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symmetry 

Lifted Inference 

• In AI: exploiting symmetries/exchangeability 

• Example: WebKB 

Domain:  

url ∈ { “google.com”, ”ibm.com”, “aaai.org”, … } 

Weighted clauses: 
 0.049 CoursePage(x) ^ Linked(x,y) => CoursePage(y) 
-0.031 FacultyPage(x) ^ Linked(x,y) => FacultyPage (y) 
...  
 0.235 HasWord(“Lecture",x)  => CoursePage(x) 
 0.048 HasWord(“Office",x)  => FacultyPage(x) 
... 

5000 more first-order sentences 



The State of Lifted Inference 

• UCQ database queries: solved 

PTIME in database size (when possible) 

• MLNs and related 

– Two logical variables: solved 

Partition function PTIME in domain size (always) 

– Three logical variables: #P1-hard 

• Bunch of great approximation algorithms 

• Theoretical connections to exchangeability 
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Problem: Prediction with Evidence 

• Add evidence on links: 

 

 

 
  

• Add evidence on words 

 

Linked(“google.com”, “gmail.com”) 
Linked(“google.com”, “aaai.org”) 
 

Linked(“ibm.com”, “watson.com”) 
Linked(“ibm.com”, “ibm.ca”) 

Symmetry google.com – ibm.com?      No! 

HasWord(“Android”, “google.com”) 
HasWord(“G+”, “google.com”) 

HasWord(“Blue”, “ibm.com”) 
HasWord(“Computing”, “ibm.com”) 

Symmetry google.com – ibm.com?      No! 



Complexity in Size of “Evidence” 

 Consider a model liftable for model counting: 

 
  

 

 Given database DB, compute P(Q|DB). Complexity in DB size? 

 Evidence on unary relations: Efficient 

 
  

 Evidence on binary relations: #P-hard 

 

 
 Intuition: Binary evidence breaks symmetries 

    Consequence: Lifted algorithms reduce to ground (also approx) 

3.14  FacultyPage(x) ∧ Linked(x,y) ⇒ CoursePage(y) 

FacultyPage("google.com")=0,  CoursePage("coursera.org")=1,  … 

Linked("google.com","gmail.com")=1,  Linked("google.com",“aaai.org")=0 

[Van den Broeck, Davis; AAAI’12, Bui et al., Dalvi and Suciu, etc.] 
 



Approach 

 Conditioning on binary evidence is hard 

 Conditioning on unary evidence is efficient 

 Solution: Represent binary evidence as unary 

 Matrix notation: 

 

 



Vector Product 
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Vector Product 

 Solution: Represent binary evidence as unary 

 Case 1: 

 

 

0 

0 

0 0 

1 

1 

1 1 



Vector Product 

 Solution: Represent binary evidence as unary 

 Case 1: 

 

 

0 

0 

0 0 

1 

1 

1 1 



Vector Product 

 Solution: Represent binary evidence as unary 

 Case 1: 

 

 

0 1 0 1 

1 0 0 1 



Matrix Product 

 Solution: Represent binary evidence as unary 

 Case 2: 
 
 
 
 
 
 

 

 

 



Matrix Product 

 Solution: Represent binary evidence as unary 

 Case 2: 
 
 
 
 
 
 

 
where 

 

 



Boolean Matrix Factorization 

 Decompose 

 

 

 In Boolean algebra, where 1+1=1 

 Minimum n is the Boolean rank 

 Always possible 

 



Matrix Product 

 Solution: Represent binary evidence as unary 

 Example: 
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Matrix Product 

 Solution: Represent binary evidence as unary 

 Example: 

 

 

Boolean rank n=3 



Theoretical Consequences 

 Theorem: 

    Complexity of computing Pr(q|e) in SRL is  
polynomial in |e|, when e has bounded  
Boolean rank. 

 

 Boolean rank  

 key parameter in the complexity of conditioning 

 says how much lifting is possible 

[Van den Broeck, Darwiche; NIPS’13] 
 



1. Find tree decomposition  
 

 
1. Perform inference 

 
 Exponential in (tree)width 

of decomposition 
 
 Polynomial in size of 

Bayesian network 

1. Find Boolean matrix 
factorization of evidence  
 

2. Perform inference  
 

 Exponential in Boolean rank 
of evidence 

 
 Polynomial in size of 

evidence database 
 Polynomial in domain size 

Probabilistic  
graphical models: 

SRL Models: 

Analogy with Treewidth in  
Probabilistic Graphical Models 
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Over-Symmetric Approximation 

 Approximate Pr(q|e) by Pr(q|e')  

Pr(q|e') has more symmetries, is more liftable 

 E.g.: Low-rank Boolean matrix factorization 

 

Boolean rank 3 



 Approximate Pr(q|e) by Pr(q|e')  

Pr(q|e') has more symmetries, is more liftable 

 E.g.: Low-rank Boolean matrix factorization 

 

Boolean rank 2 
approximation 

Over-Symmetric Approximation 



Over-Symmetric Approximations 

• OSA makes model more symmetric 

• E.g., low-rank Boolean matrix factorization 

Link (“aaai.org”, “google.com”) 
Link (“google.com”, “aaai.org”) 
Link (“google.com”, “gmail.com”) 
Link (“ibm.com”, “aaai.org”) 
 

  Link (“aaai.org”, “google.com”) 
  Link (“google.com”, “aaai.org”) 
- Link (“google.com”, “gmail.com”) 
+ Link (“aaai.org”, “ibm.com”) 
  Link (“ibm.com”, “aaai.org”) 
 

[Van den Broeck, Darwiche; NIPS’13] 

google.com and ibm.com become symmetric!  



