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Probabilistic Graphical Models:
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 Logical Relational Models

● Example: First-Order Logic

● Logical variables have domain of constants

e.g., x,y range over domain People = {Alice,Bob}

● Ground formula has no logical variables

e.g., Smokes(Alice)  ∧ Friends(Alice,Bob)  ⇒ Smokes(Bob) 

∀x,y, Smokes(x)  ∧ Friends(x,y)  ⇒ Smokes(y)

Atom Logical Variables

  

Formula
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∀x,y, Smokes(x) 
            ∧ Friends(x,y) 
               ⇒ Smokes(y)

 Logical Relational Models
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Why Statistical Relational Models?

● Probabilistic graphical models

Not very expressive 
Rules of chess in ~100,000 pages

Quantify uncertainty and noise

● Relational representations

Very expressive
Rules of chess in 1 page

Relational data is everywhere

Hard to express uncertainty

➔ Need probability distribution over databases



3.14    Smokes(x)  ∧ Friends(x,y)  ⇒ Smokes(y)

Markov Logic Networks (MLNs)
● Weighted First-Order Logic

● Ground atom/tuple = random variable in {true,false}
e.g., Smokes(Alice), Friends(Alice,Bob), etc.

● Ground formula = factor in propositional factor graph

Weight~Probability FOL Formula

Friends(Alice,Bob)       

Smokes(Alice)       Smokes(Bob)       

Friends(Bob,Alice)       

f
1

f
2

Friends(Alice,Alice)       Friends(Bob,Bob)       

f
3

f
4

[Richardson-MLJ06]



  

Statistical Relational Models

3.14  Smokes(x) 
            ∧ Friends(x,y) 
               ⇒ Smokes(y)

Propositional Relational
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Statistical

∀x,y, 
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 ⇒ Smokes(y)
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Network



Reasoning about Statistical Models: 
Probabilistic Inference

● Model:

● Inference query:
– Given database tables for Actor, Director, WorkedFor

 

– What is the probability of each tuple in table InMovie?

Pr(InMovie(GodFather, Brando)) = ?
– What is the most likely table for InMovie?

0.7  Actor(a)  ¬⇒ Director(a)
1.2  Director(a)  ¬⇒ WorkedFor(a,b)
1.4  InMovie(m,a)  ∧ WorkedFor(a,b)  ⇒ InMovie(m,b)

 Actor(Brando), Actor(Cruise), Director(Coppola),

 WorkedFor(Brando, Coppola), etc.



  

What about Probabilistic Databases?

● Tuple-independent probabilistic databases

● Also a distribution over deterministic databases
● Different purpose  (query seen data vs. generalize to unseen data)

● Underlying reasoning task identical:

Weighted (First-Order) Model Counting

Actor

Brando

Cruise

Coppola

Prob

0.9

0.8

0.1

WorkedFor

Brando

Coppola

Cruise

Prob

0.9

0.2

0.1

Coppola

Brando

Coppola

...

[Suciu-Book11, Jha-TCS13, Olteanu-SUM08, VdB-IJCAI11, Gogate-UAI11, Gribkoff-UAI14]
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A Simple Reasoning Problem

...

● 52 playing cards
● Let us ask some simple questions
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A Simple Reasoning Problem

...

?
Probability 13/51



Automated Reasoning

Let us automate this:

1. Probabilistic propositional model (factor graph)

2. Probabilistic inference algorithm



Reasoning in Propositional Models
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Reasoning in Propositional Models

A

B

D E

F
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C

D

F

A

B C

D E

F

tree graph graph

A key result: Treewidth
Why? Conditional Independence

Pr(A|C,E) = Pr(A|C) P(A|B,E,F) = P(A|B,E) P(A|B,E,F) ≠ P(A|B,E) 



Is There Conditional Independence?

...

?
Probability 13/51

Pr(Card52 | Card1, Card2)  Pr(Card52 | Card1)≟



...

Is There Conditional Independence?

?
Probability 12/50

Pr(Card52 | Card1, Card2, Card3)  Pr(Card52 | Card1, Card2)≟



...

