

Bridging Data and Knowledge in Neuro-Symbolic Learning

Guy Van den Broeck

Summer school on Neurosymbolic Programming - Jul 11 2022

Pure (Logic) Reasoning Pure Learning

Pure Learning

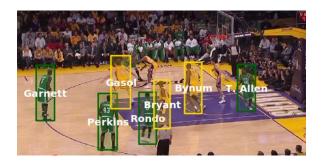
- Slow thinking: deliberative, cognitive, model-based, extrapolation
- Amazing achievements until this day
- "Pure logic is brittle" noise, uncertainty, incomplete knowledge, ...

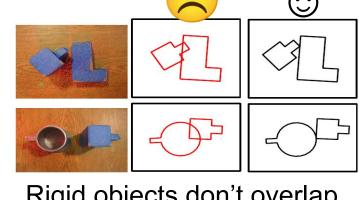
Pure (Logic) Reasoning

Pure Learning

- Fast thinking: instinctive, perceptive, model-free, interpolation
- Amazing achievements recently
- "Pure learning is brittle"

bias, algorithmic fairness, interpretability, explainability, adversarial attacks, unknown unknowns, calibration, verification, missing features, missing labels, data efficiency, shift in distribution, general robustness and safety fails to incorporate a sensible model of the world




Integrate reasoning into modern learning algorithms

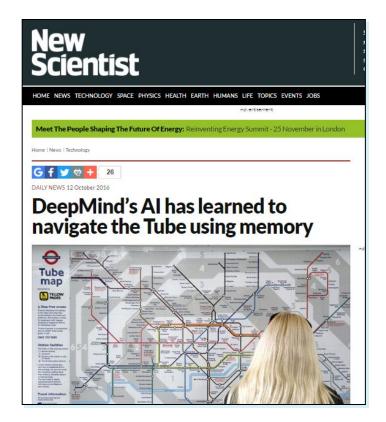
Today: Deep learning with structured output constraints Learning monotonic neural networks

Knowledge in Vision, Robotics, NLP, Activity Recognition

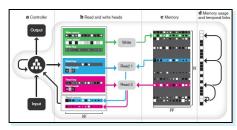
People appear at most once in a frame

Rigid objects don't overlap

At least one verb in each sentence. If X and Y are married, then they are people.



Cut the orange before squeezing the orange



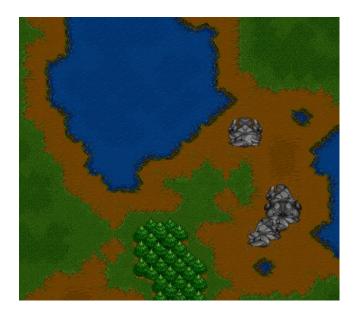
[Lu, W. L., Ting, J. A., Little, J. J., & Murphy, K. P. (2013). Learning to track and identify players from broadcast sports videos.], [Wong, L. L., Kaelbling, L. P., & Lozano-Perez, T., Collision-free state estimation. ICRA 2012], [Chang, M., Ratinov, L., & Roth, D. (2008). Constraints as prior knowledge], [Ganchev, K., Gillenwater, J., & Taskar, B. (2010). Posterior regularization for structured latent variable models]... and many many more!

Motivation: Deep Learning

Motivation: Deep Learning

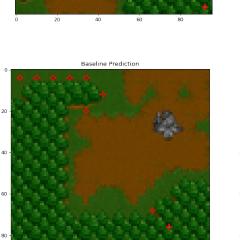
DeepMind's latest technique uses external memory to solve tasks that require logic and reasoning — a step toward more human-like Al.

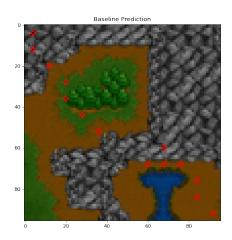
... but ...

