StarAI 2015

- Fifth International Workshop on Statistical Relational AI

- At the 31st Conference on Uncertainty in Artificial Intelligence (UAI) (right after ICML)
- In Amsterdam, The Netherlands, on July 16.
- Paper Submission: May 15
- Full, 6+1 pages
- Short, 2 page position paper or abstract

What we can't do (yet, well)?

Approximate Symmetries in Lifted Inference

Guy Van den Broeck

(on joint work with Mathias Niepert and Adnan Darwiche)

Overview

- Lifted inference in 2 slides
- Complexity of evidence
- Over-symmetric approximations
- Approximate symmetries
- Conclusions

Overview

- Lifted inference in 2 slides
- Complexity of evidence
- Over-symmetric approximations
- Approximate symmetries
- Conclusions

Lifted Inference

- In AI: exploiting symmetries/exchangeability
- Example: WebKB

```
                symmetry
Domain:
url \in { "google.com","ibm.com", "aaai.org", ... }
Weighted clauses:
0.049 CoursePage(x) ^ Linked(x,y) => CoursePage(y)
-0.031 FacultyPage(x) ^ Linked(x,y) => FacultyPage (y)
0.235 HasWord("Lecture",x) => CoursePage(x)
0.048 HasWord("Office",x) => FacultyPage(x)
```

5000 more first-order sentences

The State of Lifted Inference

- UCQ database queries: solved PTIME in database size (when possible)
- MLNs and related
- Two logical variables: solved

Partition function PTIME in domain size (always)

- Three logical variables: \#P ${ }_{1}$-hard
- Bunch of great approximation algorithms
- Theoretical connections to exchangeability

Overview

- Lifted inference in 2 slides
- Complexity of evidence
- Over-symmetric approximations
- Approximate symmetries
- Conclusions

Problem: Prediction with Evidence

- Add evidence on links:

```
Linked("google.com", "gmail.com")
Linked("google.com", "aaai.org")
```


Linked("ibm.com", "watson.com") Linked("ibm.com", "ibm.ca")

- Add evidence on words

```
HasWord("Android", "google.com")
HasWord("G+", "google.com")
    Symmetry google.com - ibm.com? No!
HasWord("Blue", "ibm.com")
HasWord("Computing", "ibm.com")
```


Complexity in Size of "Evidence"

- Consider a model liftable for model counting:

```
3.14 FacultyPage(x) ^ Linked(x,y) => CoursePage(y)
```

- Given database DB, compute $\mathrm{P}(\mathrm{Q} \mid \mathrm{DB})$. Complexity in DB size?
- Evidence on unary relations: Efficient

FacultyPage("google.com")=0, CoursePage("coursera.org")=1, ...

- Evidence on binary relations: \#P-hard

Linked("google.com","gmail.com")=1, Linked("google.com","aaai.org")=0

Intuition: Binary evidence breaks symmetries
Consequence: Lifted algorithms reduce to ground (also approx)

Approach

- Conditioning on binary evidence is hard
- Conditioning on unary evidence is efficient
- Solution: Represent binary evidence as unary
- Matrix notation:

$$
\begin{gathered}
e=\mathrm{p}(a, a) \wedge \mathrm{p}(a, b) \wedge \neg \mathrm{p}(a, c) \wedge \cdots \wedge \neg \mathrm{p}(d, c) \wedge \mathrm{p}(d, d) \\
\mathrm{p}(X, Y) \\
X=a=a \\
\mathbf{P}=\begin{array}{c}
Y=b \\
X=b \\
X=c \\
X=d
\end{array}\left[\begin{array}{cccc}
1 & 1 & 0 & 0 \\
1 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 1
\end{array}\right]
\end{gathered}
$$

Vector Product

- Solution: Represent binary evidence as unary
- Case 1: $\forall X, \forall Y, \mathrm{p}(X, Y) \Leftrightarrow \mathrm{q}(X) \wedge \mathrm{r}(Y)$
$\mathbf{P}=\left[\begin{array}{llll}0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1\end{array}\right]$
$e=\neg \mathrm{p}(a, a) \wedge \neg \mathrm{p}(a, b) \wedge \cdots \wedge \neg \mathrm{p}(d, c) \wedge \mathrm{p}(d, d)$