Is There Conditional Independence?

?
Probability 12/49



Automated Reasoning

Let us automate this:

1. Probabilistic propositional model  
 is fully connected!

2. Probabilistic inference algorithm (VE) 
    builds a table with 1352 rows (or equivalent)

(artist's impression)



...

What's Going On Here?

?
Probability 13/51



What's Going On Here?

?
Probability 13/51
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What's Going On Here?

?
Probability 13/51

...



Tractable Probabilistic Inference

Which property makes inference tractable?
– Traditional belief: Independence (conditional/contextual)

– What's going on here?
● Symmetry
● Exchangebility

[Niepert-AAAI14]

 ⇒ Lifted Inference

...



Automated Reasoning

Let us automate this:
– Relational model

– Lifted probabilistic inference algorithm

∀p,x,y, Card(p,x)  ∧ Card(p,y)  ⇒ x = y
∀c,x,y, Card(x,c)  ∧ Card(y,c)  x⇒  = y



Other Examples of Lifted Inference

● First-Order resolution

                      then

∀x, Human(x)  ⇒ Mortal(x)
∀x, Greek(x)  ⇒ Human(x)

∀x, Greek(x)  ⇒ Mortal(x)



Other Examples of Lifted Inference

● First-Order resolution
● Reasoning about populations

We are investigating a rare disease. The disease is more rare in women, 
presenting only in one in every two billion women and one in every 
billion men. Then, assuming there are 3.4 billion men and 3.6 billion 
women in the world, the probability that more than five people have 
the disease is



Relational Representations

3.14  FacultyPage(x)  ∧ Linked(x,y)  ⇒ CoursePage(y)

● Statistical relational model (e.g., MLN)

● As a probabilistic graphical model:

– 26 pages, 728 random variables, 676 factors

– 1000 pages, 1,002,000 random variables, 
1,000,000 factors

● Highly intractable?

Lifted inference in milliseconds!



A Formal Definition of Lifting

● Informal

Exploit symmetries, Reason at first-order level, 
Reason about groups of objects, Scalable inference

● Formal Definition: Domain-lifted inference

 

– polynomial in #people, #webpages, #cards

– not polynomial in #predicates, #formulas, #logical variables

Probabilistic inference runs in time polynomial 
in the number of objects in the domain.

[VdB-NIPS11]



A Formal Definition of Lifting

● Informal

Exploit symmetries, Reason at first-order level, 
Reason about groups of objects, Scalable inference

● Formal Definition: Domain-lifted inference

 

[VdB-NIPS11, Jaeger-StarAI12]
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Lifted Algorithms (in the AI community)
● Exact Probabilistic Inference

– First-Order Variable Elimination [Poole-IJCAI03, Braz-IJCAI05, Milch-AAAI08, Taghipour-JAIR13]

– First-Order Knowledge Compilation [VdB-IJCAI11, VdB-NIPS11, VdB-AAAI12, VdB-Thesis13]

– Probabilistic Theorem Proving [Gogate-UAI11]

● Approximate Probabilistic Inference
– Lifted Belief Propagation [Jaimovich-UAI07, Singla-AAAI08, Kersting-UAI09]

– Lifted Bisimulation/Mini-buckets [Sen-VLDB08, Sen-UAI09]

– Lifted Importance Sampling [Gogate-UAI11, Gogate-AAAI12]

– Lifted Relax, Compensate & Recover (Generalized BP) [VdB-UAI12]

– Lifted MCMC [Niepert-UAI12, Niepert-AAAI13, Venugopal-NIPS12]

– Lifted Variational Inference [Choi-UAI12, Bui-StarAI12]

– Lifted MAP-LP [Mladenov-AISTATS14, Apsel-AAAI14]

● Special-Purpose Inference:
– Lifted Kalman Filter [Ahmadi-IJCAI11, Choi-IJCAI11]

– Lifted Linear Programming [Mladenov-AISTATS12]
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Assembly Language for 
Lifted Probabilistic Inference

