_2^*[1 - (1 - q_3)^*(1 - q_4)^*(1 - q_5)] \}$

Probabilistic Database Inference

Preprocess Q (omitted from this talk; see book [S.'2011])

• $P(Q1 \land Q2) = P(Q1)P(Q2)$ $P(Q1 \lor Q2) = 1 - (1 - P(Q1))(1 - P(Q2))$ Independent join / union

> Independent project

> > Inclusion/

exclusion

• $P(\exists z \mathbf{Q}) = 1 - \prod_{a \in Domain} (1 - P(\mathbf{Q}[a/z]))$ $P(\forall z \mathbf{Q}) = \prod_{a \in Domain} P(\mathbf{Q}[a/z])$

• $P(Q1 \land Q2) = P(Q1) + P(Q2) - P(Q1 \lor Q2)$ $P(Q1 \lor Q2) = P(Q1) + P(Q2) - P(Q1 \land Q2)$

If rules succeed, WFOMC(Q,n) in PTIME; else, #P-hard

#P-hardness no longer holds for symmetric WFOMC

Overview

- Motivation and convergence of
 - The artificial intelligence story (recap)
 - The machine learning story (recap)
 - The probabilistic database story
 - The database theory story
- Main theoretical results and proof outlines
- Discussion and conclusions
- Dessert

Motivation: 0/1 Laws

Definition. $\mu_n(Q) = \text{fraction of all structures over a domain of size n that are models of Q$

 $\mu_n(Q) = FOMC(Q, n) / FOMC(TRUE, n)$

Theorem. For every Q in FO, lim_{n →∞} μ_n(Q) = 0 or 1

Example:
$$\mathbf{Q} = \forall x \exists y \ \mathsf{R}(x,y);$$

FOMC(\mathbf{Q},\mathbf{n}) = $(2^{n}-1)^{n}$
 $\mu_{n}(\mathbf{Q}) = (2^{n}-1)^{n} / 2^{n^{2}} \rightarrow 1$

Motivation: 0/1 Laws

In 1976 Fagin proved the 0/1 law for FO using a transfer theorem.

But is there an elementary proof? Find explicit formula for $\mu_n(Q)$, then compute the limit. [Fagin communicated to us that he tried this first]

Overview

- Motivation and convergence of
 - The artificial intelligence story (recap)
 - The machine learning story (recap)
 - The probabilistic database story
 - The database theory story
- Main theoretical results and proof outlines
- Discussion and conclusions
- Dessert

Class FO²

• $FO^2 = FO$ restricted to two variables

 Intuition: SQL queries that have a plan where all temp tables have arity ≤ 2

• "The graph has a path of length 10":

 $\exists x \exists y (R(x,y) \land \exists x (R(y,x) \land \exists y (R(x,y) \land ...)))$

Main Positive Results

Data complexity:

- for any formula Q in FO², WFOMC(Q, n) is in PTIME [see NIPS'11, KR'13]
- for any γ-acyclic conjunctive query w/o self-joins Q, WFOMC(Q, n) is in PTIME

Main Negative Results

Data complexity:

- There exists an FO formula Q s.t. symmetric FOMC(Q, n) is #P₁ hard
- There exists Q in FO³ s.t. FOMC(Q, n) is $\#P_1$ hard
- There exists a conjunctive query Q s.t. symmetric WFOMC(Q, n) is #P₁ hard
- There exists a positive clause Q w.o. '=' s.t. symmetric WFOMC(Q, n) is #P₁ hard

Combined complexity:

• FOMC(Q, n) is #P-hard

Review: #P₁

- #P₁ = class of functions in #P over a unary input alphabet
- Valiant 1979: there exists #P₁ complete problems
- Bertoni, Goldwurm, Sabatini 1988: counting strings of a given length in some CFG is #P₁ complete
- Goldberg: "no natural combinatorial problems known to be #P₁ complete"

Main Result 1

Theorem 1. There exists an FO³ sentence Q s.t. FOMC(Q,n) is $\#P_1$ -hard

Proof

- Step 1. Construct a Turing Machine U s.t.
 U is in #P₁ and runs in linear time in n
 U computes a #P₁ –hard function
- Step 2. Construct an FO³ sentence Q s.t.
 FOMC(Q,n) / n! = U(n)

Main Result 2

Theorem 2 There exists a Conjunctive Query Q s.t. WFOMC(Q,n) is $\#P_1$ -hard

- Note: the decision problem is trivial (Q has a model iff n > 0)
- <u>Unweighted</u> Model Counting for CQ: open

Proof Start with a formula Q that is $\#P_1$ -hard for FOMC, and transform it to a CQ in five steps (next)

Step 1: Remove 3

Rewrite
to $\mathbf{Q} = \forall x \exists y \ \psi(x,y)$
 $\mathbf{Q}' = \forall x \ \forall y \ (\neg \psi(x,y) \ \lor \neg A(x))$

where A = new symbol with weight w = -1

Claim: WFOMC(Q, n) = WFOMC(Q', n) **Proof** Consider a model for Q', and a constant x=a

- If $\exists b \psi(a,b)$, then A(a)=false; contributes w=1
- Otherwise, A(a) can be either true or false, contributing either w=1 or w=-1, and 1 1 = 0.