Vector Product

- Solution: Represent binary evidence as unary
- Case 1: $\forall X, \forall Y, \mathrm{p}(X, Y) \Leftrightarrow \mathrm{q}(X) \wedge \mathrm{r}(Y)$
$\mathbf{P}=\begin{gathered}0 \\ 0 \\ 1 \\ 1 \\ 1\end{gathered}\left[\begin{array}{cccc}\phi & 0 & 0 & \phi \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1\end{array}\right]$

$$
e=\neg \mathrm{p}(a, a) \wedge \neg \mathrm{p}(a, b) \wedge \cdots \wedge \neg \mathrm{p}(d, c) \wedge \mathrm{p}(d, d)
$$

Vector Product

- Solution: Represent binary evidence as unary
- Case 1: $\forall X, \forall Y, \mathrm{p}(X, Y) \Leftrightarrow \mathrm{q}(X) \wedge \mathrm{r}(Y)$

$$
e=\neg \mathrm{p}(a, a) \wedge \neg \mathrm{p}(a, b) \wedge \cdots \wedge \neg \mathrm{p}(d, c) \wedge \mathrm{p}(d, d)
$$

Vector Product

- Solution: Represent binary evidence as unary
- Case 1: $\forall X, \forall Y, \mathrm{p}(X, Y) \Leftrightarrow \mathrm{q}(X) \wedge \mathrm{r}(Y)$

$$
\mathbf{P}=\left[\begin{array}{llll}
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 1
\end{array}\right]=\left[\begin{array}{l}
0 \\
1 \\
0 \\
1
\end{array}\right]\left[\begin{array}{l}
1 \\
0 \\
0 \\
1
\end{array}\right]^{\top}=\mathbf{q} \mathbf{r}^{\top}
$$

$$
e=\neg \mathrm{p}(a, a) \wedge \neg \mathrm{p}(a, b) \wedge \cdots \wedge \neg \mathrm{p}(d, c) \wedge \mathrm{p}(d, d)
$$

$$
e=\neg \mathrm{q}(a) \wedge \mathrm{q}(b) \wedge \neg \mathrm{q}(c) \wedge \mathrm{q}(d) \quad 0101
$$

$$
\wedge \mathrm{r}(a) \wedge \neg \mathrm{r}(b) \wedge \neg \mathrm{r}(c) \wedge \mathrm{r}(d) \quad 1001
$$

Matrix Product

- Solution: Represent binary evidence as unary
- Case 2: $\forall X, \forall Y, \mathrm{p}(X, Y) \Leftrightarrow\left(\mathrm{q}_{1}(X) \wedge \mathrm{r}_{1}(Y)\right)$
$\vee\left(\mathrm{q}_{2}(X) \wedge \mathrm{r}_{2}(Y)\right)$
V...
$\vee\left(\mathrm{q}_{n}(X) \wedge \mathrm{r}_{n}(Y)\right)$

Matrix Product

- Solution: Represent binary evidence as unary
- Case 2: $\forall X, \forall Y, \mathrm{p}(X, Y) \Leftrightarrow\left(\mathrm{q}_{1}(X) \wedge \mathrm{r}_{1}(Y)\right)$
$\mathbf{P}=\mathbf{q}_{1} \mathbf{r}_{1}^{\top} \vee \mathbf{q}_{2} \mathbf{r}_{2}^{\top} \vee \cdots \vee \mathbf{q}_{n} \mathbf{r}_{n}^{\top}=\mathbf{Q} \mathbf{R}^{\top}$
where $\left(\mathbf{Q} \mathbf{R}^{\boldsymbol{\top}}\right)_{i, j}=\bigvee_{r} \mathbf{Q}_{i, r} \wedge \mathbf{R}_{j, r}$

Boolean Matrix Factorization

- Decompose

$$
\mathbf{P}=\mathbf{q}_{1} \mathbf{r}_{1}^{\top} \vee \mathbf{q}_{2} \mathbf{r}_{2}^{\top} \vee \cdots \vee \mathbf{q}_{n} \mathbf{r}_{n}^{\top}=\mathbf{Q} \mathbf{R}^{\top}
$$

- In Boolean algebra, where 1+1=1
- Minimum n is the Boolean rank
- Always possible

Matrix Product

- Solution: Represent binary evidence as unary
- Example: $\mathbf{P}=\mathbf{q}_{1} \mathbf{r}_{1}^{\top} \vee \mathbf{q}_{2} \mathbf{r}_{2}^{\top} \vee \cdots \vee \mathbf{q}_{n} \mathbf{r}_{n}^{\top}=\mathbf{Q} \mathbf{R}^{\top}$

$$
\mathbf{P}=\left[\begin{array}{llll}
1 & 1 & 0 & 0 \\
1 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 1
\end{array}\right]=\left[\begin{array}{l}
0 \\
1 \\
0 \\
1
\end{array}\right]\left[\begin{array}{l}
1 \\
0 \\
0 \\
1
\end{array}\right]^{\top} \vee\left[\begin{array}{l}
1 \\
1 \\
0 \\
0
\end{array}\right]\left[\begin{array}{l}
1 \\
1 \\
0 \\
0
\end{array}\right]^{\top} \vee\left[\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right]\left[\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right]^{\top}
$$