Computing conditional probabilities with:

– Parfactor graphs
– Markov logic networks
– Probabilistic datalog/logic programs
– Probabilistic databases
– Relational Bayesian networks

All reduces to 
weighted (first-order) model counting

[VdB-IJCAI11, Gogate-UAI11, VdB-KR14, Gribkoff-UAI14]



Weighted First-Order Model Counting
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A logical theory

Interpretations that 
satisfy the theory
Models

Weighted First-Order Model Counting

∀x,y, Smokes(x)  ∧ Friends(x,y)  ⇒ Smokes(y)
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A logical theory

Weighted First-Order Model Counting

First-order model count
~ #SAT

∑
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∀x,y, Smokes(x)  ∧ Friends(x,y)  ⇒ Smokes(y)



A logical theory and a weight function for predicates

Weighted First-Order Model Counting
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A logical theory and a weight function for predicates

Weighted first-order 
model count
~ Partition function

∑

Weighted First-Order Model Counting
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Stress(Alice) Smokes(Alice) Formula

0 0 1

0 1 1

1 0 0

1 1 1
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The Full Pipeline

3.14    Smokes(x)  ∧ Friends(x,y)  ⇒ Smokes(y)

 ∀x,y, F(x,y)  [⇔  Smokes(x)  ∧ Friends(x,y)  ⇒ Smokes(y) ]

MLN

Relational Logic



The Full Pipeline

3.14    Smokes(x)  ∧ Friends(x,y)  ⇒ Smokes(y)

Smokes → 1
 ¬Smokes → 1
   Friends → 1
 ¬Friends → 1

 F → exp(3.14)
 ¬F → 1

 ∀x,y, F(x,y)  [⇔  Smokes(x)  ∧ Friends(x,y)  ⇒ Smokes(y) ]

MLN

Relational Logic

Weight Function



The Full Pipeline

 ∀x,y, F(x,y)  [⇔  Smokes(x)  ∧ Friends(x,y)  ⇒ Smokes(y) ]

Relational Logic

First-Order
d-DNNF Circuit
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First-Order d-DNNF Circuit

Smokes → 1
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 F → exp(3.14)
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Weight Function
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DomainWeighted First-Order Model Count is 1479.85



The Full Pipeline

First-Order d-DNNF Circuit

Smokes → 1
 ¬Smokes → 1
   Friends → 1
 ¬Friends → 1

 F → exp(3.14)
 ¬F → 1

Weight Function

Alice
Bob

Charlie

DomainWeighted First-Order Model Count is 1479.85

Circuit evaluation is polynomial in domain size!



Assembly Language for 
Lifted Probabilistic Inference

Computing conditional probabilities with:

– Parfactor graphs
– Markov logic networks
– Probabilistic datalog/logic programs
– Probabilistic databases
– Relational Bayesian networks

All reduces to 
weighted (first-order) model counting

[VdB-IJCAI11, Gogate-UAI11, VdB-KR14, Gribkoff-UAI14]
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Liftability Framework

● Domain-lifted algorithms run in time polynomial 
in the domain size (~data complexity).

● A class of inference tasks C is liftable iff there 
exists an algorithm that 
– is domain-lifted and 

– solves all problems in C. 

● Such an algorithm is complete for C.
● Liftability depends on the type of task.

[VdB-NIPS11, Jaeger-StarAI12]



Liftable Classes
(of model counting problems)
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[Jaeger-StarAI12,Jaeger-TPLP12 ]
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Positive Liftability Result

X Y

Smokes(x)

Gender(x)

Young(x)

Tall(x)

Smokes(y)

Gender(y)

Young(y)

Tall(y)

Friends(x,y)

Colleagues(x,y)

Family(x,y)

Classmates(x,y)

Properties PropertiesRelations



Positive Liftability Result

“Smokers are more likely to be friends with other smokers.”
“Colleagues of the same age are more likely to be friends.”

“People are either family or friends, but never both.”
“If X is family of Y, then Y is also family of X.”

