Probabilistic and Logistic Circuits:

A New Synthesis of Logic and Machine Learning

Guy Van den Broeck

Feb 5, 2019

Which method to choose?

Classical Al Methods:

Neural Networks:

Clear Modeling Assumption Well-understood

"Black Box"
Good performance on Image Classification

Outline

- Adding knowledge to deep learning
- Probabilistic circuits
- Logistic circuits for image classification

Outline

- Adding knowledge to deep learning
- Probabilistic circuits
- Logistic circuits for image classification

Motivation: Video

We also connect all pairs of identity nodes $y_{t, i}$ and $y_{t, j}$ if they appear in the same time t. We then introduce an edge potential that enforces mutual exclusion:

$$
\psi_{\text {mutex }}\left(y_{t, i}, y_{t, j}\right)= \begin{cases}1 & \text { if } y_{t, i} \neq y_{t, j} \tag{5}\\ 0 & \text { otherwise }\end{cases}
$$

This potential specifies the constraint that a player can be appear only once in a frame. For example, if the i-th detection $y_{t, i}$ has been assign to Bryant, $y_{t, j}$ cannot have the same identity because Bryant is impossible to appear twice in a frame.
[Lu, W. L., Ting, J. A., Little, J. J., \& Murphy, K. P. (2013). Learning to track and identify players from broadcast sports videos.]

Motivation: Robotics

The method developed in this paper can be used in a broad variety of semantic mapping and object manipulation tasks, providing an efficient and effective way to incorporate collision constraints into a recursive state estimator, obtaining optimal or near-optimal solutions.
[Wong, L. L., Kaelbling, L. P., \& Lozano-Perez, T., Collision-free state estimation. ICRA 2012]

Motivation: Language

- Non-local dependencies: At least one verb in each sentence
- Sentence compression If a modifier is kept, its subject is also kept
- Information extraction
- Semantic role labeling
... and many more!

Citations	
Start	The citation must start with author or editor.
AppearsOnce	Each field must be a consecutive list of words, and can appear at most once in a citation.
Punctuation	State transitions must occur on punctuation marks.
BookJournal	The words proc, journal, proceed- ings, ACM are JOURNAL or BOOKTITLE.
\ldots	The words tech, technical are TECH_REPORT.
TechReport	Quotations can appear only in titles. TitleThe words CA, Australia, NY are LOCATION.
Location	

[Chang, M., Ratinov, L., \& Roth, D. (2008). Constraints as prior knowledge],..., [Chang, M. W., Ratinov, L., \& Roth, D. (2012). Structured learning with constrained conditional models.], [https://en.wikipedia.org/wiki/Constrained_conditional_model]

Motivation: Deep Learning

> optimal planner recalculating a shortest path to the end node. To ensure that the network always moved to a valid node, the output distribution was renormalized over the set of possible triples outgoing from the current node. The performance

it also received input triples during the answer phase, indicating the actions chosen on the previous time-step. This makes the problem a 'structured prediction

Running Example

Courses:

- Logic (L)
- Knowledge Representation (K)
- Probability (P)
- Artificial Intelligence (A)

Constraints

- Must take at least one of Probability or Logic.
- Probability is a prerequisite for AI.

Data

L	K	P	A	Students
0	0	1	0	6
0	0	1	1	54
0	1	1	1	10
1	0	0	0	5
1	0	1	0	1
1	0	1	1	0
1	1	0	0	17
1	1	1	0	4
1	1	1	1	3

- The prerequisites for KR is either AI or Logic.

Structured Space

unstructured			
L	K	P	A
0	0	0	0
0	0	0	1
0	0	1	0
0	0	1	1
0	1	0	0
0	1	0	1
0	1	1	0
0	1	1	1
1	0	0	0
1	0	0	1
1	0	1	0
1	0	1	1
1	1	0	0
1	1	0	1
1	1	1	0
1	1	1	1

Boolean Constraints

unstructured			
L	K	P	A
0	0	0	0
0	0	0	1
0	0	1	0
0	0	1	1
0	1	0	0
0	1	0	1
0	1	1	0
0	1	1	1
1	0	0	0
1	0	0	1
1	0	1	0
1	0	1	1
1	1	0	0
1	1	0	1
1	1	1	0
1	1	1	1

Learning in Structured Spaces

L	K	P	A	Students
0	0	1	0	6
0	0	1	1	54
0	1	1	1	10
1	0	0	0	5
1	0	1	0	1
1	0	1	1	0
1	1	0	0	17
1	1	1	0	4
1	1	1	1	3

Today's machine learning tools don't take knowledge as input! :

Deep Learning with Logical Knowledge

Neural Network

Output is probability vector p, not Boolean logic!

