On First-Order Knowledge Compilation

Guy Van den Broeck

UCLA

Beyond NP Workshop
Feb 12, 2016

Overview

1. Why first-order model counting?
2. Why first-order model counters?
3. What first-order circuit languages?
4. How first-order knowledge compilation?
5. Perspectives ...

Why do we need
 first-order model counting?

Uncertainty in AI

Probability Distribution =

Qualitative
+

Quantitative

Probabilistic Graphical Models

Probability Distribution

=

Graph Structure
+

Parameterization

Probabilistic Graphical Models

Probability Distribution

Graph Structure

+

Parameterization

$+$

rain	$\operatorname{Pr}($ sun \mid rain $)$
T	0.1
F	0.6

rain	sun	Pr (rainbow \mid rain, sun)
T	T	0.9
T	F	0.05
F	T	0.05
F	F	0
$\operatorname{Pr}($ rain $)$		
0.2		

Weighted Model Counting

Probability Distribution

SAT Formula

Weights

Weighted Model Counting

Probability Distribution

SAT Formula
+

Weights

Rain \Rightarrow Cloudy
Sun \wedge Rain \Rightarrow Rainbow

$+$
$w($ Rain $)=1$
$w(\neg$ Rain $)=2$
$w($ Cloudy $)=3$
$w(\neg$ Cloudy $)=5$

Beyond NP Pipeline for \#P

[Chavira 2006, Chavira 2008, Sang 2005, Fierens 2015]

Generalized Perspective

Probability Distribution

Logic

$+$
Weights

Generalized Perspective

Probability Distribution

Logic

$+$
Weights

Logical Syntax Model-theoretic Semantics

$$
+
$$

Weight function w(.)
Factorized
$\operatorname{Pr}($ model $) \propto \Pi_{\mathrm{i}} \mathrm{w}\left(\mathrm{x}_{\mathrm{i}}\right)$

First-Order Model Counting

Probability Distribution

=
 First-Order Logic
 $+$
 Weights

First-Order Model Counting

Probability Distribution

First-Order Logic

Weights
Smokes $(\mathrm{x}) \wedge$ Friends (x, y) \Rightarrow Smokes(y)

$$
+
$$

$w($ Smokes(a) $)=1$
$w(\neg$ Smokes(a)) $=2$
w(Smokes(b))=1
$w(\neg$ Smokes(b)) $=2$
$w($ Friends $(a, b))=3$ $\mathrm{w}(\neg$ Friends $(\mathrm{a}, \mathrm{b}))=5$

Probabilistic Programming

Probability Distribution

=

Logic Programs

$$
+
$$

Weights

Probabilistic Programming

Probability Distribution

Logic Programs

$$
+
$$

Weights
path (X, Y) :-
edge (X, Y). $\operatorname{path}(X, Y)$:edge (X, Z), path (Z, Y).
+

[Fierens 2015]

Weighted Model Integration

Probability Distribution

=
 SMT(LRA)
 Weights

Weighted Model Integration

Probability Distribution

SMT(LRA)

Weights

$$
\begin{aligned}
& 0 \leq \text { height } \leq 200 \\
& 0 \leq \text { weight } \leq 200 \\
& 0 \leq \text { age } \leq 100 \\
& \text { age }<1 \Rightarrow \\
& \quad \text { height+weight } \leq 90
\end{aligned}
$$

$$
+
$$

$$
w(\text { height }) \text {) }=\text { height }-10
$$

$$
\text { w(} \neg \text { height })=3^{*} \text { height² }^{2}
$$

$$
w(\neg \text { weight })=5
$$

Beyond NP Pipeline for \#P/\#P ${ }_{1}$

[Van den Broeck 2011, 2013, Gogate 2011, Gribkoff 2014]

First-Order Model Counting

Model $=$ solution to first-order logic formula Δ

```
\Delta= \foralld (Rain(d)
    => Cloudy(d))
```

