

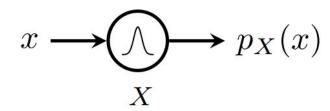
Tractable Probabilistic Circuits

Guy Van den Broeck

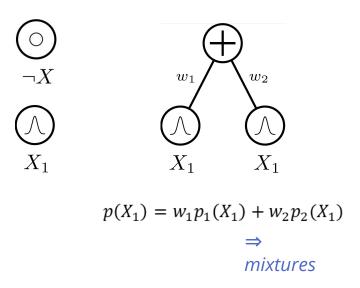
Beyond Bayes: Paths Towards Universal Reasoning Systems - Jul 21, 2022

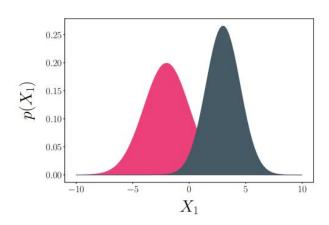
a unifying framework for tractable models

Probabilistic circuits


computational graphs that recursively define distributions

 X_1

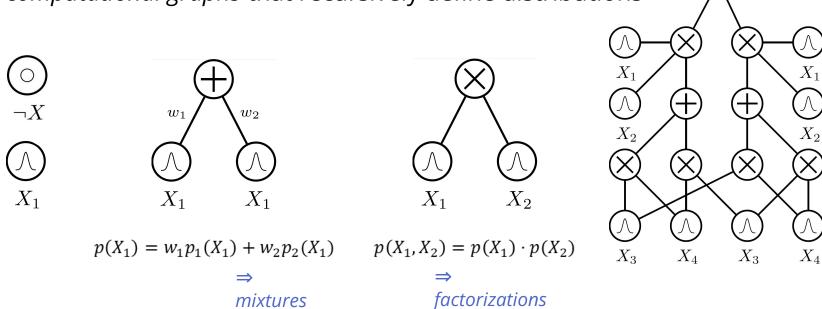



Simple distributions are tractable "black boxes" for:

- **EVI**: output $p(\mathbf{x})$ (density or mass)
- MAR: output 1 (normalized) or Z (unnormalized)
- MAP: output the mode