Semantic Loss

Q: How close is output \mathbf{p} to satisfying constraint? Answer: Semantic loss function L($\mathbf{\alpha}, \mathbf{p}$)

- Axioms, for example:
- If \mathbf{p} is Boolean then $L(\mathbf{p}, \mathbf{p})=0$
- If α implies β then $L(\alpha, \mathbf{p}) \geq L(\beta, \mathbf{p}) \quad$ (α more strict)
- Properties:
- If α is equivalent to β then $L(\alpha, \mathbf{p})=L(\beta, \mathbf{p}) \quad$ Loss!
- If \mathbf{p} is Boolean and satisfies α then $L(\alpha, p)=0$

Semantic Loss: Definition

Theorem: Axioms imply unique semantic loss:

$$
\mathrm{L}^{\mathrm{s}}(\alpha, \mathrm{p}) \propto-\log \sum_{\mathbf{x} \neq \alpha} \prod_{i: \mathbf{x} \neq X_{i}} \mathrm{p}_{i} \prod_{i: \mathbf{x} \models \neg X_{i}}\left(1-\mathrm{p}_{i}\right)
$$

Probability of getting \mathbf{x} after flipping coins with prob. p

Probability of satisfying a after flipping coins with prob. p

Example: Exactly-One

- Data must have some label We agree this must be one of the 10 digits:
- Exactly-one constraint

$$
\left\{\begin{array}{l}
x_{1} \vee x_{2} \vee x_{3} \\
\neg x_{1} \vee \neg x_{2} \\
\neg x_{2} \vee \neg x_{3} \\
\neg x_{1} \vee \neg x_{3}
\end{array}\right.
$$

- Semantic loss: \rightarrow For 3 classes: $\left\{\begin{array}{l}\neg x_{1} \vee \neg x_{2} \\ \neg x_{2} \vee \neg x_{3} \\ \neg x_{1} \vee \neg x_{3}\end{array}\right.$

$$
\mathrm{L}^{\mathrm{s}}(\text { exactly-one }, \mathrm{p}) \propto-\log \sum_{i=1}^{n} \underbrace{\mathrm{p}_{i} \prod_{j=1, j \neq i}^{n}\left(1-\mathrm{p}_{j}\right)}
$$

Only $\boldsymbol{x}_{\boldsymbol{i}}=\mathbf{1}$ after flipping coins
Exactly one true \boldsymbol{x} after flipping coins

Semi-Supervised Learning

- Intuition: Unlabeled data must have some label Cf. entropy constraints, manifold learning

- Minimize exactly-one semantic loss on unlabeled data

Train with existing loss $+w \cdot$ semantic loss

MNIST Experiment

Accuracy \% with \# of used labels	100	1000	ALL
AtlasRBF (Pitelis et al., 2014)	$91.9(\pm 0.95)$	$96.32(\pm 0.12)$	98.69
Deep Generative (Kingma et al., 2014)	$96.67(\pm 0.14)$	$97.60(\pm 0.02)$	99.04
Virtual Adversarial (Miyato et al., 2016)	97.67	98.64	99.36
Ladder Net (Rasmus et al., 2015)	$\mathbf{9 8 . 9 4}(\pm 0.37)$	$\mathbf{9 9 . 1 6}(\pm 0.08)$	$99.43(\pm 0.02)$
Baseline: MLP, Gaussian Noise	$78.46(\pm 1.94)$	$94.26(\pm 0.31)$	$99.34(\pm 0.08)$
Baseline: Self-Training	$72.55(\pm 4.21)$	$87.43(\pm 3.07)$	
MLP with Semantic Loss	$98.38(\pm 0.51)$	$98.78(\pm 0.17)$	$99.36(\pm 0.02)$

Competitive with state of the art in semi-supervised deep learning

FASHION Experiment

(a) Confidently Correct

(b) Unconfidently Correct

(c) Unconfidently Incorrect

(d) Confidently Incorrect

Accuracy \% with \# of used labels	100	500	1000	ALL
Ladder Net (Rasmus et al., 2015)	$81.46(\pm 0.64)$	$85.18(\pm 0.27)$	$86.48(\pm 0.15)$	90.46
Baseline: MLP, Gaussian Noise	$69.45(\pm 2.03)$	$78.12(\pm 1.41)$	$80.94(\pm 0.84)$	89.87
MLP with Semantic Loss	$\mathbf{8 6 . 7 4}(\pm 0.71)$	$\mathbf{8 9 . 4 9}(\pm 0.24)$	$89.67(\pm 0.09)$	89.81

Accuracy \% with \# of used labels	4000	ALL
CNN Baseline in Ladder Net	$76.67(\pm 0.61)$	90.73
Ladder Net (Rasmus et al., 2015)	$79.60(\pm 0.47)$	
Baseline: CNN, Whitening, Cropping	77.13	90.96
CNN with Semantic Loss	$\mathbf{8 1 . 7 9}$	90.92

What about real constraints? Paths

Good variable assignment (represents route)

184

Bad variable assignment (does not represent route)

16,777,032

Unstructured probability space: 184+16,777,032 = 2^{24}
Space easily encoded in logical constraints $)$ [Nishino etal.]