Days $=\{$ Monday $\}$

First-Order Model Counting

Model = solution to first-order logic formula Δ

FOMC = 3

Weighted First-Order Model Counting

Model = solution to first-order logic formula Δ

$\Delta=\forall d$
$($ Rain (d)
$\Rightarrow \operatorname{Cloudy}(\mathrm{d}))$

Days $=\{$ Monday Tuesday\}

Rain(M)	Cloudy(M)
T	T
T	F
F	T
F	F

Rain(T)	Cloudy(T)
T	T
T	T
T	T
T	T

Model?
Yes
No
Yes
Yes

T	T
T	F
F	T
F	F

T	F
T	F
T	F
T	F

No
No
No
No

T	T
T	F
F	T
F	F

F	T
F	T
F	T
F	T

Yes
No
Yes
Yes

T	T
T	F
F	T
F	F

F	F
F	F
F	F
F	F

Yes
No
Yes
Yes

Weighted First-Order Model Counting

Model = solution to first-order logic formula Δ

$\Delta=\forall d$
$($ Rain (d)
$\Rightarrow \operatorname{Cloudy}(\mathrm{d}))$

$$
\begin{aligned}
\text { Days }= & \{\text { Monday } \\
& \text { Tuesday }\}
\end{aligned}
$$

Rain(M)	Cloudy(M)
T	T
T	F
F	T
F	F

| Rain(T) | Cloudy(T) | Model? |
| :---: | :---: | :---: | :---: |
| T | T | Yes |
| T | T | No |
| T | T | Yes |
| T | T | Yes |

T	T
T	F
F	T
F	F

T	F
T	F
T	F
T	F

No
No
No
No

T	T
T	F
F	T
F	F

F	T
F	T
F	T
F	T

Yes
No
Yes
Yes

T	T
T	F
F	T
F	F

F	F
F	F
F	F
F	F

Yes
No
Yes
Yes

Weighted First-Order Model Counting

Model = solution to first-order logic formula Δ

$\Delta=\forall d$
$($ Rain (d)
$\Rightarrow \operatorname{Cloudy}(\mathrm{d}))$

Days $=\{$ Monday	F	T
	F	F

$\operatorname{Rain}(\mathrm{T})$	$\mathbf{C l o u d y}(\mathbf{T})$
T	T
T	T
T	T
T	T

Model?
Yes
No
Yes
Yes

Weight	
$1 * 1 * 3 * 3=$	9
$2 * 1 * 3 * 3=$	18
$2 * 1 * 5 * 3=$	30

T	T
T	F
F	T
F	F

T	F
T	F
T	F
T	F

No
No
No
No

0
0
0
0

T	T
T	F
F	T
F	F

F	T
F	T
F	T
F	T

Yes
No
Yes
Yes

$1 * 2 * 3 * 3=18$
0
$2 * 2 * 3 * 3=36$
$2 * 2 * 5 * 3=60$

T	T
T	F
F	T
F	F

F	F
F	F
F	F
F	F

Yes
No
Yes
Yes
\#SAT =9

$1 * 2 * 3 * 5=30$
0
$2 * 2 * 3 * 5=60$
$2 * 2 * 5 * 5=100$

Weighted First-Order Model Counting

Model = solution to first-order logic formula Δ
$\Delta=\forall d$ (Rain(d)
$\Rightarrow \operatorname{Cloudy}(\mathrm{d}))$

Days $=\{$ Monday	F	T
	F	F

$\operatorname{Rain}(\mathrm{T})$	$\mathbf{C l o u d y}(\mathbf{T})$
T	T
T	T
T	T
T	T

Model?
Yes
No
Yes
Yes

Weight
$1 * 1^{*} 3 * 3=$
$2 * 1 * 3 * 3=$
$2 * 1 * 5 * 3=$

T	T
T	F
F	T
F	F

T	F
T	F
T	F
T	F

No
No
No
No

T	T
T	F
F	T
F	F

F	T
F	T
F	T
F	T

Yes
No
Yes
Yes

$1 * 2 * 3 * 3=18$
0
$2 * 2 * 3 * 3=36$
$2 * 2 * 5 * 3=60$

T	T
T	F
F	T
F	F

F	F
F	F
F	F
F	F

Yes
No
Yes
Yes

$1 * 2 * 3 * 5=30$
0
$2 * 2 * 3 * 5=60$
$2 * 2 * 5 * 5=100$
+ WFOMC $=\mathbf{3 6 1}$

Why do we need first-order model counters?