Matrix Product

- Solution: Represent binary evidence as unary
- Example: $\mathbf{P}=\mathbf{q}_{1} \mathbf{r}_{1}^{\top} \vee \mathbf{q}_{2} \mathbf{r}_{2}^{\top} \vee \cdots \vee \mathbf{q}_{n} \mathbf{r}_{n}^{\top}=\mathbf{Q} \mathbf{R}^{\top}$

Matrix Product

- Solution: Represent binary evidence as unary
- Example: $\mathbf{P}=\mathbf{q}_{1} \mathbf{r}_{1}^{\top} \vee \mathbf{q}_{2} \mathbf{r}_{2}^{\top} \vee \cdots \vee \mathbf{q}_{n} \mathbf{r}_{n}^{\top}=\mathbf{Q} \mathbf{R}^{\top}$

$$
\left.\mathbf{P}=\left[\begin{array}{llll}
1 & 1 & 0 & 0 \\
1 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 \\
11 & 0 & 0 & 1
\end{array}\right]=\left[\begin{array}{l}
0 \\
1 \\
0 \\
1
\end{array}\right]\left[\begin{array}{l}
1 \\
0 \\
0 \\
1
\end{array}\right]^{\top} \right\rvert\,\left[\begin{array}{l}
1 \\
1 \\
0 \\
0
\end{array}\right]\left[\begin{array}{l}
1 \\
1 \\
0 \\
0
\end{array}\right]^{\top} \vee\left[\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right]\left[\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right]^{\top}
$$

$$
=\left[\begin{array}{l}
0 \\
1 \\
0 \\
1
\end{array}\right]\left[\begin{array}{ll}
1 \\
1 \\
0 \\
0
\end{array}\right]\left[\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right]\left[\begin{array}{lll}
1 \\
0 \\
0 \\
1
\end{array}\right]\left[\begin{array}{l}
1 \\
1 \\
0 \\
0
\end{array}\right]\left[\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right]^{\top}
$$

Matrix Product

- Solution: Represent binary evidence as unary
- Example: $\mathbf{P}=\mathbf{q}_{1} \mathbf{r}_{1}^{\top} \vee \mathbf{q}_{2} \mathbf{r}_{2}^{\top} \vee \cdots \vee \mathbf{q}_{n} \mathbf{r}_{n}^{\top}=\mathbf{Q} \mathbf{R}^{\top}$
$\mathbf{P}=\left[\begin{array}{llll}1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1\end{array}\right]=\left[\begin{array}{l}0 \\ 1 \\ 0 \\ 1\end{array}\right]\left[\begin{array}{l}1 \\ 0 \\ 0 \\ 1\end{array}\right]^{\top} \vee\left[\begin{array}{l}1 \\ 1 \\ 0 \\ 0\end{array}\right]\left[\begin{array}{l}1 \\ 1 \\ 0 \\ 0\end{array}\right]^{\top} \vee\left[\begin{array}{l}0 \\ 0 \\ 1 \\ 0\end{array}\right]\left[\begin{array}{l}0 \\ 0 \\ 1 \\ 0\end{array}\right]^{\top}$
Boolean rank n=3 $=\left[\begin{array}{lll}0 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0\end{array}\right]\left[\begin{array}{lll}1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0\end{array}\right]^{\top}$

Theoretical Consequences

- Theorem:

Complexity of computing $\operatorname{Pr}(q \mid e)$ in $S R L$ is polynomial in |e|, when e has bounded Boolean rank.