How to Compute Semantic Loss?

- In general: \#P-hard $:$

Negation Normal Form Circuits

$$
\Delta=(\text { sun } \wedge \text { rain } \Rightarrow \text { rainbow })
$$

[Darwiche 2002]

Logical Circuits

Decomposable Circuits

Tractable for Logical Inference

- Is there a solution? (SAT)
$-\operatorname{SAT}(\alpha \vee \beta)$ iff SAT (α) or SAT $(\beta) \quad$ (always)
- SAT $(\alpha \wedge \beta)$ iff SAT (α) and SAT (β) (decomposable)
- How many solutions are there? (\#SAT)
- Complexity linear in circuit size \odot

Deterministic Circuits

[Darwiche 2002]

How many solutions are there? (\#SAT)

How many solutions are there? (\#SAT)

Tractable for Logical Inference

- Is there a solution? (SAT)
- How many solutions are there? (\#SAT)
- Stricter languages (e.g., BDD, SDD):
- Equivalence checking
- Conjoin/disjoint/negate circuits
- Complexity linear in circuit size $)$
- Compilation into circuit language by either
- \downarrow exhaustive SAT solver
- \uparrow conjoin/disjoin/negate

How to Compute Semantic Loss?

- In general: \#P-hard $:$
- With a logical circuit for α : Linear!
- Example: exactly-one constraint:

- Why? Decomposability and determinism!

Predict Shortest Paths

Add semantic loss for path constraint

Test accuracy \%	Coherent	Incoherent	Constraint
5-layer MLP	5.62	$\mathbf{8 5 . 9 1}$	6.99
Semantic loss	$\mathbf{2 8 . 5 1}$	83.14	$\mathbf{6 9 . 8 9}$
Is prediction the shortest path? This is the real task!	Are individual edge predictions correct?	Is output	
a path?			

(same conclusion for predicting sushi preferences, see paper)

Outline

- Adding knowledge to deep learning
- Probabilistic circuits
- Logistic circuits for image classification

Logical Circuits

```
P\veeL
A=>P
K=>(P\veeL)
```


Can we represent a distribution over the solutions to the constraint?

Probabilistic Circuits

Syntax: assign a normalized probability to each OR gate input

Bottom-Up Evaluation of PSDDs

Input:

Alternative View of PSDDs

$\operatorname{Pr}(L, K, P, A)=0.3 \times 1 \times 0.8 \times 0.4 \times 0.25=\mathbf{0 . 0 2 4}$

Each node represents a normalized

 distribution!

Can read probabilistic independences off the circuit structure!
Can interpret every parameter as a conditional probability! (XAI)

Tractable for Probabilistic Inference

- MAP inference:

Find most-likely assignment to x given y (otherwise NP-hard)

- Computing conditional probabilities $\operatorname{Pr}(\mathrm{x} \mid \mathrm{y})$ (otherwise \#P-hard)
- Sample from $\operatorname{Pr}(x \mid y)$
- Algorithms linear in circuit size :) (pass up, pass down, similar to backprop)

Parameter Learning Algorithms

- Closed form max likelihood from complete data

- One pass over data to estimate $\operatorname{Pr}(\mathrm{x} \mid \mathrm{y})$

Not a lot to say: very easy! ©

PSDDs

...are Sum-Product Networks ...are Arithmetic Circuits

Learn Mixtures of PSDD Structures

Datasets	\mid Var	LearnPSDD Ensemble	Best-to-Date
NITCS	16	-5.99^{\dagger}	-6.00
MSNBC	17	-6.04^{\dagger}	-6.04^{\dagger}
KDD	64	-2.11^{\dagger}	-2.12
Plants	09	-13.02	-11.99^{\dagger}
Audio	100	-39.94	-39.49^{\dagger}
Jester	100	-51.29	-41.11^{\dagger}
Netflix	100	-55.71^{\dagger}	-55.84
Accidents	11	-30.16	-24.87^{\dagger}
Retail	135	-10.72^{\dagger}	-10.78
Pumsb-Star	163	-26.12	-22.40^{\dagger}
DNA	180	-88.01	-80.03^{\dagger}
Kosarek	190	-10.52^{\dagger}	-10.54
MSWeb	294	-9.89	-9.22^{\dagger}
Book	500	-34.97	-30.18^{\dagger}
EachMovie	500	-58.01	-51.14^{\dagger}
WebKB	839	-161.09	-150.10^{\dagger}
Reuters-52	889	-89.61	-80.66^{\dagger}
20NewsGrp.	910	-155.97	-150.88^{\dagger}
BBC	1058	-253.19	-233.26^{\dagger}
AD	1556	-31.78	-14.36^{\dagger}

State of the art on 6 datasets!

