Lifted Inference in Statistical Relational Models

Guy Van den Broeck

BUDA Invited Tutorial June $22^{\text {nd }} 2014$

Overview

1. What are statistical relational models?
2. What is lifted inference?
3. How does lifted inference work?
4. Theoretical insights
5. Practical applications

Overview

1. What are statistical relational models?
2. What is lifted inference?
3. How does lifted inference work?
4. Theoretical insights
5. Practical applications

Types of Models

Observations
Data

World

User Agent

Knowledge Representation Machine Learning

Model

Logical Propositional Models

$$
--------\operatorname{sun} \wedge \text { rain } \Rightarrow \text { rainbow }
$$

Weather

Statistical

Logical

Propositional Relational

Statistical Propositional Models

$$
--------- \text { ? }
$$

Weather

Statistical Propositional Models

Probabilistic Graphical Models: Factor Graphs

$$
\operatorname{Pr}(\omega)=\frac{1}{Z} \prod_{i} f_{i}\left(\omega_{i}\right) \quad \text { where } \quad Z=\sum_{\omega} \prod_{i} f_{i}\left(\omega_{i}\right)
$$

Logical Relational Models

$$
---------- \text { ? }
$$

Social

Network

Logical Relational Models

- Example: First-Order Logic

Formula ends $(x, y) \Rightarrow \operatorname{Smokes}(y)$

Atom Logical Variables

- Logical variables have domain of constants
e.g., x, y range over domain People $=\{$ Alice, Bob $\}$
- Ground formula has no logical variables
e.g., Smokes(Alice) ^ Friends(Alice,Bob) \Rightarrow Smokes(Bob)

Logical Relational Models

Social
Network

Propositional Relational

Statistical Relational Models

R-1.-........?

Social

Network

Why Statistical Relational Models?

- Probabilistic graphical models
* Not very expressive Rules of chess in $\sim 100,000$ pages
- Quantify uncertainty and noise
- Relational representations
- Very expressive Rules of chess in 1 page
- Relational data is everywhere
* Hard to express uncertainty
\rightarrow Need probability distribution over databases

Markov Logic Networks (MLNs)

- Weighted First-Order Logic

Weight~Probability FOL Formula
3.14 Smokes(x) ^Friends(x,y) \Rightarrow Smokes(y)

- Ground atom/tuple = random variable in \{true,false\} e.g., Smokes(Alice), Friends(Alice,Bob), etc.
- Ground formula = factor in propositional factor graph

Statistical Relational Models

Reasoning about Statistical Models: Probabilistic Inference

- Model:
0.7 Actor(a) $\Rightarrow \neg \operatorname{Director}(\mathrm{a})$
1.2 Director $(a) \Rightarrow \neg$ WorkedFor (a, b)
1.4 InMovie(m,a) ^ WorkedFor $(a, b) \Rightarrow \operatorname{InMovie}(m, b)$
- Inference query:
- Given database tables for Actor, Director, WorkedFor

Actor(Brando), Actor(Cruise), Director(Coppola), WorkedFor(Brando, Coppola), etc.

- What is the probability of each tuple in table InMovie? $\operatorname{Pr}(\operatorname{InMovie}($ GodFather, Brando) $)=$?
- What is the most likely table for InMovie?

What about Probabilistic Databases?

- Tuple-independent probabilistic databases

Prob	Actor	Prob WorkedFor		
0.9	Brando	0.9	Brando	Coppola
0.8	Cruise	0.2	Coppola	Brando
0.1	Coppola	0.1	Cruise	Coppola

- Also a distribution over deterministic databases
- Different purpose (query seen data vs. generalize to unseen data)
- Underlying reasoning task identical: Weighted (First-Order) Model Counting

Overview

1. What are statistical relational models?
2. What is lifted inference?
3. How does lifted inference work?
4. Theoretical insights
5. Practical applications

A Simple Reasoning Problem

- 52 playing cards
- Let us ask some simple questions

A Simple Reasoning Problem

A Simple Reasoning Problem

Probability 1/13

A Simple Reasoning Problem

A Simple Reasoning Problem

Probability $1 / 4$

A Simple Reasoning Problem

A Simple Reasoning Problem

Probability 1/2

A Simple Reasoning Problem

A Simple Reasoning Problem

Probability 13/51

Automated Reasoning

Let us automate this:

1. Probabilistic propositional model (factor graph)

2. Probabilistic inference algorithm

Reasoning in Propositional Models

tree

graph

graph

A key result: Treewidth Why?

Reasoning in Propositional Models

tree

graph

graph

A key result: Treewidth
Why? Conditional Independence

Is There Conditional Independence?

Probability 13/51
$\operatorname{Pr}($ Card52 | Card1, Card2 $) \stackrel{?}{=} \operatorname{Pr}($ Card52 | Card1 $)$

Is There Conditional Independence?