A Simple Reasoning Problem

- 52 playing cards
- Let us ask some simple questions

A Simple Reasoning Problem

Probability that Card1 is Hearts?

A Simple Reasoning Problem

Probability that Card1 is Hearts?
1/4

A Simple Reasoning Problem

Probability that Card1 is Hearts
given that Card1 is red?

A Simple Reasoning Problem

Probability that Card1 is Hearts given that Card1 is red?

1/2

A Simple Reasoning Problem

Probability that Card52 is Spades given that Card1 is QH?

A Simple Reasoning Problem

Probability that Card52 is Spades given that Card1 is QH?

13/51

A Simple Reasoning Problem

Probability that Card1 is Hearts?

A Simple Reasoning Problem

Probability that Card1 is Hearts?
1/4

A Simple Reasoning Problem

Probability that Card52 is Spades given that Card1 is QH?

A Simple Reasoning Problem

Probability that Card52 is Spades given that Card1 is QH?

13/51

Model distribution by FOMC:

$$
\begin{array}{r}
\forall \mathrm{p}, \exists \mathrm{c}, \operatorname{Card}(\mathrm{p}, \mathrm{c}) \\
\forall \mathrm{c}, \exists \mathrm{p}, \operatorname{Card}(\mathrm{p}, \mathrm{c}) \\
\forall \mathrm{p}, \forall \mathrm{c}, \forall \mathrm{c}^{\prime}, \operatorname{Card}(\mathrm{p}, \mathrm{c}) \wedge \operatorname{Card}\left(\mathrm{p}, \mathrm{c}^{\prime}\right) \Rightarrow \mathrm{c}=\mathrm{c}^{\prime}
\end{array}
$$

Beyond NP Pipeline for \#P

Reduce to propositional model counting:

Beyond NP Pipeline for \#P

Reduce to propositional model counting:

$$
\begin{aligned}
& \Delta=\operatorname{Card}\left(A \vee, p_{1}\right) \vee \ldots v \operatorname{Card}\left(2 \boldsymbol{\imath}, \mathrm{p}_{1}\right) \\
& \operatorname{Card}\left(A \vee, \mathrm{p}_{2}\right) \vee \ldots \vee \operatorname{Card}\left(2 \&, \mathrm{p}_{2}\right) \\
& \operatorname{Card}\left(\mathrm{A} \boldsymbol{\vee}, \mathrm{p}_{1}\right) \vee \ldots \vee \operatorname{Card}\left(\mathrm{A} \boldsymbol{\vee}, \mathrm{p}_{52}\right) \\
& \operatorname{Card}\left(K \vee, p_{1}\right) \vee \ldots v \operatorname{Card}\left(K \vee, p_{52}\right) \\
& \neg \operatorname{Card}\left(\mathrm{A} \vee, \mathrm{p}_{1}\right) \vee \neg \operatorname{Card}\left(\mathrm{A} \vee, \mathrm{p}_{2}\right) \\
& \neg \operatorname{Card}\left(A \vee, p_{1}\right) \vee \neg \operatorname{Card}\left(A \vee, p_{3}\right)
\end{aligned}
$$

Beyond NP Pipeline for \#P

Reduce to propositional model counting:

$$
\begin{aligned}
& \Delta=\operatorname{Card}\left(\mathrm{A} \mathbf{v}, \mathrm{p}_{1}\right) \vee \ldots \vee \operatorname{Card}\left(2 \boldsymbol{*}, \mathrm{p}_{1}\right) \\
& \operatorname{Card}\left(A \vee, p_{2}\right) \vee \ldots v \operatorname{Card}\left(2 \&, \mathrm{p}_{2}\right) \\
& \operatorname{Card}\left(\mathrm{A} \boldsymbol{\vee}, \mathrm{p}_{1}\right) \vee \ldots \vee \operatorname{Card}\left(\mathrm{A} \boldsymbol{\bullet}, \mathrm{p}_{52}\right) \\
& \operatorname{Card}\left(K \vee, p_{1}\right) \vee \ldots \vee \operatorname{Card}\left(K \vee, p_{52}\right) \\
& \neg \operatorname{Card}\left(A \vee, p_{1}\right) \vee \neg \operatorname{Card}\left(A \vee, p_{2}\right) \\
& \neg \operatorname{Card}\left(A \vee, p_{1}\right) \vee \neg \operatorname{Card}\left(A \vee, p_{3}\right) \\
& \text { What will } \\
& \text { happen? }
\end{aligned}
$$