Probabilistic circuits

computational graphs that recursively define distributions

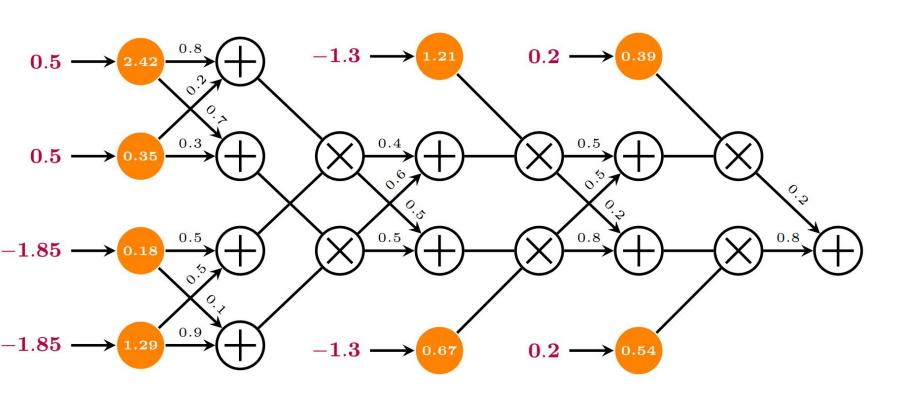


$$p(X) = p(Z = 1) \cdot p_1(X|Z = 1)$$

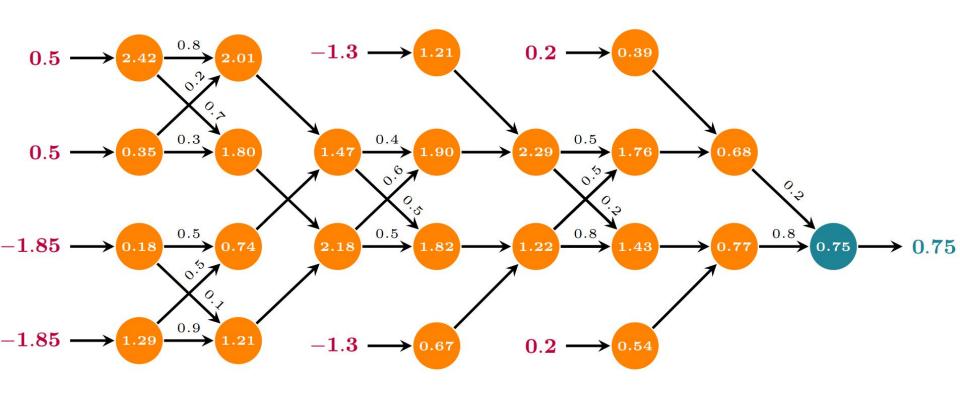
$$+ p(Z = 2) \cdot p_2(X|Z = 2)$$

Probabilistic circuits

computational graphs that recursively define distributions

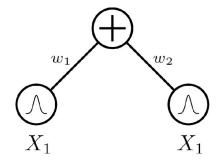

Likelihood

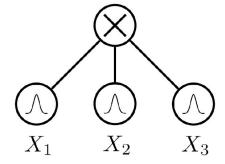
$$p(X_1 = -1.85, X_2 = 0.5, X_3 = -1.3, X_4 = 0.2)$$


Likelihood

 $p(X_1 = -1.85, X_2 = 0.5, X_3 = -1.3, X_4 = 0.2)$

Likelihood

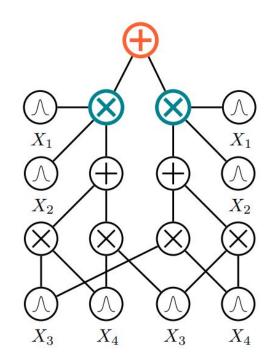

 $p(X_1 = -1.85, X_2 = 0.5, X_3 = -1.3, X_4 = 0.2)$


Tractable marginals

A sum node is **smooth** if its children depend on the same set of variables.

A product node is *decomposable* if its children depend on disjoint sets of variables.

smooth circuit

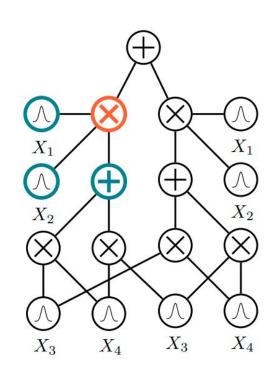

decomposable circuit

If
$$\mathbf{p}(\mathbf{x}) = \sum_i w_i \mathbf{p}_i(\mathbf{x})$$
, (smoothness):

$$\int \mathbf{p}(\mathbf{x}) d\mathbf{x} = \int \sum_{i} w_{i} \mathbf{p}_{i}(\mathbf{x}) d\mathbf{x} =$$

$$= \sum_{i} w_{i} \int \mathbf{p}_{i}(\mathbf{x}) d\mathbf{x}$$

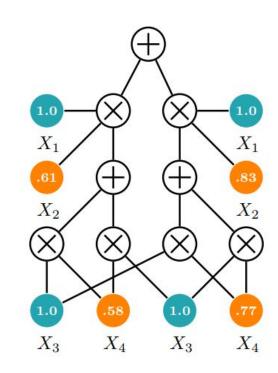
integrals are "pushed down" to children


If
$$\mathbf{p}(\mathbf{x}, \mathbf{y}, \mathbf{z}) = \mathbf{p}(\mathbf{x})\mathbf{p}(\mathbf{y})\mathbf{p}(\mathbf{z})$$
, (decomposability):

$$\int \int \int \mathbf{p}(\mathbf{x}, \mathbf{y}, \mathbf{z}) d\mathbf{x} d\mathbf{y} d\mathbf{z} =$$

$$= \int \int \int \mathbf{p}(\mathbf{x}) \mathbf{p}(\mathbf{y}) \mathbf{p}(\mathbf{z}) d\mathbf{x} d\mathbf{y} d\mathbf{z} =$$