- Boolean rank
- key parameter in the complexity of conditioning
- says how much lifting is possible

Analogy with Treewidth in Probabilistic Graphical Models

Probabilistic graphical models:

1. Find tree decomposition
2. Perform inference

- Exponential in (tree)width of decomposition
- Polynomial in size of Bayesian network

SRL Models:

1. Find Boolean matrix
factorization of evidence
2. Perform inference

- Exponential in Boolean rank of evidence
- Polynomial in size of evidence database
- Polynomial in domain size

Overview

- Lifted inference in 2 slides
- Complexity of evidence
- Over-symmetric approximations
- Approximate symmetries
- Conclusions

Over-Symmetric Approximation

- Approximate $\operatorname{Pr}(q \mid e)$ by $\operatorname{Pr}\left(q \mid e^{\prime}\right)$
$\operatorname{Pr}(q \mid e ')$ has more symmetries, is more liftable
- E.g.: Low-rank Boolean matrix factorization

$$
\mathbf{P}=\left[\begin{array}{llll}
1 & 1 & 0 & 0 \\
1 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 1
\end{array}\right]=\left[\begin{array}{l}
0 \\
1 \\
0 \\
1
\end{array}\right]\left[\begin{array}{l}
1 \\
0 \\
0 \\
1
\end{array}\right]^{\top} \vee\left[\begin{array}{l}
1 \\
1 \\
0 \\
0
\end{array}\right]\left[\begin{array}{l}
1 \\
1 \\
0 \\
0
\end{array}\right]^{\top} \vee\left[\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right]\left[\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right]^{\top}
$$

Boolean rank 3

Over-Symmetric Approximation

- Approximate $\operatorname{Pr}(q \mid e)$ by $\operatorname{Pr}\left(q \mid e^{\prime}\right)$
$\operatorname{Pr}(q \mid e ')$ has more symmetries, is more liftable
- E.g.: Low-rank Boolean matrix factorization
$\mathbf{P}=\left[\begin{array}{llll}1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1\end{array}\right]=\left[\begin{array}{l}0 \\ 1 \\ 0 \\ 1\end{array}\right]\left[\begin{array}{l}1 \\ 0 \\ 0 \\ 1\end{array}\right]^{\top} \vee\left[\begin{array}{l}1 \\ 1 \\ 0 \\ 0\end{array}\right]\left[\begin{array}{l}1 \\ 1 \\ 0 \\ 0\end{array}\right]^{\top} \vee\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right]$
$\left.\begin{array}{l}\text { Boolean rank } 2 \\ \text { approximation }\end{array} \approx\left[\begin{array}{ll}0 & 1 \\ 1 & 1 \\ 0 & 0 \\ 1 & 0\end{array}\right]\left[\begin{array}{ll}1 & 1 \\ 0 & 1 \\ 0 & 0 \\ 1 & 0\end{array}\right]^{\top}=\left[\begin{array}{llll}1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 \\ 0 & 0 & \mathbf{0} & 0 \\ 1 & 0 & 0 & 1\end{array}\right], ~\right] . ~$

Over-Symmetric Approximations

- OSA makes model more symmetric
- E.g., low-rank Boolean matrix factorization

```
Link ("aaai.org", "google.com")
Link ("google.com", "aaai.org")
Link ("google.com", "gmail.com")
Link ("ibm.com", "aaai.org")
\begin{tabular}{|c|}
\hline Link ("aaai.org", "google.com") \\
\hline Link ("google.com", "aaai.org") \\
\hline - Link ("google.com", "gmail.com") \\
\hline + Link ("aaai.org", "ibm.com") \\
\hline Link ("ibm.com", "aaai.org") \\
\hline
\end{tabular}
```

google.com and ibm.com become symmetric!

Markov Chain Monte-Carlo

Gibbs sampling or MC-SAT

- Problem: slow convergence, one variable changed
- One million random variables: need at least one million iteration to move between two states
Lifted MCMC: move between symmetric states

Lifted MCMC on WebKB

Rank 1 Approximation

Rank 2 Approximation

Rank 5 Approximation

Rank 10 Approximation

Rank 20 Approximation

Rank 50 Approximation

Rank 75 Approximation

Rank 100 Approximation

Rank 150 Approximation

Trend for Increasing Boolean Rank

Best Case

Overview

- Lifted inference in 2 slides
- Complexity of evidence
- Over-symmetric approximations
- Approximate symmetries
- Conclusions

Problem with OSAs

- Approximation can be crude
- Cannot converge to true distribution
- Lose information about subtle differences
- Real distribution

$$
\begin{aligned}
& \text { Pr(PageClass("Faculty", "http://.../~pedro/")) }=0.47 \\
& \operatorname{Pr}(\text { PageClass("Faculty", "http://.../~luc/")) }=0.53
\end{aligned}
$$

- OSA distribution
$\operatorname{Pr}($ PageClass("Faculty", "http://.../~pedro/")) $=0.50$
$\operatorname{Pr}($ PageClass("Faculty", "http://.../~luc/")) $=0.50$