Deck of Cards Graphically

[Van den Broeck 2015]

Deck of Cards Graphically

[Van den Broeck 2015]

Deck of Cards Graphically

One model/perfect matching
[Van den Broeck 2015]

Deck of Cards Graphically

[Van den Broeck 2015]

Deck of Cards Graphically

[Van den Broeck 2015]

Deck of Cards Graphically

Model counting: How many perfect matchings?

Deck of Cards Graphically

[Van den Broeck 2015]

Deck of Cards Graphically

What if I add the unit clause $\neg \operatorname{Card}\left(\mathrm{K} \bullet, \mathrm{p}_{52}\right)$ to my CNF?

Deck of Cards Graphically

What if I add the unit clause
$\neg \operatorname{Card}\left(\mathrm{K} \bullet, \mathrm{p}_{52}\right)$ to my CNF?

Deck of Cards Graphically

What if I add unit clauses to my CNF?

Observations

- Deck of cards = complete bigraph
- Unit clause removes edge

Encode any bigraph

- Counting models = perfect matchings
- Problem is \#P-complete! :
- All solvers efficiently handle unit clauses
- No solver can do cards problem efficiently!

What's Going On Here?

Probability that Card52 is Spades given that Card1 is QH?

What's Going On Here?

Probability that Card52 is Spades given that Card1 is QH?

13/51

What's Going On Here?

Probability that Card52 is Spades given that Card2 is QH?

What's Going On Here?

Probability that Card52 is Spades given that Card2 is QH?
 13/51

What's Going On Here?

Probability that Card52 is Spades given that Card3 is QH?

What's Going On Here?

Probability that Card52 is Spades given that Card3 is QH?

13/51

Tractable Reasoning

What's going on here?
 Which property makes reasoning tractable?

Tractable Reasoning

What's going on here?

Which property makes reasoning tractable?

- High-level (first-order) reasoning
- Symmetry
- Exchangeability

\Rightarrow Lifted Inference

What are first-order circuit languages?

Negation Normal Form

[Darwiche 2002]

Decomposable NNF

Deterministic Decomposable NNF

[Darwiche 2002]

Deterministic Decomposable NNF

Weighted Model Counting

[Darwiche 2002]

Deterministic Decomposable NNF

Weighted Model Counting and much more!

[Darwiche 2002]

First-Order NNF

$\forall X, X \in \operatorname{People}: \operatorname{belgian}(X) \Rightarrow$ likes $(X$, chocolate $)$

[Van den Broeck 2013]

First-Order Decomposability

$\forall X, X \in$ People : belgian $(X) \Rightarrow$ likes $(X$, chocolate $)$

Decomposable

[Van den Broeck 2013]

First-Order Decomposability

$$
\forall X, X \in \text { People }: \text { belgian }(X) \Rightarrow \text { likes }(X, \text { chocolate })
$$

[Van den Broeck 2013]

First-Order Determinism

$\forall X, X \in \operatorname{People}: \operatorname{belgian}(X) \Rightarrow$ likes $(X$, chocolate $)$

[Van den Broeck 2013]

Deterministic Decomposable FO NNF

$$
\forall X, X \in \text { People : belgian }(X) \Rightarrow \text { likes }(X, \text { chocolate })
$$

Weighted Model Counting

[Van den Broeck 2013]

Deterministic Decomposable FO NNF

$$
\forall X, X \in \text { People : belgian }(X) \Rightarrow \text { likes }(X, \text { chocolate })
$$

Weighted Model Counting

[Van den Broeck 2013]

Deterministic Decomposable FO NNF

$$
\forall X, X \in \text { People : belgian }(X) \Rightarrow \text { likes }(X, \text { chocolate })
$$

Weighted Model Counting

[Van den Broeck 2013]

How to do first-order knowledge compilation?