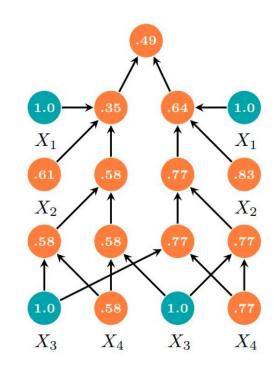
$$= \int \mathbf{p}(\mathbf{x}) d\mathbf{x} \int \mathbf{p}(\mathbf{y}) d\mathbf{y} \int \mathbf{p}(\mathbf{z}) d\mathbf{z}$$


Forward pass evaluation for MAR

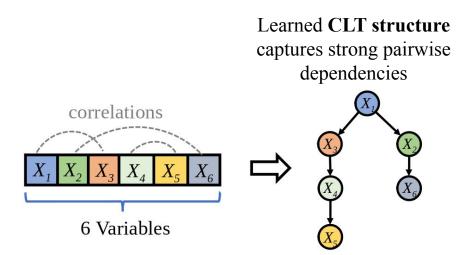
linear in circuit size!

E.g. to compute $p(x_2, x_4)$:

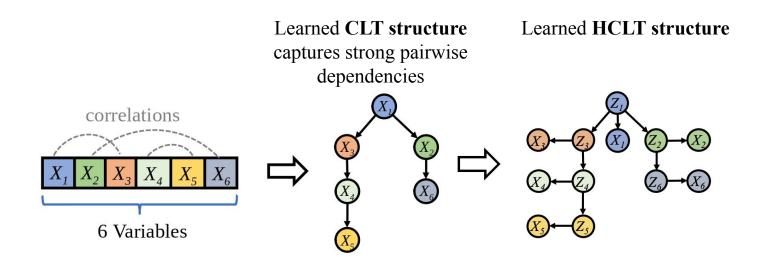
- leafs over X_1 and X_3 output $\mathbf{Z}_i = \int p(x_i) dx_i$ ⇒ for normalized leaf distributions: 1.0
- leafs over X_2 and X_4 output **EVI**
- feedforward evaluation (bottom-up)

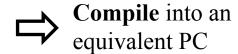

Forward pass evaluation for MAR

linear in circuit size!

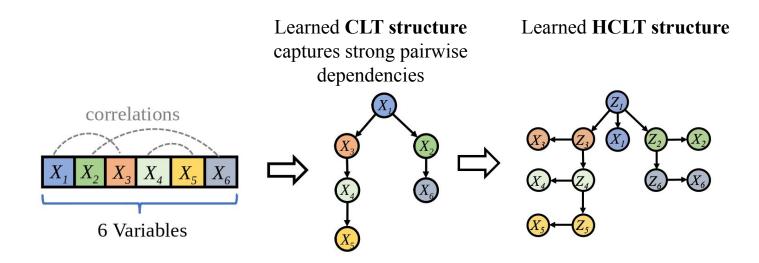

E.g. to compute $p(x_2, x_4)$:

- leafs over X_1 and X_3 output $\mathbf{Z}_i = \int p(x_i) dx_i$
 - \Rightarrow for normalized leaf distributions: 1.0
- leafs over X_2 and X_4 output
- feedforward evaluation (bottom-up)

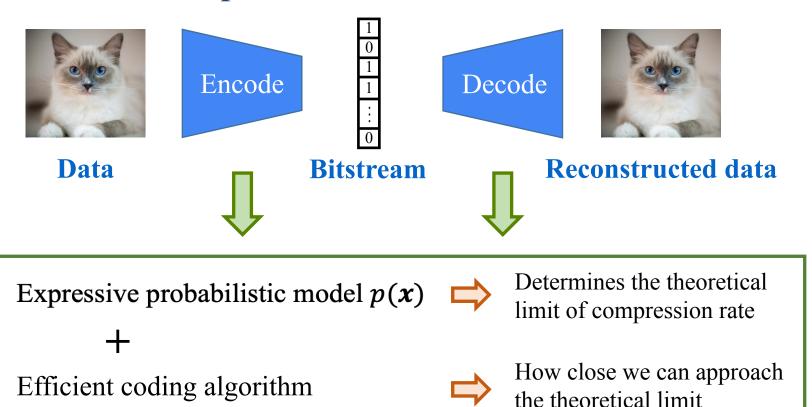

Learning Expressive Probabilistic Circuits


Hidden Chow-Liu Trees

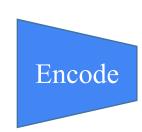
Learning Expressive Probabilistic Circuits


Hidden Chow-Liu Trees

Learning Expressive Probabilistic Circuits


Hidden Chow-Liu Trees

Compile into an equivalent PC



Lossless Data Compression

Lossless Neural Compression with Probabilistic Circuits

Data

Bitstream

Reconstructed data

Probabilistic Circuits

- Expressive
- → SoTA likelihood on MNIST.