Probability 12/50
$\operatorname{Pr}($ Card52 | Card1, Card2, Card3 $) \stackrel{?}{=} \operatorname{Pr}($ Card52 | Card1, Card2)

Is There Conditional Independence?

Probability 12/49

Automated Reasoning

Let us automate this:

1. Probabilistic propositional model is fully connected!

2. Probabilistic inference algorithm (VE) builds a table with 13^{52} rows (or equivalent)

What's Going On Here?

Probability 13/51

What's Going On Here?

Probability $13 / 51$

What's Going On Here?

Probability 13/51

Tractable Probabilistic Inference

Which property makes inference tractable?

- Traditional belief: Independence (conditional/contextual)
- What's going on here?
- Symmetry
- Exchangebility

\Rightarrow Lifted Inference

Automated Reasoning

Let us automate this:

- Relational model

$$
\begin{aligned}
& \forall p, x, y, \operatorname{Card}(p, x) \wedge \operatorname{Card}(p, y) \Rightarrow x=y \\
& \forall c, x, y, \operatorname{Card}(x, c) \wedge \operatorname{Card}(y, c) \Rightarrow x=y
\end{aligned}
$$

- Lifted probabilistic inference algorithm

Other Examples of Lifted Inference

- First-Order resolution
$\forall x, \operatorname{Human}(x) \Rightarrow \operatorname{Mortal}(x)$
$\forall x, \operatorname{Greek}(x) \Rightarrow \operatorname{Human}(x)$
then
$\forall x, \operatorname{Greek}(x) \Rightarrow \operatorname{Mortal}(x)$

Other Examples of Lifted Inference

- First-Order resolution
- Reasoning about populations

We are investigating a rare disease. The disease is more rare in women, presenting only in one in every two billion women and one in every billion men. Then, assuming there are 3.4 billion men and 3.6 billion women in the world, the probability that more than five people have the disease is

$$
\begin{gathered}
1-\sum_{n=0}^{5} \sum_{f=0}^{n}\binom{3.6 \cdot 10^{9}}{f}\left(1-0.5 \cdot 10^{-9}\right)^{3.6 \cdot 10^{9}-f}\left(0.5 \cdot 10^{-9}\right)^{f} \\
\times\binom{ 3.4 \cdot 10^{9}}{(n-f)}\left(1-10^{-9}\right)^{3.4 \cdot 10^{9}-(n-f)}\left(10^{-9}\right)^{(n-f)}
\end{gathered}
$$

Relational Representations

- Statistical relational model (e.g., MLN)

```
3.14 FacultyPage(x) ^ Linked(x,y) = CoursePage(y)
```

- As a probabilistic graphical model:
- 26 pages, 728 random variables, 676 factors
- 1000 pages, 1,002,000 random variables, 1,000,000 factors
- Highly intractable?

Lifted inference in milliseconds!

A Formal Definition of Lifting

- Informal

Exploit symmetries, Reason at first-order level, Reason about groups of objects, Scalable inference

- Formal Definition: Domain-lifted inference

Probabilistic inference runs in time polynomial in the number of objects in the domain.

- polynomial in \#people, \#webpages, \#cards
- not polynomial in \#predicates, \#formulas, \#logical variables

A Formal Definition of Lifting

- Informal

Exploit symmetries, Reason at first-order level, Reason about groups of objects, Scalable inference

- Formal Definition: Domain-lifted inference

Overview

1. What are statistical relational models?
2. What is lifted inference?
3. How does lifted inference work?
4. Theoretical insights
5. Practical applications

Lifted Algorithms (in the Al community)

- Exact Probabilistic Inference
- First-Order Variable Elimination [Poole-IJCA103, Braz-ICAA05, Milch-AAA108, Taghipour-JAR13]
- First-Order Knowledge Compilation [vdB-Idcal11, vde-NIPS11, vab-AAAl12, vdB-Thesis13]
- Probabilistic Theorem Proving [Gogate-Val11]
- Approximate Probabilistic Inference
- Lifted Belief Propagation JJaimovich-UA107, Singla-AAA08, Kersting-UA109]
- Lifted Bisimulation/Mini-buckets [Sen-vldbob, Sen-UA109]
- Lifted Importance Sampling [Gogate-UA111, Gogate-AAA112]
- Lifted Relax, Compensate \& Recover (Generalized BP) [vab-Ual12]
- Lifted MCMC [Niepert-UAA12, Nepert-AAA13, Venugopal-IIIS 12]
- Lifted Variational Inference [Choi-UA112, Bui-Staral12]
- Lifted MAP-LP [miadenov-AITTATS14, Apsel-AAA114]
- Special-Purpose Inference:
- Lifted Kalman Filter [Ahmadi-ICAA11, Choi-ICCA111]
- Lifted Linear Programming [Madenov-AISTATS12]

Lifted Algorithms (in the Al community)