Deterministic Decomposable FO NNF

$$
\Delta=\forall x, y \in \text { People, }(\text { Smokes }(x) \wedge \text { Friends }(x, y) \Rightarrow \text { Smokes }(y))
$$

Deterministic Decomposable FO NNF

$$
\Delta=\forall x, y \in \text { People, }(\text { Smokes }(x) \wedge \text { Friends }(x, y) \Rightarrow \text { Smokes }(\mathrm{y}))
$$

Deterministic Decomposable FO NNF

$$
\Delta=\forall x, y \in \text { People, }(\text { Smokes }(x) \wedge \text { Friends }(x, y) \Rightarrow \text { Smokes }(y))
$$

Deterministic Decomposable FO NNF

$$
\Delta=\forall x, y \in \text { People, }(\text { Smokes }(x) \wedge \text { Friends }(x, y) \Rightarrow \text { Smokes }(\mathrm{y}))
$$

Deterministic Decomposable FO NNF

$$
\Delta=\forall x, y \in \text { People, }(\text { Smokes }(x) \wedge \text { Friends }(x, y) \Rightarrow \text { Smokes }(y))
$$

Deterministic

[Van den Broeck 2013]

Deterministic Decomposable FO NNF

$$
\Delta=\forall x, y \in \text { People, }(\text { Smokes }(x) \wedge \text { Friends }(x, y) \Rightarrow \text { Smokes }(\mathrm{y}))
$$

[Van den Broeck 2013]

First-Order Model Counting: Example

$$
\Delta=\forall x, y \in \text { People, }(\operatorname{Smokes}(x) \wedge \text { Friends }(x, y) \Rightarrow \text { Smokes }(y))
$$

First-Order Model Counting: Example

$$
\Delta=\forall x, y \in \text { People, }(\text { Smokes }(x) \wedge \text { Friends }(x, y) \Rightarrow \text { Smokes }(y))
$$

- If we know \mathbf{D} precisely: who smokes, and there are k smokers?

Database:

$$
\begin{aligned}
& \text { Smokes(Alice) = } 1 \\
& \text { Smokes(Bob) = } 0 \\
& \text { Smokes(Charlie) = } 0 \\
& \text { Smokes(Dave) = } 1 \\
& \text { Smokes(Eve) }=0
\end{aligned}
$$

Smokes

Smokes

First-Order Model Counting: Example

$$
\Delta=\forall x, y \in \text { People, }(\text { Smokes }(x) \wedge \text { Friends }(x, y) \Rightarrow \text { Smokes }(y))
$$

- If we know D precisely: who smokes, and there are k smokers?

Database:

$$
\begin{aligned}
& \text { Smokes(Alice) = } 1 \\
& \text { Smokes(Bob) = } 0 \\
& \text { Smokes(Charlie) = } 0 \\
& \text { Smokes(Dave) = } 1 \\
& \text { Smokes(Eve) }=0
\end{aligned}
$$

First-Order Model Counting: Example

$$
\Delta=\forall x, y \in \text { People, }(\text { Smokes }(x) \wedge \text { Friends }(x, y) \Rightarrow \text { Smokes }(y))
$$

- If we know D precisely: who smokes, and there are k smokers?

Database:

$$
\begin{aligned}
& \text { Smokes(Alice) = } 1 \\
& \text { Smokes(Bob) = } 0 \\
& \text { Smokes(Charlie) = } 0 \\
& \text { Smokes(Dave) = } 1 \\
& \text { Smokes(Eve) = } 0
\end{aligned}
$$

First-Order Model Counting: Example

$$
\Delta=\forall x, y \in \text { People, }(\text { Smokes }(x) \wedge \text { Friends }(x, y) \Rightarrow \text { Smokes }(y))
$$

- If we know D precisely: who smokes, and there are k smokers?

Database:

$$
\begin{aligned}
& \text { Smokes(Alice) = } 1 \\
& \text { Smokes(Bob) = } 0 \\
& \text { Smokes(Charlie) = } 0 \\
& \text { Smokes(Dave) = } 1 \\
& \text { Smokes(Eve) }=0
\end{aligned}
$$

First-Order Model Counting: Example

$$
\Delta=\forall x, y \in \text { People, }(\text { Smokes }(x) \wedge \text { Friends }(x, y) \Rightarrow \text { Smokes }(y))
$$

- If we know D precisely: who smokes, and there are k smokers?