- Fast

→ Time complexity of en/decoding is **O(|p| log(D))**, where D is the # variables and |p| is the size of the PC.

Arithmetic Coding:

Lossless Neural Compression with Probabilistic Circuits

SoTA compression rates

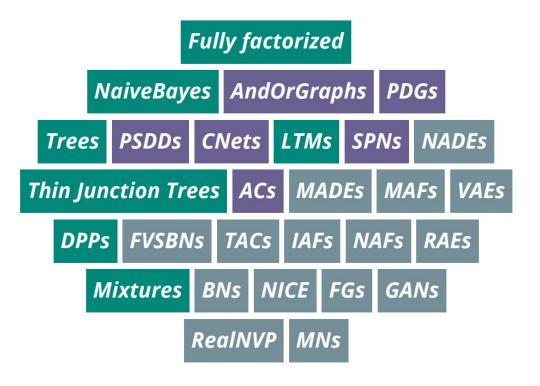
Dataset	HCLT (ours)	IDF	BitSwap	BB-ANS	JPEG2000	WebP	McBits
MNIST	1.24 (1.20)	1.96 (1.90)	1.31 (1.27)	1.42 (1.39)	3.37	2.09	(1.98)
FashionMNIST	3.37 (3.34)	3.50 (3.47)	3.35 (3.28)	3.69 (3.66)	3.93	4.62	(3.72)
EMNIST (Letter)	1.84 (1.80)	2.02 (1.95)	1.90 (1.84)	2.29 (2.26)	3.62	3.31	(3.12)
EMNIST (ByClass)	1.89 (1.85)	2.04 (1.98)	1.91 (1.87)	2.24 (2.23)	3.61	3.34	(3.14)

Compress and decompress 5-40x faster than NN methods with similar bitrates

Method	# parameters	Theoretical bpd	Codeword bpd	Comp. time (s)	Decomp. time (s)
PC (HCLT, $M=16$)	3.3M	1.26	1.30	9	44
PC (HCLT, $M = 24$)	5.1M	1.22	1.26	15	86
PC (HCLT, $M=32$)	7.0M	1.20	1.24	26	142
IDF	24.1M	1.90	1.96	288	592
BitSwap	2.8M	1.27	1.31	578	326

Lossless Neural Compression with Probabilistic Circuits

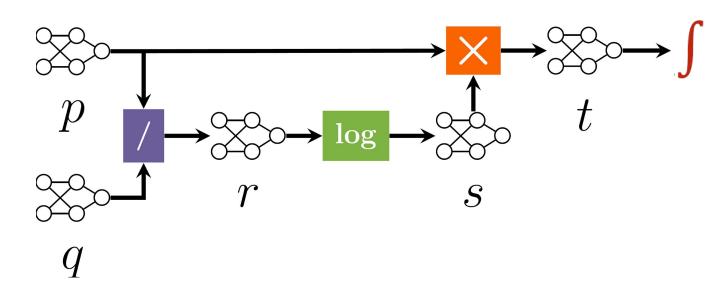
Can be effectively combined with Flow models to achieve better generative performance


Model	CIFAR10	ImageNet32	ImageNet64
RealNVP	3.49	4.28	3.98
Glow	3.35	4.09	3.81
IDF	3.32	4.15	3.90
IDF++	3.24	4.10	3.81
PC+IDF	3.28	3.99	3.71

PC Learners keep getting better! ... stay tuned ...