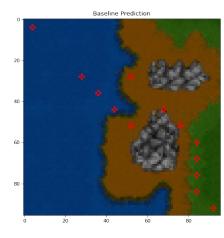

optimal planner recalculating a shortest path to the end node. To ensure that the network always moved to a valid node, the output distribution was renormalized over the set of possible triples outgoing from the current node. The performance

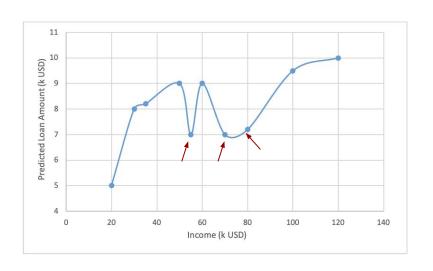
it also received input triples during the answer phase, indicating the actions chosen on the previous time-step. This makes the problem a 'structured prediction'


[Graves, A., Wayne, G., Reynolds, M., Harley, T., Danihelka, I., Grabska-Barwińska, A., et al.. (2016). Hybrid computing using a neural network with dynamic external memory. *Nature*, *538*(7626), 471-476.]


Warcraft Shortest Path


Predicting the minimum-cost path



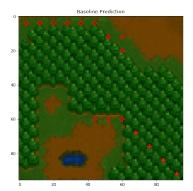


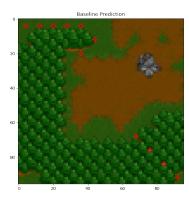
Predict Loan Amount

Neural Network Model: Increasing income can decrease the approved loan amount

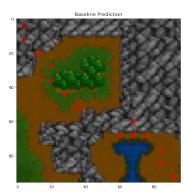
Monotonicity (Prior Knowledge):

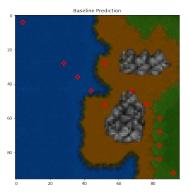
Increasing income should increase the approved loan amount

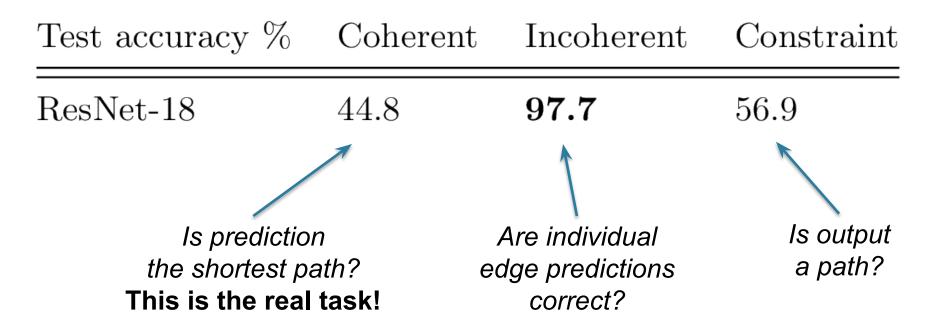

Knowledge vs. Data


- Where did the world knowledge go?
 - Python scripts
 - Decode/encode/search cleverly
 - Fix inconsistent beliefs
 - Rule-based decision systems
 - Dataset design
 - "a big hack" (with author's permission)
- In some sense we went backwards

Less principled, scientific, and intellectually satisfying ways of incorporating knowledge

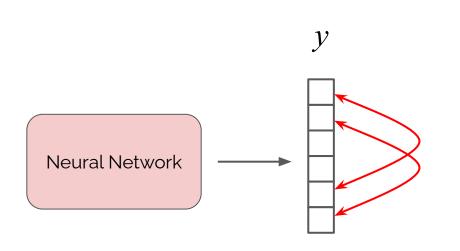

Deep Learning with Constraints


without constraint

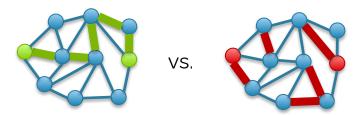


without constraint

Warcraft min-cost simple-path prediction results



A PyTorch Framework for Learning with Constraints


Kareem Ahmed Tao Li Thy Ton Quan Guo, Kai-Wei Chang Parisa Kordjamshidi Vivek Srikumar Guy Van den Broeck Sameer Singh

http://pylon-lib.github.io

Declarative Knowledge of the Output

How is the output structured? Are all possible outputs valid?