Database:

$$
\begin{aligned}
& \text { Smokes(Alice) = } 1 \\
& \text { Smokes(Bob) = } 0 \\
& \text { Smokes(Charlie) = } 0 \\
& \text { Smokes(Dave) = } 1 \\
& \text { Smokes(Eve) }=0
\end{aligned}
$$

First-Order Model Counting: Example

$$
\Delta=\forall x, y \in \text { People, }(\text { Smokes }(x) \wedge \text { Friends }(x, y) \Rightarrow \text { Smokes }(y))
$$

- If we know D precisely: who smokes, and there are k smokers?

Database:

$$
\begin{aligned}
& \text { Smokes(Alice) = } 1 \\
& \text { Smokes(Bob) = } 0 \\
& \text { Smokes(Charlie) = } 0 \\
& \text { Smokes(Dave) = } 1 \\
& \text { Smokes(Eve) }=0
\end{aligned}
$$

First-Order Model Counting: Example

$$
\Delta=\forall x, y \in \text { People, }(\text { Smokes }(x) \wedge \text { Friends }(x, y) \Rightarrow \text { Smokes }(y))
$$

- If we know D precisely: who smokes, and there are k smokers?

Database:

$$
\begin{aligned}
& \text { Smokes(Alice) = } 1 \\
& \text { Smokes(Bob) = } 0 \\
& \text { Smokes(Charlie) = } 0 \\
& \text { Smokes(Dave) = } \\
& \text { Smokes(Eve) = } 0
\end{aligned}
$$

First-Order Model Counting: Example

$$
\Delta=\forall x, y \in \text { People, }(\text { Smokes }(x) \wedge \text { Friends }(x, y) \Rightarrow \text { Smokes }(y))
$$

- If we know D precisely: who smokes, and there are k smokers?

Database:

$$
\begin{aligned}
& \text { Smokes(Alice) = } 1 \\
& \text { Smokes(Bob) = } 0 \\
& \text { Smokes(Charlie) = } 0 \\
& \text { Smokes(Dave) = } 1 \\
& \text { Smokes(Eve) }=0
\end{aligned}
$$

First-Order Model Counting: Example

$$
\Delta=\forall x, y \in \text { People, }(\text { Smokes }(x) \wedge \text { Friends }(x, y) \Rightarrow \text { Smokes }(y))
$$

- If we know D precisely: who smokes, and there are k smokers?

Database:

$$
\begin{aligned}
& \text { Smokes(Alice) = } 1 \\
& \text { Smokes(Bob) = } 0 \\
& \text { Smokes(Charlie) = } 0 \\
& \text { Smokes(Dave) = } 1 \\
& \text { Smokes(Eve) }=0
\end{aligned}
$$

First-Order Model Counting: Example

$$
\Delta=\forall x, y \in \text { People, }(\text { Smokes }(x) \wedge \text { Friends }(x, y) \Rightarrow \text { Smokes }(y))
$$

- If we know D precisely: who smokes, and there are k smokers?

$$
\begin{aligned}
& \text { Database: } \\
& \text { Smokes(Alice) }=1 \\
& \text { Smokes(Bob) }=0 \\
& \text { Smokes(Charlie) }=0 \\
& \text { Smokes(Dave) }=1 \\
& \text { Smokes(Eve) }=0 \\
& \cdots \\
& \cdots \\
& 2^{n^{2}-k(n-k)} \text { models }
\end{aligned}
$$

Smokes

First-Order Model Counting: Example

$$
\Delta=\forall x, y \in \text { People, }(\text { Smokes }(x) \wedge \text { Friends }(x, y) \Rightarrow \text { Smokes }(y))
$$

- If we know D precisely: who smokes, and there are k smokers?

$$
\begin{aligned}
& \text { Database: } \\
& \text { Smokes(Alice) }=1 \\
& \text { Smokes(Bob) }=0 \\
& \text { Smokes(Charlie) }=0 \\
& \text { Smokes(Dave) }=1 \\
& \text { Smokes(Eve) }=0 \\
& \cdots \\
& \cdots 2^{n^{2}-k(n-k) \quad \text { models }}
\end{aligned}
$$

- If we know that there are k smokers?