Markov Chain Monte-Carlo 

Gibbs sampling or MC-SAT  

– Problem: slow convergence, one variable changed 

– One million random variables: need at least one 
million iteration to move between two states 

Lifted MCMC: move between symmetric states 



Lifted MCMC on WebKB 



Rank 1 Approximation 



Rank 2 Approximation 



Rank 5 Approximation 



Rank 10 Approximation 



Rank 20 Approximation 



Rank 50 Approximation 



Rank 75 Approximation 



Rank 100 Approximation 



Rank 150 Approximation 



Trend for Increasing Boolean Rank 



Best Case 
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Problem with OSAs 

• Approximation can be crude 

• Cannot converge to true distribution 

• Lose information about subtle differences 

– Real distribution 

 

 

– OSA distribution 

Pr(PageClass(“Faculty”, “http://.../~pedro/”)) = 0.47 
Pr(PageClass(“Faculty”, “http://.../~luc/”)) = 0.53 

Pr(PageClass(“Faculty”, “http://.../~pedro/”)) = 0.50 
Pr(PageClass(“Faculty”, “http://.../~luc/”)) = 0.50 



Approximate Symmetries 

• Exploit approximate symmetries: 

– Exact symmetry g: Pr(x) = Pr(xg) 

 E.g. Ising model  
 without external field 

– Approximate symmetry g: Pr(x) ≈ Pr(xg) 

 E.g. Ising model with external field 

P ≈ P 



Orbital Metropolis Chain: Algorithm 

• Given symmetry group G (approx. symmetries) 

• Orbit xG contains all states approx. symm. to x 

• In state x: 
  

1. Select y uniformly at random from xG 

2. Move from x to y with probability min
Pr 𝒚

Pr 𝒙
, 1  

3. Otherwise: stay in x (reject) 

4. Repeat 

 



Orbital Metropolis Chain: Analysis 

 Pr(.) is stationary distribution 

 Many variables change (fast mixing) 

 Few rejected samples:  

Pr 𝒚 ≈ Pr 𝒙 ⇒  min
Pr 𝒚

Pr 𝒙
, 1 ≈ 1 

 
Is this the perfect proposal distribution?  

 



Orbital Metropolis Chain: Analysis 

 Pr(.) is stationary distribution 

 Many variables change (fast mixing) 

 Few rejected samples:  

Pr 𝒚 ≈ Pr 𝒙 ⇒  min
Pr 𝒚

Pr 𝒙
, 1 ≈ 1 

 
Is this the perfect proposal distribution?  

 Not irreducible… 
 Can never reach 0100 from 1101. 

 



Lifted Metropolis-Hastings: Algorithm 

• Given an orbital Metropolis chain MS for Pr(.) 

• Given a base Markov chain MB that 

– is irreducible and aperiodic  

– has stationary distribution Pr(.) 

(e.g., Gibbs chain or MC-SAT chain) 

• In state x: 

1. With probability α, apply the kernel of MB 

2. Otherwise apply the kernel of MS 



Lifted Metropolis-Hastings: Analysis 

Theorem [Tierney 1994]: 
A mixture of Markov chains is irreducible and 
aperiodic if at least one of the chains is irreducible 
and aperiodic . 
 

  Pr(.) is stationary distribution 

  Many variables change (fast mixing) 

  Few rejected samples 

  Irreducible 

  Aperiodic 



Gibbs Sampling 

Lifted Metropolis- 
Hastings 
 
 
 
G = (X1 X2 )(X3 X4 ) 



Experiments: WebKB 

[Van den Broeck, Niepert; AAAI’15] 
 



Experiments: WebKB 
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Two problems: 
  

1. Lifted inference gives exponential speedups in 
symmetric graphical models.  
But what about real-world asymmetric problems? 

 

2. When there are many variables, MCMC is slow.  
How to sample quickly in large graphical models? 

 

One solution: Exploit approximate symmetries!  

Take-Away Message 



Open Problems 

• Find approximate symmetries 

– Principled (theory) 

– Is a type of machine learning? 

– During inference, not preprocessing? 

• Give guarantees on approximation 
quality/convergence speed 

• Plug in lifted inference from prob. databases 



Lots of Recent Activity 

• Singla, Nath, and Domingos (2014) 

• Venugopal and Gogate (2014) 

• Kersting et al. (2014) 



Thanks 
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