- Exact Probabilistic Inference
- First-Order Variable Elimination [Poole-IJCA103, Braz-ICAA05, Milch-AAA108, Taghipur-JARR13]
- First-Order Knowledge Compilation ${ }_{\text {NvdB-ICAA11, VdB-NIPS11, VdB-AAAI12, vdB-Thesis13] }}$
- Probabilistic Theorem Proving [cogate-Ual11]
- Approximate Probabilistic Inference
- Lifted Belief Propagation JJaimovich-UA107, Singla-AAA10, , Kesting-UA109]
- Lifted Bisimulation/Mini-buckets [Sen-vLDbob, Sen-UA009]
- Lifted Importance Sampling [gogate-UA111, Gogate-AAA112]
- Lifted Relax, Compensate \& Recover (Generalized BP) [vdb-Ual12]
- Lifted MCMC [Niepert-UA112, Niepert-AAA13, Venugopal-IIIPS12]
- Lifted Variational Inference [Choi-UA112, Bui-Staral12]
- Lifted MAP-LP [midenov-AIITTATS14, Apsel-AAA114]
- Special-Purpose Inference:
- Lifted Kalman Filter [Ahmadi-ICAA11, Choi-ICCA111]
- Lifted Linear Programming [Madenov-AISTATS12]

Assembly Language for Lifted Probabilistic Inference

Computing conditional probabilities with:

- Parfactor graphs
- Markov logic networks
- Probabilistic datalog/logic programs
- Probabilistic databases
- Relational Bayesian networks

All reduces to
weighted (first-order) model counting

Weighted First-Order Model Counting

A vocabulary

Possible worlds
Logical interpretations

Weighted First-Order Model Counting

A logical theory

Interpretations that satisfy the theory Models

Weighted First-Order Model Counting

A logical theory

Weighted First-Order Model Counting

A logical theory and a weight function for predicates

	$\begin{aligned} & \text { O} \\ & \text { O} \\ & \stackrel{0}{0} \\ & \stackrel{0}{0} \\ & \stackrel{0}{0} \\ & \dot{\omega} \end{aligned}$			$\begin{aligned} & \text { तo } \\ & \text { O } \end{aligned}$	$\begin{aligned} & \frac{\pi}{6} \\ & \frac{0}{0} \\ & 0 \end{aligned}$
0	0	0	0	1	$2 \cdot 2 \cdot 1 \cdot 1$
!	:	:	\vdots	:	:
1	0	1	0	0	0
!	:	:	\vdots	!	!
1	1	1	1	1	$1 \cdot 1 \cdot 4 \cdot 4$

$$
\begin{array}{r}
\text { Smokes } \rightarrow 1 \\
\neg \text { Smokes } \rightarrow 2 \\
\text { Friends } \rightarrow 4 \\
\neg \text { Friends } \rightarrow 1
\end{array}
$$

Weighted First-Order Model Counting

A logical theory and a weight function for predicates

Example:
 First-Order Model Counting

1. Logical sentence

Stress(Alice) \Rightarrow Smokes(Alice)

Domain
Alice

Example: First-Order Model Counting

1. Logical sentence

Stress(Alice) \Rightarrow Smokes(Alice)

Domain
Alice

Stress(Alice)	Smokes(Alice)	Formula
0	0	1
0	1	1
1	0	0
1	1	1

Example: First-Order Model Counting

1. Logical sentence

Stress(Alice) \Rightarrow Smokes(Alice)
$\rightarrow 3$ models

Example: First-Order Model Counting

1. Logical sentence

Stress(Alice) \Rightarrow Smokes(Alice)

Domain
Alice
$\rightarrow 3$ models
2. Logical sentence
$\forall x, \operatorname{Stress}(\mathrm{x}) \Rightarrow \operatorname{Smokes}(\mathrm{x})$
Domain
Alice

Example: First-Order Model Counting

1. Logical sentence

Stress(Alice) \Rightarrow Smokes(Alice)

Domain
Alice
$\rightarrow 3$ models
2. Logical sentence
$\forall x, \operatorname{Stress}(\mathrm{x}) \Rightarrow \operatorname{Smokes}(\mathrm{x})$
$\rightarrow 3$ models

Example:
 First-Order Model Counting

2. Logical sentence
$\forall x, \operatorname{Stress}(\mathrm{x}) \Rightarrow \operatorname{Smokes}(\mathrm{x})$
$\rightarrow 3$ models

Example:
 First-Order Model Counting

2. Logical sentence
$\forall x, \operatorname{Stress}(x) \Rightarrow \operatorname{Smokes}(x)$
$\rightarrow 3$ models
3. Logical sentence
$\forall x, \operatorname{Stress}(\mathrm{x}) \Rightarrow \operatorname{Smokes}(\mathrm{x})$