First-Order Model Counting: Example

$$
\Delta=\forall x, y \in \text { People, }(\text { Smokes }(x) \wedge \text { Friends }(x, y) \Rightarrow \text { Smokes }(y))
$$

- If we know \mathbf{D} precisely: who smokes, and there are k smokers?

Database:

Smokes(Alice) = 1
Smokes(Bob) $=0$
Smokes(Charlie) $=0$
Smokes(Dave) = 1
Smokes(Eve) $=0$

$$
\rightarrow 2^{n^{2}-k(n-k)} \text { models }
$$

- If we know that there are k smokers?

$$
\rightarrow\binom{n}{k} 2^{n^{2}-k(n-k)} \quad \text { models }
$$

First-Order Model Counting: Example

$$
\Delta=\forall x, y \in \text { People, }(\text { Smokes }(x) \wedge \text { Friends }(x, y) \Rightarrow \text { Smokes }(y))
$$

- If we know \mathbf{D} precisely: who smokes, and there are k smokers?

Database:

Smokes(Alice) = 1
Smokes(Bob) $=0$
Smokes(Charlie) $=0$
Smokes(Dave) = 1
Smokes(Eve) $=0$

$$
\rightarrow 2^{n^{2}-k(n-k)} \text { models }
$$

- If we know that there are k smokers?
- In total...

First-Order Model Counting: Example

$$
\Delta=\forall x, y \in \text { People, }(\text { Smokes }(x) \wedge \text { Friends }(x, y) \Rightarrow \text { Smokes }(y))
$$

- If we know \mathbf{D} precisely: who smokes, and there are k smokers?

Database:

$$
\begin{aligned}
& \text { Smokes(Alice) }=1 \\
& \text { Smokes(Bob) }=0 \\
& \text { Smokes(Charlie) }=0 \\
& \text { Smokes(Dave) }=1 \\
& \text { Smokes(Eve) }=0 \\
& \ldots \\
& \rightarrow 2^{n^{2}-k(n-k)} \text { models }
\end{aligned}
$$

- If we know that there are k smokers? $\quad \rightarrow\binom{n}{k} 2^{n^{2}-k(n-k)}$ models
- In total...

$$
\rightarrow \quad \sum_{k=0}^{n}\binom{n}{k} 2^{n^{2}-k(n-k)} \text { models }
$$

Compilation Rules

- Standard rules
- Shannon decomposition (DPLL)
- Detect decomposability
- Etc.
- FO Shannon decomposition:

Playing Cards Revisited

Let us automate this:

$$
\begin{array}{r}
\forall p, \exists c, \operatorname{Card}(p, c) \\
\forall c, \exists p, \operatorname{Card}(\mathrm{p}, \mathrm{c}) \\
\forall \mathrm{p}, \forall \mathrm{c}, \forall \mathrm{c}^{\prime}, \operatorname{Card}(\mathrm{p}, \mathrm{c}) \wedge \operatorname{Card}\left(\mathrm{p}, \mathrm{c}^{\prime}\right) \Rightarrow \mathrm{c}=\mathrm{c}^{\prime}
\end{array}
$$

Playing Cards Revisited

Let us automate this:

$$
\text { \#SAT }=\sum_{k=0}^{n}\binom{n}{k} \sum_{l=0}^{n}\binom{n}{l}(l+1)^{k}(-1)^{2 n-k-l}=\mathrm{n}!
$$

Playing Cards Revisited

Let us automate this:

$$
\text { \#SAT }=\sum_{k=0}^{n}\binom{n}{k} \sum_{l=0}^{n}\binom{n}{l}(l+1)^{k}(-1)^{2 n-k-l}=\mathrm{n}!
$$

Computed in time polynomial in n

Perspectives...