Approximate Symmetries

- Exploit approximate symmetries:
- Exact symmetry $\mathrm{g}: \operatorname{Pr}(\mathbf{x})=\operatorname{Pr}\left(\mathbf{x}^{\mathrm{g}}\right)$
E.g. Ising model
without external field

- Approximate symmetry g: $\operatorname{Pr}(\mathbf{x}) \approx \operatorname{Pr}\left(\mathbf{x}^{\mathbf{g}}\right)$
E.g. Ising model with external field

Orbital Metropolis Chain: Algorithm

- Given symmetry group G (approx. symmetries)
- Orbit \mathbf{x}^{G} contains all states approx. symm. to \mathbf{x}
- In state \mathbf{x} :

1. Select \mathbf{y} uniformly at random from \mathbf{x}^{G}
2. Move from \mathbf{x} to \mathbf{y} with probability $\min \left(\frac{\operatorname{Pr}(\boldsymbol{y})}{\operatorname{Pr}(x)}, 1\right)$
3. Otherwise: stay in \mathbf{x} (reject)
4. Repeat

Orbital Metropolis Chain: Analysis

$\operatorname{Pr}($.$) is stationary distribution$
\checkmark Many variables change (fast mixing)
Few rejected samples:

$$
\operatorname{Pr}(\boldsymbol{y}) \approx \operatorname{Pr}(\boldsymbol{x}) \Rightarrow \min \left(\frac{\operatorname{Pr}(\boldsymbol{y})}{\operatorname{Pr}(\boldsymbol{x})}, 1\right) \approx 1
$$

Is this the perfect proposal distribution?

Orbital Metropolis Chain: Analysis

$\operatorname{Pr}($.$) is stationary distribution$
\checkmark Many variables change (fast mixing)
Few rejected samples:

$$
\operatorname{Pr}(\boldsymbol{y}) \approx \operatorname{Pr}(\boldsymbol{x}) \Rightarrow \min \left(\frac{\operatorname{Pr}(\boldsymbol{y})}{\operatorname{Pr}(\boldsymbol{x})}, 1\right) \approx 1
$$

Is this the perfect proposal distribution?
\times Not irreducible...
Can never reach 0100 from 1101.

Lifted Metropolis-Hastings: Algorithm

- Given an orbital Metropolis chain $\mathbf{M}_{\mathbf{s}}$ for $\operatorname{Pr}($.
- Given a base Markov chain \mathbf{M}_{B} that
- is irreducible and aperiodic
- has stationary distribution $\operatorname{Pr}($.
(e.g., Gibbs chain or MC-SAT chain)
- In state \mathbf{x} :

1. With probability α, apply the kernel of M_{B}
2. Otherwise apply the kernel of M_{S}

Lifted Metropolis-Hastings: Analysis

Theorem [Tierney 1994]:
A mixture of Markov chains is irreducible and aperiodic if at least one of the chains is irreducible and aperiodic .
$\checkmark \operatorname{Pr}($.$) is stationary distribution$
\checkmark Many variables change (fast mixing)
Few rejected samples
\checkmark Irreducible
\checkmark Aperiodic

Gibbs Sampling

Lifted Metropolis-
 Hastings

$G=\left(X_{1} X_{2}\right)\left(X_{3} X_{4}\right)$

Experiments: WebKB

[Van den Broeck, Niepert; AAAI'15]

Experiments: WebKB

(a) Texas - Iterations

(c) Washington - Iterations

(b) Texas - Time

(d) Washington - Time

(a) Cornell - Iterations

(c) Wisconsin - Iterations

(b) Cornell - Time

(d) Wisconsin - Time

Overview

- Lifted inference in 2 slides
- Complexity of evidence
- Over-symmetric approximations
- Approximate symmetries
- Conclusions

Take-Away Message

Two problems:

1. Lifted inference gives exponential speedups in symmetric graphical models.
But what about real-world asymmetric problems?
2. When there are many variables, MCMC is slow. How to sample quickly in large graphical models?

One solution: Exploit approximate symmetries!

Open Problems

- Find approximate symmetries
- Principled (theory)
- Is a type of machine learning?
- During inference, not preprocessing?
- Give guarantees on approximation quality/convergence speed
- Plug in lifted inference from prob. databases

Lots of Recent Activity

- Singla, Nath, and Domingos (2014)
- Venugopal and Gogate (2014)
- Kersting et al. (2014)

Thanks

Example: Grid Models

(a) Ising - Iterations

(c) Chimera - Iterations

(b) Ising - Time

(d) Chimera - Time