Domain
Alice

Domain
n people

Example:
 First-Order Model Counting

2. Logical sentence
$\forall x, \operatorname{Stress}(\mathrm{x}) \Rightarrow \operatorname{Smokes}(\mathrm{x})$
$\rightarrow 3$ models
3. Logical sentence
$\forall x, \operatorname{Stress}(\mathrm{x}) \Rightarrow \operatorname{Smokes}(\mathrm{x})$

Domain
Alice

Domain
n people
$\rightarrow 3^{n}$ models

Example:
 First-Order Model Counting

3. Logical sentence
$\forall x$, Stress $(\mathrm{x}) \Rightarrow \operatorname{Smokes}(\mathrm{x})$

Domain
n people
$\rightarrow 3^{n}$ models

Example: First-Order Model Counting

3. Logical sentence
$\forall x, \operatorname{Stress}(\mathrm{x}) \Rightarrow$ Smokes (x)
$\rightarrow 3^{n}$ models
4. Logical sentence

$$
\forall y, \text { ParentOf(y) } \wedge \text { Female } \Rightarrow \text { MotherOf(y) }
$$

Domain
n people

Domain
n people

Example: First-Order Model Counting

3. Logical sentence
$\forall x, \operatorname{Stress}(\mathrm{x}) \Rightarrow \operatorname{Smokes}(\mathrm{x})$
$\rightarrow 3^{n}$ models
4. Logical sentence

$$
\forall y, \text { ParentOf(y) } \wedge \text { Female } \Rightarrow \text { MotherOf }(\mathrm{y})
$$

Domain
n people

Domain n people
if Female:
$\forall y$, ParentOf(y) \Rightarrow MotherOf(y)

Example: First-Order Model Counting

3. Logical sentence
$\forall x, \operatorname{Stress}(\mathrm{x}) \Rightarrow \operatorname{Smokes}(\mathrm{x})$
$\rightarrow 3^{n}$ models
4. Logical sentence

$$
\forall y, \text { ParentOf(y) } \wedge \text { Female } \Rightarrow \text { MotherOf }(\mathrm{y})
$$

Example: First-Order Model Counting

3. Logical sentence
$\forall x, \operatorname{Stress}(\mathrm{x}) \Rightarrow \operatorname{Smokes}(\mathrm{x})$
$\rightarrow 3^{n}$ models
4. Logical sentence

$$
\forall y, \text { ParentOf(y) } \wedge \text { Female } \Rightarrow \text { MotherOf }(\mathrm{y})
$$

Domain
n people

Domain

n people
$\rightarrow\left(3^{n}+4^{n}\right)$ models

Example: First-Order Model Counting

4. Logical sentence
$\forall y$, ParentOf(y) \wedge Female \Rightarrow MotherOf(y)
$\rightarrow\left(3^{n}+4^{n}\right)$ models

Domain
n people

Example: First-Order Model Counting

4. Logical sentence

$$
\forall y, \text { ParentOf(y) } \wedge \text { Female } \Rightarrow \text { MotherOf(y) }
$$

$\rightarrow\left(3^{n}+4^{n}\right)$ models

Domain
n people
5. Logical sentence

Domain
$\forall x, y, \operatorname{ParentOf}(x, y) \wedge$ Female $(x) \Rightarrow \operatorname{MotherOf}(x, y)$

Example: First-Order Model Counting

4. Logical sentence

$$
\forall y, \text { ParentOf(y) } \wedge \text { Female } \Rightarrow \text { MotherOf(y) }
$$

$\rightarrow\left(3^{n}+4^{n}\right)$ models

Domain
n people
5. Logical sentence

Domain
$\forall x, y, \operatorname{ParentOf}(x, y) \wedge$ Female $(x) \Rightarrow$ MotherOf (x, y)
n people
$\rightarrow\left(3^{n}+4^{n}\right)^{n}$ models

Example: First-Order Model Counting

6. Logical sentence
$\forall x, y, \operatorname{Smokes}(x) \wedge$ Friends $(x, y) \Rightarrow \operatorname{Smokes}(y)$

Domain

n people

Example: First-Order Model Counting

6. Logical sentence
$\forall x, y, \operatorname{Smokes}(x) \wedge$ Friends $(x, y) \Rightarrow \operatorname{Smokes}(y)$

Domain

 n people- If we know precisely who smokes, and there are k smokers

Example: First-Order Model Counting

6. Logical sentence

$$
\forall x, y, \operatorname{Smokes}(x) \wedge \text { Friends }(x, y) \Rightarrow \text { Smokes }(y)
$$

Domain

- If we know precisely who smokes, and there are k smokers

Database:
Smokes(Alice) $=1$
Smokes(Bob) = 0
Smokes(Charlie) $=0$
Smokes(Dave) = 1
Smokes(Eve) = 0

Example: First-Order Model Counting

6. Logical sentence

$$
\forall x, y, \operatorname{Smokes}(x) \wedge \text { Friends }(x, y) \Rightarrow \text { Smokes }(y)
$$