How are the outputs related to each other?

Learning this from data is inefficient Much easier to express this declaratively

Library that extends PyTorch to allow injection of declarative knowledge

- Easy to Express Knowledge: users write arbitrary constraints on the output
- Integrates with PyTorch: minimal change to existing code
- Efficient Training: compiles into loss that can be efficiently optimized
 - Exact semantic loss (see later)
 - Monte-carlo estimate of loss
 - T-norm approximation
 - o your solver?

```
PyTorch Code

for i in range(train_iters):
    ...
    py = model(x)
    ...
    loss = CrossEntropy(py,...)
```

1) Specify knowledge as a predicate

```
def check(y):
    ...
    return isValid
```

```
PyTorch Code

for i in range(train_iters):
    ...
    py = model(x)
    ...
    loss = CrossEntropy(py,...)

    loss += constraint_loss(check)(py)
```

1) Specify knowledge as a predicate

```
def check(y):
    ...
    return isValid
```

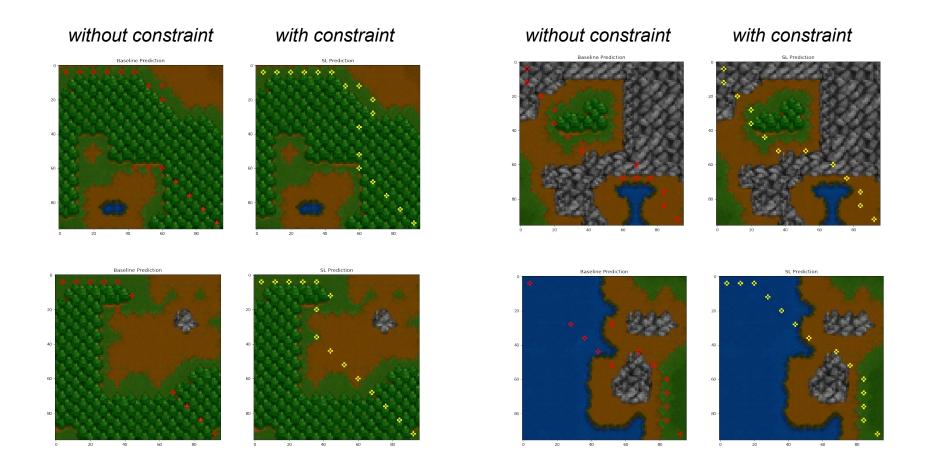
2 Add as loss to training

```
loss += constraint_loss(check)
```

```
PyTorch Code

for i in range(train_iters):
    ...
    py = model(x)
    ...
    loss = CrossEntropy(py,...)

    loss += constraint_loss(check)(py)
```


1 Specify knowledge as a predicate

```
def check(y):
    ...
    return isValid
```

2 Add as loss to training

```
loss += constraint_loss(check)
```

3 pylon derives the gradients (solves a combinatorial problem)

Warcraft min-cost simple-path prediction results

Test accuracy %	Coherent	Incoherent	Constraint
ResNet-18	44.8	97.7	56.9
+ Semantic loss	50.9	97.7	67.4

Semantic Loss

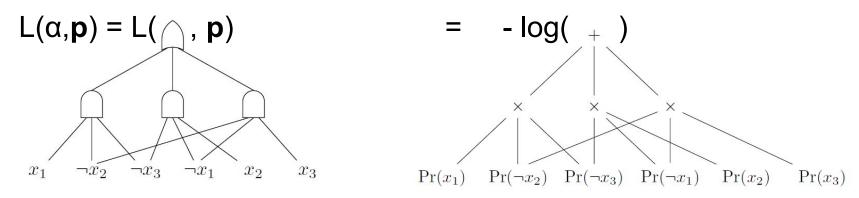
 $\underline{\mathbf{Q}}$: How close is output \boldsymbol{p} to satisfying constraint α ?