 $Q = \forall^* \dots$, WFOMC(Q, n) is #P₁-hard

Step 2: Remove Negation

Transform Q to Q' w/o negation s.t.
 WFOMC(Q, n) = WFOMC(Q', n)

• Similarly to step 1 and omitted

 $Q = \forall^*$ [positive], WFOMC(Q, n) is #P₁-hard

Step 3: Remove "="

Rewrite Q to Q' as follows:

- Add new binary symbol E with weight w
- Define: Q' = Q[E / "="] \land ($\forall x E(x,x)$)

Claim: WFOMC(Q,n) computable using oracle for WFOMC(Q', n) (coefficient of wⁿ in polynomial WFOMC(Q', n)

 $Q = \forall^*[positive, w/o =], WFOMC(Q, n) is #P_1-hard$

Step 4: To UCQ

 Write Q = ∀* (C₁ ∧ C₂ ∧ ...) where each C_i is a positive clause

 The dual Q' = ∃* (C₁' ∨ C₂' ∨ ...) is a UCQ

UCQ Q, WFOMC(Q, n) is $\#P_1$ -hard

Step 5: from UCQ to CQ

- UCQ: $\mathbf{Q} = \mathbf{C}_1 \vee \mathbf{C}_2 \vee \ldots \vee \mathbf{C}_k$
- $P(Q) = + (-1)^{S} P(\Lambda_{i \in S} C_{i}) +$
- 2^k-1 CQs P(Q₁), P(Q₂), ... P(Q_{2^k-1})
- 1 CQ (using fresh copies of symbols): $P(Q'_{1}Q'_{2}...Q'_{2^{k-1}}) = P(Q'_{1})P(Q'_{2})...P(Q'_{2^{k-1}})$

CQ Q' $(=Q'_1Q'_2...Q'_{2^{k-1}})$ WFOMC(Q', n) is $\#P_1$ -hard

Overview

- Motivation and convergence of
 - The artificial intelligence story (recap)
 - The machine learning story (recap)
 - The probabilistic database story
 - The database theory story
- Main theoretical results and proof outlines
- Discussion and conclusions
- Dessert

Motivation: 0/1 Laws

In 1976 Fagin proved the 0/1 law for FO using a transfer theorem.

But is there an elementary proof? Find explicit formula for $\mu_n(Q)$, then compute the limit. [Fagin communicated to us that he tried this first]

Motivation: 0/1 Laws

In 1976 Fagin proved the 0/1 law for FO using a transfer theorem.

But is there an elementary proof? Find explicit formula for $\mu_n(Q)$, then compute the limit. [Fagin communicated to us that he tried this first]

A: unlikely when FOMC(Q,n) is $\#P_1$ -hard

Discussion

Fagin (1974) restated: 1. NP = \exists SO (Fagin's classical characterization of NP) 2. NP₁ = {Spec(Φ) | $\Phi \in$ FO} in tally notation (less well known!)

We show: #P₁ corresponds to {FOMC(Q,n) | Q in FO }

Discussion

- Convergence of AI/ML/DB/theory
- First-order model counting is a basic problem that touches all these areas
- Under-investigated
- Hardness proofs are more difficult than for #P

Open problems:

- New algorithm for symmetric model counting
- New hardness reduction techniques

[VdB; NIPS'11], [VdB et al.; KR'14], [Gribkoff, VdB, Suciu; UAI'15], [Beame, VdB, Gribkoff, Suciu; PODS'15], etc.

[VdB; NIPS'11], [VdB et al.; KR'14], [Gribkoff, VdB, Suciu; UAI'15], [Beame, VdB, Gribkoff, Suciu; PODS'15], etc.

Overview

- Motivation and convergence of
 - The artificial intelligence story (recap)
 - The machine learning story (recap)
 - The probabilistic database story
 - The database theory story
- Main theoretical results and proof outlines
- Discussion and conclusions
- Dessert

The Decision Problem

- Counting problem *"count the number of XXX s.t..."*
- Decision problem *"does there exists an XXX s.t. ...?"*
- #3SAT and 3SAT:
 - counting is #P-complete, decision is NP-hard
- #2SAT and 2SAT:
 - counting is #P-hard, decision is in PTIME

Counting/Decision Problems for FO

 Counting: given Q,n, count the number of models of Q over a domain of size n

 Decision: given Q,n, does there exists a model of Q over a domain of size n?

- Data complexity: fix Q, input = n
- Combined complexity: input = Q, n

The Spectrum

Definition. [Scholz 1952] Spec(Q)= {n | Q has a model over domain [n]}

Example: Q says "(D, +, *, 0, 1) is a field": Spec(Q) = $\{p^k \mid p \text{ prime}, k \ge 1\}$

Spectra studied intensively for over 50 years

The FO decision problem is precisely spectrum membership
The Data Complexity

Suppose n is given in binary representation:

• Jones&Selman'72: spectra = NETIME

$$\mathsf{NETIME} = \bigcup_{c \ge 0} \mathsf{NTIME}(2^{cn}) \qquad \qquad \mathsf{NEXPTIME} = \bigcup_{c \ge 0} \mathsf{NTIME}(2^{c^n})$$

Suppose n is given in unary representation:

• Fagin'74: spectra = NP_1

Combined Complexity

Consider the combined complexity for FO^2 "given Q, n, check if $n \in Spec(Q)$ "

We prove its complexity:

- NP-complete for FO²,
- PSPACE-complete for FO

Thanks!