Domain

- If we know precisely who smokes, and there are k smokers

```
Database:
Smokes(Alice) = 1
Smokes(Bob) = 0
Smokes(Charlie) = 0
Smokes(Dave) = 1
Smokes(Eve) = 0
```


Example: First-Order Model Counting

6. Logical sentence

$$
\forall x, y, \operatorname{Smokes}(x) \wedge \text { Friends }(x, y) \Rightarrow \text { Smokes }(y)
$$

Domain

- If we know precisely who smokes, and there are k smokers

Database:
Smokes(Alice) $=1$
Smokes(Bob) = 0
Smokes(Charlie) $=0$
Smokes(Dave) = 1
Smokes(Eve) $=0$

Example: First-Order Model Counting

6. Logical sentence

$$
\forall x, y, \operatorname{Smokes}(x) \wedge \text { Friends }(x, y) \Rightarrow \text { Smokes }(y)
$$

Domain

- If we know precisely who smokes, and there are k smokers

```
Database:
Smokes(Alice) = 1
Smokes(Bob) = 0
Smokes(Charlie) = 0
Smokes(Dave) = 1
Smokes(Eve) = 0
```


Example: First-Order Model Counting

6. Logical sentence
$\forall x, y, \operatorname{Smokes}(x) \wedge$ Friends $(x, y) \Rightarrow \operatorname{Smokes}(y)$

Domain

 n people- If we know precisely who smokes, and there are k smokers
$\rightarrow 2^{n^{2}-k(n-k)}$ models

Example: First-Order Model Counting

6. Logical sentence
$\forall x, y, \operatorname{Smokes}(x) \wedge$ Friends $(x, y) \Rightarrow \operatorname{Smokes}(y)$

Domain

- If we know precisely who smokes, and there are k smokers

$$
\rightarrow \quad 2^{n^{2}-k(n-k)} \text { models }
$$

- If we know that there are k smokers

Example: First-Order Model Counting

6. Logical sentence
$\forall x, y, \operatorname{Smokes}(x) \wedge$ Friends $(x, y) \Rightarrow$ Smokes (y)

Domain

- If we know precisely who smokes, and there are k smokers

$$
\rightarrow \quad 2^{n^{2}-k(n-k)} \text { models }
$$

- If we know that there are k smokers

$$
\rightarrow\binom{n}{k} 2^{n^{2}-k(n-k)} \quad \text { models }
$$

Example: First-Order Model Counting

6. Logical sentence
$\forall x, y, \operatorname{Smokes}(x) \wedge$ Friends $(x, y) \Rightarrow$ Smokes (y)

Domain

- If we know precisely who smokes, and there are k smokers

$$
\rightarrow \quad 2^{n^{2}-k(n-k)} \text { models }
$$

- If we know that there are k smokers

$$
\rightarrow\binom{n}{k} 2^{n^{2}-k(n-k)} \quad \text { models }
$$

- In total

Example: First-Order Model Counting

6. Logical sentence

$$
\forall x, y, \text { Smokes }(x) \wedge \text { Friends }(x, y) \Rightarrow \text { Smokes }(y)
$$

- If we know precisely who smokes, and there are k smokers

$$
\rightarrow 2^{n^{2}-k(n-k)} \text { models }
$$

- If we know that there are k smokers

$$
\rightarrow\binom{n}{k} 2^{n^{2}-k(n-k)} \quad \text { models }
$$

- In total

$$
\rightarrow \quad \sum_{k=0}^{n}\binom{n}{k} 2^{n^{2}-k(n-k)} \quad \text { models }
$$

The Full Pipeline

MLN 3.14 Smokes(x) ^Friends (x,y) \Rightarrow Smokes(y)

The Full Pipeline

MLN 3.14 Smokes $(x) \wedge$ Friends $(x, y) \Rightarrow$ Smokes (y)
\downarrow
$\forall x, y, F(x, y) \Leftrightarrow[$ Smokes $(x) \wedge$ Friends $(x, y) \Rightarrow$ Smokes (y)]
Relational Logic

The Full Pipeline

The Full Pipeline

$$
\forall x, y, F(x, y) \Leftrightarrow[\text { Smokes }(x) \wedge \text { Friends }(x, y) \Rightarrow \text { Smokes }(y)]
$$

Relational Logic

First-Order d-DNNF Circuit

The Full Pipeline

First-Order d-DNNF Circuit

Smokes $\rightarrow 1$
\neg Smokes $\rightarrow 1$
Friends $\rightarrow 1$
\rightarrow Friends $\rightarrow 1$
F $\rightarrow \exp (3.14)$
$\neg F \rightarrow 1$
Weight Function

Alice
Bob
Charlie
Domain

The Full Pipeline

First-Order d-DNNF Circuit

Smokes $\rightarrow 1$
\neg Smokes $\rightarrow 1$
Friends $\rightarrow 1$
\neg Friends $\rightarrow 1$
$F \rightarrow \exp (3.14)$
$\neg F \rightarrow 1$
Weight Function

Weighted First-Order Model Count is 1479.85
Domain

Circuit evaluation is polynomial in domain size!