<u>A</u>: Semantic loss function $L(\alpha, \mathbf{p})$

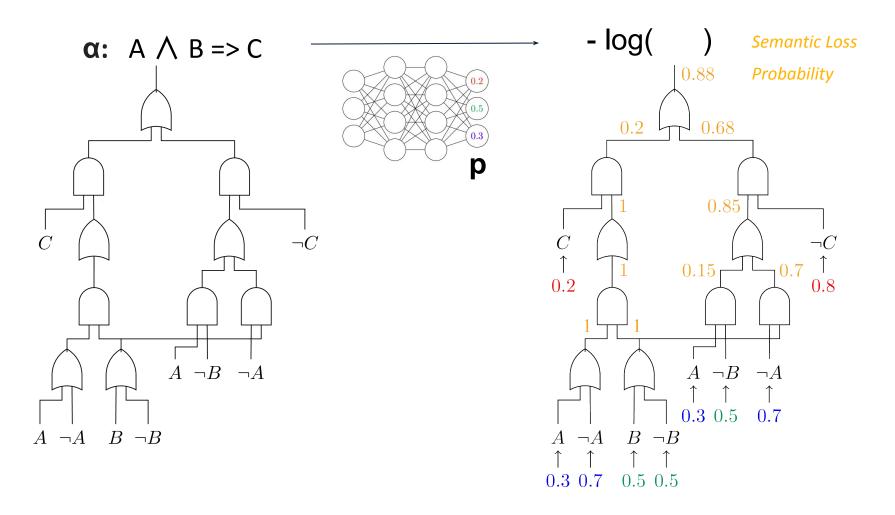
- Axioms, for example:
 - If α constrains to one label, $L(\alpha, \mathbf{p})$ is cross-entropy
 - If α implies β then $L(\alpha, \mathbf{p}) \ge L(\beta, \mathbf{p})$ (α more strict)
- Implied Properties:
 - If α is equivalent to β then $L(\alpha, \mathbf{p}) = L(\beta, \mathbf{p})$ Loss!
 - If **p** is Boolean and satisfies α then $L(\alpha, \mathbf{p}) = 0$

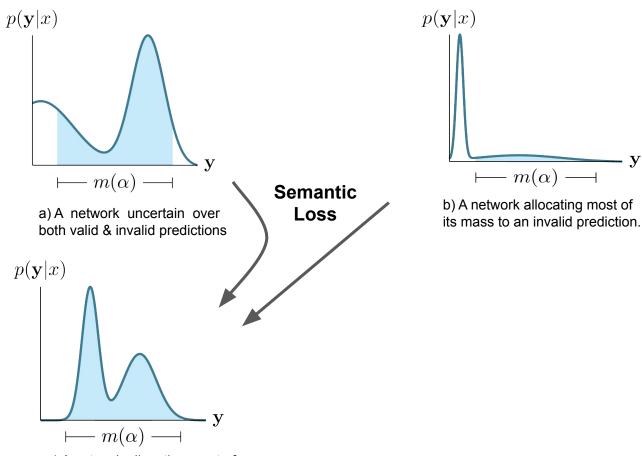
Axioms imply unique semantic loss:

$$L^{s}(\alpha, \mathsf{p}) \propto -\log \sum_{\mathbf{x} \models \alpha} \prod_{i: \mathbf{x} \models X_{i}} \mathsf{p}_{i} \prod_{i: \mathbf{x} \models \neg X_{i}} (1 - \mathsf{p}_{i})$$