Q: "Help! I need to learn a discrete probability distribution..." A: Learn mixture of PSDDs!

Strongly outperforms

- Bayesian network learners
- Markov network learners

Competitive with

- SPN learners
- Cutset network learners

Outline

- Adding knowledge to deep learning
- Probabilistic circuits
- Logistic circuits for image classification

What if I only want to classify Y?

What if we only want to learn a classifier $\operatorname{Pr}(Y \mid X)$

Logistic Circuits: Evaluation

$$
\operatorname{Pr}(Y=1 \mid A, B, C, D)=\frac{1}{1+\exp (-1.9)}=0.869
$$

Input:

A	B	C	D	$\operatorname{Pr}(Y \mid A, B, C, D)$
0	1	1	0	$?$

Aggregate the parameters bottom-up
Logistic function on final output

Alternative View on Logistic Circuits

Represents $\operatorname{Pr}(Y \mid A, B, C, D)$

- Take all 'hot’ wires
- Sum their weights
- Push through logistic function

Special Case: Logistic Regression

What about other logistic circuits in more general forms?

Parameter Learning

Reduce to logistic regression:

$$
\operatorname{Pr}(Y=1 \mid \mathbf{x})=\frac{1}{1+\exp (-\mathbb{x} \cdot \theta)}
$$

Features associated with each wire "Global Circuit Flow" features

Learning parameters θ is convex optimization!

Structure Learning Primitive

Logistic Circuit Structure Learning

Execute the best operation

Comparable Accuracy with Neural Nets

Accuracy \% on Dataset

Mnist FASHION
Baseline: Logistic Regression
85.3
79.3

Baseline: Kernel Logistic Regression Random Forest
97.7
88.3

3-LAYER MLP
RAT-SPN (Peharz et al. 2018)
SVM with RBF Kernel
5-LAYER MLP
97.3
81.6
97.5
84.8
$98.1 \quad 89.5$
$98.5 \quad 87.8$
99.3
89.8

LOGISTIC CIRCUIT (BINARY)	97.4	87.6
LOGISTIC CIRCUIT (REAL-VALUED)	99.4	91.3

CNN with 3 CONV LAYERS
99.1
90.7

Resnet (He et Al. 2016)
99.5
93.6

Significantly Smaller in Size

NUMBER OF PARAMETERS	MNIST	FASHION
BASELINE: LOGISTIC REGRESSION	$<1 \mathrm{~K}$	$<1 \mathrm{~K}$
BASELINE: KERNEL LOGISTIC REGRESSION	$1,521 \mathrm{~K}$	$3,930 \mathrm{~K}$
LOGISTIC CIRCUIT (REAL-VALUED)	182 K	467 K
LOGISTIC CIRCUIT (BINARY)	268 K	614 K
3-LAYER MLP	$1,411 \mathrm{~K}$	$1,411 \mathrm{~K}$
RAT-SPN (PEHARZ ET AL. 2018)	$8,500 \mathrm{~K}$	650 K
CNN WITH 3 CONV LAYERS	$2,196 \mathrm{~K}$	$2,196 \mathrm{~K}$
5-LAYER MLP	$2,411 \mathrm{~K}$	$2,411 \mathrm{~K}$
RESNET (HE ET AL. 2016)	$4,838 \mathrm{~K}$	$4,838 \mathrm{~K}$

Better Data Efficiency

| ACCURACY \% WITH \% OF TRAINING DATA | MNIST | | | FASHION | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | 100% | 10% | 2% | 100% | 10% | 2% |
| 5-LAYER MLP | 99.3 | $\mathbf{9 8 . 2}$ | 94.3 | 89.8 | 86.5 | 80.9 |
| CNN WITH 3 CONV LAYERS | 99.1 | 98.1 | 95.3 | 90.7 | 87.6 | 83.8 |
| LOGISTIC CIRCUIT (BINARY) | 97.4 | 96.9 | 94.1 | 87.6 | 86.7 | 83.2 |
| LOGISTIC CIRCUIT (REAL-VALUED) | $\mathbf{9 9 . 4}$ | 97.6 | $\mathbf{9 6 . 1}$ | $\mathbf{9 1 . 3}$ | $\mathbf{8 7 . 8}$ | $\mathbf{8 6 . 0}$ |

Logistic vs. Probabilistic Circuits

Interpretable?

Logistic Circuits: Conclusions

- Synthesis of symbolic AI and statistical learning
- Discriminative counterparts of probabilistic circuits
- Convex parameter learning
- Simple heuristic for structure learning
- Good performance
- Easy to interpret

Conclusions