Assembly Language for Lifted Probabilistic Inference

Computing conditional probabilities with:

- Parfactor graphs
- Markov logic networks
- Probabilistic datalog/logic programs
- Probabilistic databases
- Relational Bayesian networks

All reduces to
weighted (first-order) model counting

Overview

1. What are statistical relational models?
2. What is lifted inference?
3. How does lifted inference work?
4. Theoretical insights
5. Practical applications

Liftability Framework

- Domain-lifted algorithms run in time polynomial in the domain size (~data complexity).
- A class of inference tasks C is liftable iff there exists an algorithm that
- is domain-lifted and
- solves all problems in C.
- Such an algorithm is complete for C .
- Liftability depends on the type of task.

Liftable Classes

(of model counting problems)

Liftable Classes

Positive Liftability Result

Positive Liftability Result

Properties

Positive Liftability Result

Positive Liftability Result

"Smokers are more likely to be friends with other smokers." "Colleagues of the same age are more likely to be friends."
"People are either family or friends, but never both."
"If X is family of Y, then Y is also family of X."
"If X is a parent of Y, then Y cannot be a parent of X."

Positive Liftability Result

"Smokers are more likely to be friends with other smokers." "Colleagues of the same age are more likely to be friends."
"People are either family or friends, but never both."
"If X is family of Y, then Y is also family of X."
"If X is a parent of Y , then Y cannot be a parent of X ."

Complexity in Size of "Evidence"

- Consider a model liftable for model counting:

$$
\text { 3.14 FacultyPage }(x) \wedge \text { Linked }(x, y) \Rightarrow \text { CoursePage }(y)
$$

- Given database DB , compute $\mathrm{P}(\mathrm{Q} \mid \mathrm{DB})$. Complexity in DB size?
- Evidence on unary relations: Efficient

FacultyPage("google.com")=0, CoursePage("coursera.org")=1, ...

- Evidence on binary relations: \#P-hard
Linked("google.com","gmail.com")=1, Linked("google.com","coursera.org")=0

Intuition: Binary evidence breaks symmetries

- Evidence on binary relations of Boolean rank < k: Efficient
- Safe monotone or type-1 CNFs: Any evidence is Efficient

Overview

1. What are statistical relational models?
2. What is lifted inference?
3. How does lifted inference work?
4. Theoretical insights
5. Practical applications

Applications of Lifted Inference

- Many applications of SRL
- Computational biology
- Social network analysis
- Robot mapping
- Activity recognition
- Personal assistants
- Natural language processing
- Information extraction
- Entity resolution
- Link prediction
- Collective classification
- Web mining
- etc.
- Plug in (approximate) lifted inference algorithm
- Notable examples in lifted inference literature
- Content distribution [Kersting-AAAl10]
- Groundwater analysis [Choi-UAl12]
- Video segmentation [Nath-StarAl10]

Lifted Weight Learning

Given: a set of first-order logic formulas a set of training databases

Learn: the associated maximum likelihood weights

Learning Time - Synthetic

w Smokes(x) ^Friends(x,y) \Rightarrow Smokes(y)

Learns a model over 900,030,000 random variables

Lifted Structure Learning

Given: a set of training databases
Learn: a set of first-order logic formulas the associated maximum likelihood weights

	IMDb			UWCSE		
	$B+P L L$	$B+L W L$	LSL	B+PLL	B+LWL	LSL
Fold 1	-548	-378	$\mathbf{- 3 0 6}$	$-1,860$	$-1,524$	$\mathbf{- 1 , 4 7 7}$
Fold 2	-689	-390	$\mathbf{- 3 0 9}$	-594	-535	$\mathbf{- 5 1 1}$
Fold 3	$-1,157$	-851	$\mathbf{- 7 3 3}$	$-1,462$	$-1,245$	$\mathbf{- 1 , 1 6 7}$
Fold 4	-415	-285	$\mathbf{- 2 2 4}$	$-2,820$	$-2,510$	$\mathbf{- 2 , 4 4 2}$
Fold 5	-413	-267	$\mathbf{- 2 1 6}$	$-2,763$	$-2,357$	$\mathbf{- 2 , 2 2 7}$

"But my data has no symmetries?"