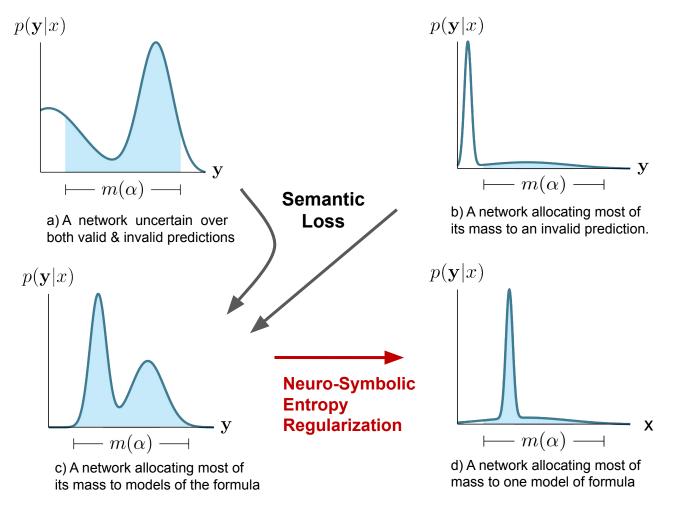

Probability of satisfying constraint α after sampling from neural net output layer **p**

In general: #P-hard 😕

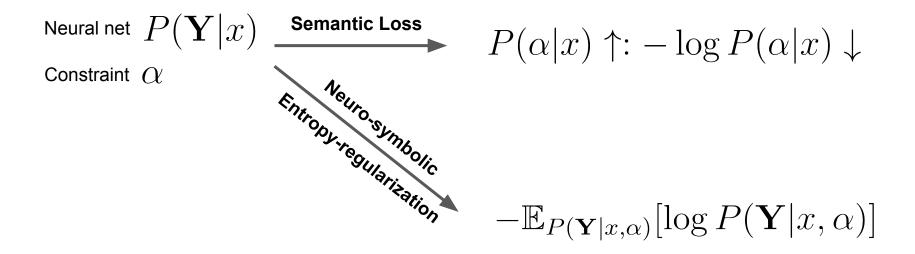

Do this probabilistic-logical reasoning during learning in a computation graph


Circuits = Computation Graphs

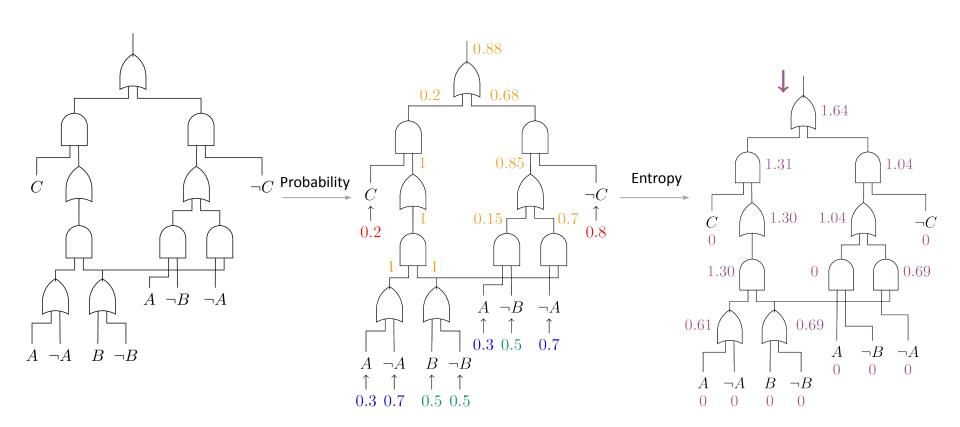
Logical circuits that can count solutions (#SAT)
 also compute semantic loss efficiently in size of circuit



- Compilation into circuit by SAT solvers (once)
- Add circuit to neural network output in pytorch/tensorflow/...