What I did not talk about... in KC

- Other queries and transformations
(see Dan Olteanu poster)
- Other KC languages
(FO-AODD)
- KC for logic programs
(see Vlasselaer poster)

What I did not talk about...in FOMC

- WFOMC for probabilistic databases (see Gribkoff poster)
- WFOMC for probabilistic programs (see Vlasselaer poster)
- Complexity theory (data or domain)
- PTime domain complexity for 2-var fragment
- \# P_{1} domain complexity for some 3-var CNFs

What I did not talk about...in FO

- Very related problems
- Lifted inference in SRL
- Very related applications
- Approximate lifted inference in Markov Logic
- Learn Markov logic networks
- Classical first-order reasoning
- Answer set programming,
- SMT,
- Theorem proving

Format for First-Order BeyondNP

- DIMACS contributed to SAT success
- Goals
- Trivial to parse
- Captures MLNs, Prob. Programs, Prob. DBs
- Not a powerful representation language
- FO-CNF format under construction
- Vibhav?

```
p fo-cnf 2 1
d people 1000
r Friends(people,people)
r Smokes(people)
-Smokes(x) -Friends(x,y) Smokes(y)
w Friends 3.5 1.2
w Smokes -0.5 4
```


Calendar

At IJCAI in New York on July 9-11

- StarAI 2016 (http://www.starai. org/2016) Sixth International Workshop on Statistical Relational AI
- IJCAI Tutorial
"Lifted Probabilistic Inference in Relational Models" with Dan Suciu

Conclusions

- FOMC is BeyondNP reduction target
- Existing solvers inadequate

Exponential speedups from FO solvers

- FOKC is Elegant, more than FOMC
- Intersection of communities
- Statistical relational learning (lifted inference)
- Probabilistic databases
- Automated reasoning (you!)

References

- Chavira, Mark, and Adnan Darwiche. "On probabilistic inference by weighted model counting." Artificial Intelligence 172.6 (2008): 772-799.
- Sang, Tian, Paul Beame, and Henry A. Kautz. "Performing Bayesian inference by weighted model counting." AAAI. Vol. 5. 2005.
- Fierens, Daan, et al. "Inference and learning in probabilistic logic programs using weighted boolean formulas." Theory and Practice of Logic Programming 15.03 (2015): 358-401.
- Van den Broeck, Guy, et al. "Lifted probabilistic inference by first-order knowledge compilation." Proceedings of IJCAI. AAAI Press, 2011.
- Gogate, Vibhav, and Pedro Domingos. "Probabilistic theorem proving." UAI (2012).
- Belle, Vaishak, Andrea Passerini, and Guy Van den Broeck. "Probabilistic inference in hybrid domains by weighted model integration." Proceedings of 24th International Joint Conference on Artificial Intelligence (IJCAI). 2015.
- Gribkoff, Eric, Guy Van den Broeck, and Dan Suciu. "Understanding the complexity of lifted inference and asymmetric weighted model counting." UAI (2014).
- Van den Broeck, Guy. Lifted inference and learning in statistical relational models. Diss. Ph. D. Dissertation, KU Leuven, 2013.

References

- Chavira, Mark, Adnan Darwiche, and Manfred Jaeger. "Compiling relational Bayesian networks for exact inference." International Journal of Approximate Reasoning 42.1 (2006): 4-20.
- Van den Broeck, Guy. "Towards high-level probabilistic reasoning with lifted inference." (2015).
- Niepert, Mathias, and Guy Van den Broeck. "Tractability through exchangeability: A new perspective on efficient probabilistic inference." AAAI (2014).
- Darwiche, Adnan, and Pierre Marquis. "A knowledge compilation map." Journal of Artificial Intelligence Research 17.1 (2002): 229-264.
- Gogate, Vibhav, and Pedro M. Domingos. "Exploiting Logical Structure in Lifted Probabilistic Inference." Statistical Relational Artificial Intelligence. 2010.
- Vlasselaer, Jonas, et al. "Anytime inference in probabilistic logic programs with Tp-compilation." Proceedings of IJCAI. (2015).
- Beame, Paul, et al. "Symmetric weighted first-order model counting." Proceedings of the 34th ACM Symposium on Principles of Database Systems. ACM, 2015.
- Kersting, Kristian. "Lifted Probabilistic Inference." ECAI. 2012.