“If X is a parent of Y, then Y cannot be a parent of X.”
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Positive Liftability Result

These models are all li
ftable! 

Inference in them scales well

with the number of people.

“Smokers are more likely to be friends with other smokers.”
“Colleagues of the same age are more likely to be friends.”

“People are either family or friends, but never both.”
“If X is family of Y, then Y is also family of X.”

“If X is a parent of Y, then Y cannot be a parent of X.”



Complexity in Size of “Evidence”

● Consider a model liftable for model counting:

 

● Given database DB, compute P(Q|DB). Complexity in DB size?

– Evidence on unary relations: Efficient

 
– Evidence on binary relations: #P-hard

  
Intuition: Binary evidence breaks symmetries

– Evidence on binary relations of Boolean rank < k: Efficient

– Safe monotone or type-1 CNFs: Any evidence is Efficient

FacultyPage("google.com")=0,  CoursePage("coursera.org")=1,  …

Linked("google.com","gmail.com")=1,  Linked("google.com","coursera.org")=0

3.14  FacultyPage(x)  ∧ Linked(x,y)  ⇒ CoursePage(y)

[VdB-AAAI12, Bui-AAAI12, VdB-NIPS13, Dalvi-JACM12, Gribkoff-UAI14]
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Applications of Lifted Inference

● Many applications of SRL

● Plug in (approximate) lifted inference algorithm
● Notable examples in lifted inference literature

– Content distribution [Kersting-AAAI10]

– Groundwater analysis [Choi-UAI12]

– Video segmentation [Nath-StarAI10]

● Computational biology
● Social network analysis
● Robot mapping
● Activity recognition
● Personal assistants
● Natural language processing

● Information extraction
● Entity resolution
● Link prediction
● Collective classification
● Web mining
● etc.



  

Lifted Weight Learning

Given: a set of first-order logic formulas
a set of training databases

Learn: the associated maximum likelihood weights

∧

∨

Compile formula into circuit1

2 Compute maximum likelihood weight W

3 Compute exact likelihood of the model

w  FacultyPage(x)  ∧ Linked(x,y)  ⇒ CoursePage(y)

[Jaimovich-UAI07, Ahmadi-ECML12, VdB-StarAI13]



Learning Time - Synthetic

Learns a model over 900,030,000 random variables

w    Smokes(x)  ∧ Friends(x,y)  ⇒ Smokes(y)



  

Lifted Structure Learning

Given: a set of training databases

Learn: a set of first-order logic formulas
the associated maximum likelihood weights

IMDb UWCSE

B+PLL B+LWL LSL B+PLL B+LWL LSL

Fold 1 -548 -378 -306 -1,860 -1,524 -1,477

Fold 2 -689 -390 -309 -594 -535 -511

Fold 3 -1,157 -851 -733 -1,462 -1,245 -1,167

Fold 4 -415 -285 -224 -2,820 -2,510 -2,442

Fold 5 -413 -267 -216 -2,763 -2,357 -2,227

[Jaimovich-UAI07, VanHaaren-LTPM14]



  

“But my data has no symmetries?”

1. All statistical relational models have abundant symmetries

2. Some tasks do not require symmetries in data

Weight learning, partition functions, single marginals, etc.

3. Symmetries of computation are not symmetries of data

Belief propagation and MAP-LP require weaker automorphisms

4. Over-symmetric evidence approximation
– Approximate Pr(Q|DB) by Pr(Q|DB')

– DB' has more symmetries than DB, is more liftable

– Remove weak asymmetries, e.g. Low-rank matrix factorization

➔Very high speed improvements

➔Low approximation error

[Kersting-UAI09, Mladenov-AISTATS14, VdB-NIPS13]
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Conclusions

● Lifted inference is frontier of AI, AR, ML and databases

A radically new reasoning paradigm

● No question that we need
– relational databases and logic

– probabilistic models and learning

● Many theoretical open problems – fertile ground
● It works in practice
● Long-term outlook: probabilistic inference exploits

– ~1988: conditional independence

– ~2000: contextual independence (local structure)

– ~201?: symmetries
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