1. All statistical relational models have abundant symmetries
2. Some tasks do not require symmetries in data Weight learning, partition functions, single marginals, etc.
3. Symmetries of computation are not symmetries of data Belief propagation and MAP-LP require weaker automorphisms
4. Over-symmetric evidence approximation

- Approximate $\operatorname{Pr}(\mathrm{Q} \mid \mathrm{DB})$ by $\operatorname{Pr}(\mathrm{Q\mid DB}$ ')
- DB' has more symmetries than DB, is more liftable
- Remove weak asymmetries, e.g. Low-rank matrix factorization
\rightarrow Very high speed improvements
\rightarrow Low approximation error

Overview

1. What are statistical relational models?
2. What is lifted inference?
3. How does lifted inference work?
4. Theoretical insights
5. Practical applications

Conclusions

- Lifted inference is frontier of AI, AR, ML and databases

A radically new reasoning paradigm

- No question that we need
- relational databases and logic
- probabilistic models and learning
- Many theoretical open problems - fertile ground
- It works in practice
- Long-term outlook: probabilistic inference exploits
- ~1988: conditional independence
- ~2000: contextual independence (local structure)
- ~201?: symmetries

References

[Richardson-MLJ06]

Richardson, M., \& Domingos, P. (2006). Markov logic networks. Machine learning, 62(1-2), 107-136.

[Suciu-Book11]

Suciu, D., Olteanu, D., Ré, C., \& Koch, C. (2011). Probabilistic databases. Synthesis Lectures on Data Management, 3(2), 1-180.

[Jha-TCS13]

Jha, A., \& Suciu, D. (2013). Knowledge compilation meets database theory: compiling queries to decision diagrams. Theory of Computing Systems, 52(3), 403-440.

[Olteanu-SUM08]

Olteanu, D., \& Huang, J. (2008). Using OBDDs for efficient query evaluation on probabilistic databases. In Scalable Uncertainty Management (pp. 326-340). Springer Berlin Heidelberg.

[Gribkoff-UAI14]

Gribkoff, E., Van den Broeck, G., \& Suciu, D. (2014). Understanding the Complexity of Lifted Inference and Asymmetric Weighted Model Counting. Proceedings of Uncertainty in Al.
[Gogate-UAI11]
Gogate, V., \& Domingos, P. (2012). Probabilistic theorem proving. Proceedings of Uncertainty in AI.

[VdB-IJCAI11]

Van den Broeck, G., Taghipour, N., Meert, W., Davis, J., \& De Raedt, L. (2011, July). Lifted probabilistic inference by first-order knowledge compilation. In Proceedings of the Twenty-Second international joint conference on Artificial Intelligence (pp. 2178-2185). AAAI Press.

References

[Niepert-AAAI14]

Niepert, M., \& Van den Broeck, G. (2014). Tractability through exchangeability: A new perspective on efficient probabilistic inference. Proceedings of AAAI.

[VdB-NIPS11]

Van den Broeck, G. (2011). On the completeness of first-order knowledge compilation for lifted probabilistic inference. In Advances in Neural Information Processing Systems (pp. 1386-1394).

[Jaeger-StarAl12]

Jaeger, M., \& Van den Broeck, G. (2012, August). Liftability of probabilistic inference: Upper and lower bounds. In Proceedings of the 2nd International Workshop on Statistical Relational AI.

[Poole-IJCAI03]

Poole, D. (2003, August). First-order probabilistic inference. In IJCAI (Vol. 3, pp. 985-991).

[Braz-IJCAI05]

Braz, R., Amir, E., \& Roth, D. (2005, July). Lifted first-order probabilistic inference. In Proceedings of the 19th international joint conference on Artificial intelligence (pp. 1319-1325).
[Milch-AAAI08]
Milch, B., Zettlemoyer, L. S., Kersting, K., Haimes, M., \& Kaelbling, L. P. (2008, July). Lifted Probabilistic Inference with Counting Formulas. In AAAI (Vol. 8, pp. 1062-1068).

[Taghipour-JAIR13]

Taghipour, N., Fierens, D., Davis, J., \& Blockeel, H. (2014). Lifted variable elimination: Decoupling the operators from the constraint language. JAIR

References

[VdB-AAAI12]

Van den Broeck, G., \& Davis, J. (2012, July). Conditioning in First-Order Knowledge Compilation and Lifted Probabilistic Inference. In AAAI.

[VdB-Thesis13]

Van den Broeck, G. (2013). Lifted Inference and Learning in Statistical Relational Models (Doctoral dissertation, Ph. D. Dissertation, KU Leuven).
[Jaimovich-UAI07]
Jaimovich, A., Meshi, O., \& Friedman, N. (2007). Template based inference in symmetric relational Markov random fields. Proceedings of Uncertainty in AI

[Singla-AAAI08]

Singla, P., \& Domingos, P. (2008, July). Lifted First-Order Belief Propagation. In AAAI (Vol. 8, pp. 1094-1099).

[Kersting-UAI09]

Kersting, K., Ahmadi, B., \& Natarajan, S. (2009, June). Counting belief propagation. In Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence (pp. 277-284). AUAI Press.