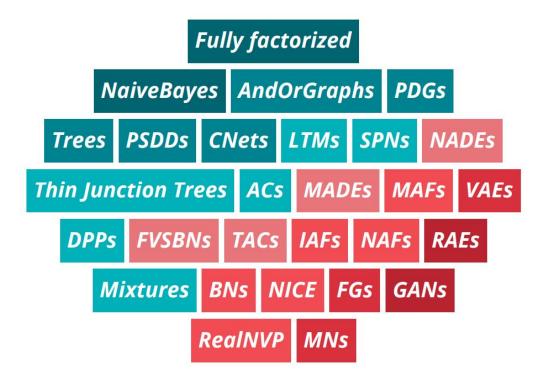
Table 1: Density estimation performance on MNIST-family datasets in test set bpd.

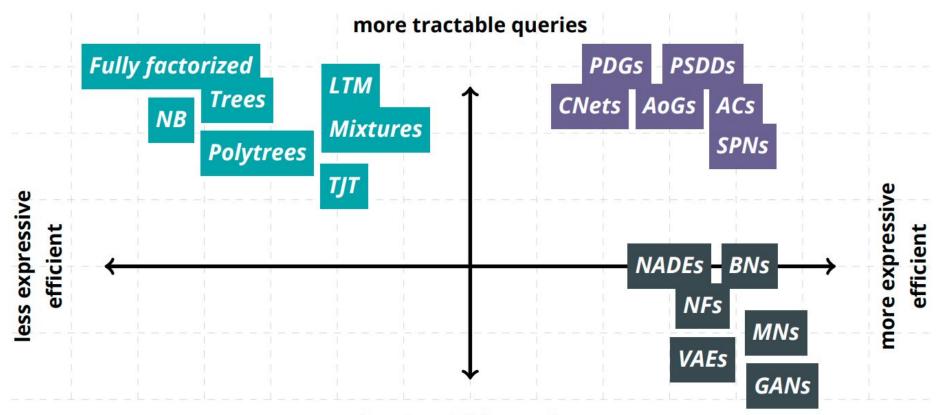
Dataset	Sparse PC (ours)	HCLT	RatSPN	IDF	BitSwap	BB-ANS	McBits
MNIST	1.14	1.20	1.67	1.90	1.27	1.39	1.98
EMNIST(MNIST)	1.52	1.77	2.56	2.07	1.88	2.04	2.19
EMNIST(Letters)	1.58	1.80	2.73	1.95	1.84	2.26	3.12
EMNIST(Balanced)	1.60	1.82	2.78	2.15	1.96	2.23	2.88
EMNIST(ByClass)	1.54	1.85	2.72	1.98	1.87	2.23	3.14
FashionMNIST	3.27	3.34	4.29	3.47	3.28	3.66	3.72


Dataset	PC	Bipartite flow	AF/SCF	IAF/SCF
Penn Treebank	1.23	1.38	1.46	1.63

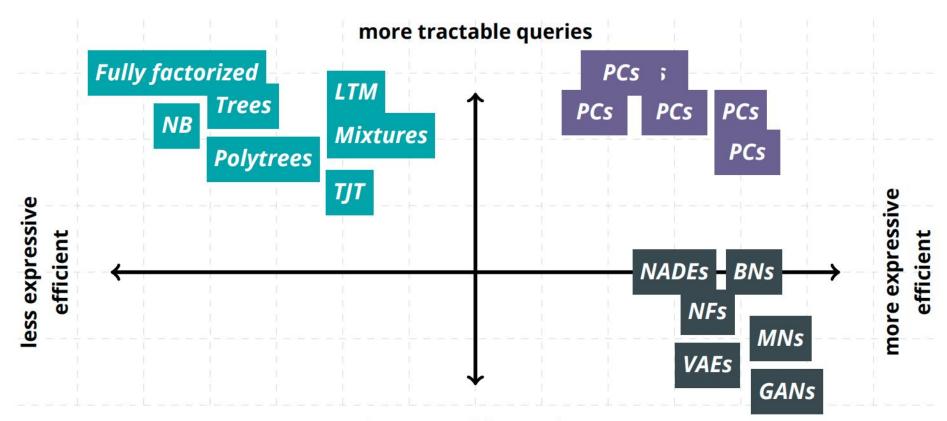
Expressive models without compromises

Queries as pipelines: KLD


$$\mathbb{KLD}(p \parallel q) = \int p(\mathbf{x}) \times \log((p(\mathbf{x})/q(\mathbf{x}))d\mathbf{X}$$