[Sen-VLDB08]

Sen, P., Deshpande, A., \& Getoor, L. (2008). Exploiting shared correlations in probabilistic databases. Proceedings of the VLDB Endowment, 1(1), 809-820.

[Sen-UAI09]

Sen, P., Deshpande, A., \& Getoor, L. (2009, June). Bisimulation-based approximate lifted inference. In Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence (pp. 496-505). AUAI Press.

References

[Gogate-AAAI12]

Gogate, V., Jha, A. K., \& Venugopal, D. (2012, July). Advances in Lifted Importance Sampling. In AAAI.

[VdB-UAl12]

Van den Broeck, G., Choi, A., \& Darwiche, A. (2012). Lifted relax, compensate and then recover: From approximate to exact lifted probabilistic inference. Proceedings of Uncertainty in AI
[Niepert-UAl12]
Niepert, M. (2012). Markov chains on orbits of permutation groups. Proceedings of Uncertainty in AI

[Niepert-AAAI13]

Niepert, M. (2013). Symmetry-Aware Marginal Density Estimation. Proceedings of AAAI.

[Venugopal-NIPS12]

Venugopal, D., \& Gogate, V. (2012). On lifting the gibbs sampling algorithm. In Advances in Neural Information Processing Systems (pp. 1655-1663).

[Bui-StarAl12]

Bui, H. H., Huynh, T. N., \& Riedel, S. (2012). Automorphism groups of graphical models and lifted variational inference. StarAI

[Choi-UAl12]

Choi, J., \& Amir, E. (2012). Lifted relational variational inference. Proceedings of Uncertainty in Al

[MIadenov-AISTATS14]

Mladenov, M., Kersting, K., \& Globerson, A. (2014). Efficient Lifting of MAP LP Relaxations Using k-Locality. In Proceedings of the Seventeenth International Conference on Artificial Intelligence and Statistics (pp. 623-632).

References

[Apsel-AAAl14]

Apsel, U., Kersting, K., \& Mladenov, M. (2014). Lifting Relational MAP-LPs using Cluster Signatures. Proceedings of AAAI

[Ahmadi-IJCAI11]

Ahmadi, B., Kersting, K., \& Sanner, S. (2011, July). Multi-evidence lifted message passing, with application to pagerank and the kalman filter. In IJCAI Proceedings-International Joint Conference on Artificial Intelligence (Vol. 22, No. 1, p. 1152).

[Choi-IJCAl11]

Choi, J., Guzman-Rivera, A., \& Amir, E. (2011, June). Lifted Relational Kalman Filtering. In IJCAI (pp. 20922099).
[Mladenov-AISTATS12]
Mladenov, M., Ahmadi, B., \& Kersting, K. (2012). Lifted linear programming. In International Conference on Artificial Intelligence and Statistics (pp. 788-797).

[VdB-KR14]

Van den Broeck, G., Meert, W., \& Darwiche, A. (2013). Skolemization for weighted first-order model counting. Proceedings of KR.

[Dalvi-JACM12]

Dalvi, N., \& Suciu, D. (2012). The dichotomy of probabilistic inference for unions of conjunctive queries. Journal of the ACM (JACM), 59(6), 30.
[Jaeger-TPLP12]
Jaeger, M. (2012). Lower complexity bounds for lifted inference. Theory and Practice of Logic Programming

References

[Bui-AAAl12]

Bui, H. B., Huynh, T. N., \& de Salvo Braz, R. (2012). Exact Lifted Inference with Distinct Soft Evidence on Every Object. Proceedings of AAAI.

[VdB-NIPS13]

Van den Broeck, G., \& Darwiche, A. (2013). On the complexity and approximation of binary evidence in lifted inference. In Advances in Neural Information Processing Systems (pp. 2868-2876).
[Kersting-AAAI10]
Kersting, K., El Massaoudi, Y., Hadiji, F., \& Ahmadi, B. (2010). Informed Lifting for Message-Passing. Proceedings of AAAI.

[Nath-StarAl10]

Nath, A., \& Domingos, P. (2010). Efficient Lifting for Online Probabilistic Inference. In Statistical Relational Artificial Intelligence.

[Ahmadi-ECML12]

Ahmadi, B., Kersting, K., \& Natarajan, S. (2012). Lifted online training of relational models with stochastic gradient methods. In Machine Learning and Knowledge Discovery in Databases (pp. 585-600). Springer Berlin Heidelberg.

[VdB-StarAI13]

Van den Broeck, G., Meert, W., \& Davis, J. (2013). Lifted Generative Parameter Learning. In AAAI Workshop: Statistical Relational Artificial Intelligence.
[VanHaaren-LTPM14]
Van Haaren, J., Van den Broeck, G., Meert, W., \& Davis, J. (2014). Tractable Learning of Liftable Markob Logic Networks. In Learning Tractable Probabilistic Models.

Thanks!