Inference by tractable operations

systematically derive tractable inference algorithm of complex queries


	Query	Tract. Conditions	Hardness
CROSS ENTROPY	$-\int p(oldsymbol{x}) \log q(oldsymbol{x}) \mathrm{d}\mathbf{X}$	Cmp, q Det	#P-hard w/o Det
SHANNON ENTROPY	$-\sum p(oldsymbol{x})\log p(oldsymbol{x})$	Sm, Dec, Det	coNP-hard w/o Det
RÉNYI ENTROPY	$(1-\alpha)^{-1}\log\int p^{\alpha}(\boldsymbol{x})\ d\mathbf{X}, \alpha\in\mathbb{N}$	SD	#P-hard w/o SD
KEN II EN I KOP I	$(1-\alpha)^{-1}\log\int p^{\alpha}(\boldsymbol{x})d\mathbf{X}, \alpha\in\mathbb{R}_{+}$	Sm, Dec, Det	#P-hard w/o Det
MUTUAL INFORMATION	$\int p(oldsymbol{x},oldsymbol{y}) \log(p(oldsymbol{x},oldsymbol{y})/(p(oldsymbol{x})p(oldsymbol{y})))$	Sm, SD, Det*	coNP-hard w/o SD
KULLBACK-LEIBLER DIV.	$\int p(oldsymbol{x}) \log(p(oldsymbol{x})/q(oldsymbol{x})) d\mathbf{X}$	Cmp, Det	#P-hard w/o Det
RÉNYI'S ALPHA DIV.	$(1-\alpha)^{-1}\log\int p^{\alpha}(\boldsymbol{x})q^{1-\alpha}(\boldsymbol{x})\;d\mathbf{X}, \alpha\in\mathbb{N}$	Cmp, q Det	#P-hard w/o Det
RENTI S ALFHA DIV.	$(1-\alpha)^{-1}\log\int p^{\alpha}(\boldsymbol{x})q^{1-\alpha}(\boldsymbol{x})\;d\mathbf{X}, \alpha\in\mathbb{R}$	Cmp, Det	#P-hard w/o Det
ITAKURA-SAITO DIV.	$\int [p(oldsymbol{x})/q(oldsymbol{x}) - \log(p(oldsymbol{x})/q(oldsymbol{x})) - 1] d \mathbf{X}$	Cmp, Det	#P-hard w/o Det
CAUCHY-SCHWARZ DIV.	$-\lograc{\int p(oldsymbol{x})q(oldsymbol{x})doldsymbol{\mathbf{X}}}{\sqrt{\int p^2(oldsymbol{x})doldsymbol{\mathbf{X}}\int q^2(oldsymbol{x})doldsymbol{\mathbf{X}}}}$	Cmp	#P-hard w/o Cmp
SQUARED LOSS	$\int (p(oldsymbol{x}) - q(oldsymbol{x}))^2 d \mathbf{X}$	Cmp	#P-hard w/o Cmp

tractability is a spectrum

less tractable queries

less tractable queries

Learn more about probabilistic circuits?

Tutorial (3h)

https://youtu.be/2RAG5-L9R70

Overview Paper (80p)

	Probabilistic Circuits: A Unifying Framework for Tractable Probabilistic Models	; *
Y	ooJung Choi	
A	ntonio Vergari	
Ca Ur	tuy Van den Broeck computer Science Department niversity of California os Angeles, CA, USA	
C	Contents	
1	Introduction	3
2	Probabilistic Inference: Models, Queries, and Tractability 2.1 Probabilistic Models 2.2 Probabilistic Queries 2.3 Tractable Probabilistic Inference 2.4 Properties of Tractable Probabilistic Models 2.5 Properties of Tractable Probabilistic Models 2.6 Properties of Tractable Probabilistic Models 3. Properties of Tractable Probabilistic Models	4 5 6 8 9

http://starai.cs.ucla.edu/papers/ProbCirc20.pdf

Thanks

This was the work of many wonderful students/postdocs/collaborators!

References: http://starai.cs.ucla.edu/publications/