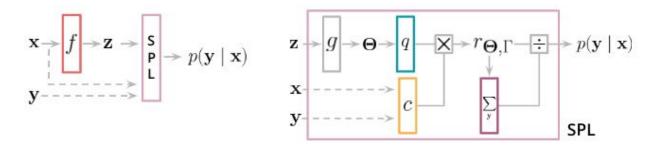
c) A network allocating most of its mass to models of the formula



Two complementary neuro-symbolic losses

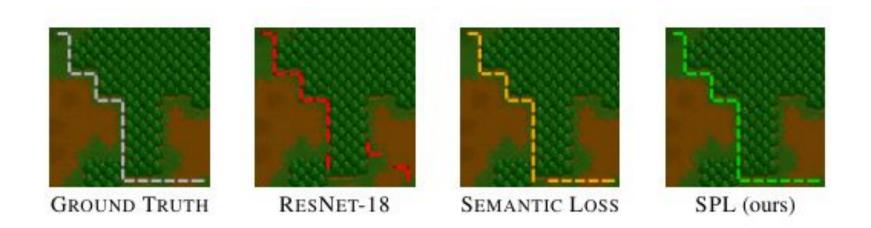
Warcraft min-cost simple-path prediction results

Test accuracy %	Coherent	Incoherent	Constraint
ResNet-18	44.8	97.7	56.9
Semantic loss	50.9	97.7	67.4
+ Entropy All	51.5	97.6	67.7
+ Entropy Circuit	55.0	$\boldsymbol{97.9}$	69.8



Joint entity-relation extraction in natural language processing

#		3	5	10	15	25	50	75
ACE05	Baseline Self-training Product t-norm	4.92 ± 1.12 7.72 ± 1.21 8.89 ± 5.09	$ 7.24 \pm 1.75 12.83 \pm 2.97 14.52 \pm 2.13 $	$ \begin{array}{c} 13.66 \pm 0.18 \\ 16.22 \pm 3.08 \\ 19.22 \pm 5.81 \end{array} $	$ \begin{vmatrix} 15.07 \pm 1.79 \\ 17.55 \pm 1.41 \\ 21.80 \pm 7.67 \end{vmatrix} $	$\begin{array}{c} 21.65 \pm 3.41 \\ 27.00 \pm 3.66 \\ 30.15 \pm 1.01 \end{array}$	$\begin{array}{c} 28.96 \pm 0.98 \\ 32.90 \pm 1.71 \\ 34.12 \pm 2.75 \end{array}$	33.02 ± 1.17 37.15 ± 1.42 37.35 ± 2.53
AC	Semantic Loss + Full Entropy + NeSy Entropy	12.00 ± 3.81 14.80 ± 3.70 14.72 ± 1.57	14.92 ± 3.14 15.78 ± 1.90 18.38 ± 2.50	$ \begin{array}{c} 22.23 \pm 3.64 \\ 23.34 \pm 4.07 \\ \textbf{26.41} \pm 0.49 \end{array} $	$ \begin{vmatrix} 27.35 \pm 3.10 \\ 28.09 \pm 1.46 \\ \textbf{31.17} \pm 1.68 \end{vmatrix} $	30.78 ± 0.68 31.13 ± 2.26 35.85 ± 0.75	36.76 ± 1.40 36.05 ± 1.00 37.62 ± 2.17	38.49 ± 1.74 39.39 ± 1.21 41.28 ± 0.46
SciERC	Baseline Self-training Product t-norm	2.71 ± 1.10 3.56 ± 1.40 6.50 ± 2.00	$\begin{array}{c} 2.94 \pm 1.00 \\ 3.04 \pm 0.90 \\ 8.86 \pm 1.20 \end{array}$	3.49 ± 1.80 4.14 ± 2.60 10.92 ± 1.60	$\begin{array}{c} 3.56 \pm 1.10 \\ 3.73 \pm 1.10 \\ 13.38 \pm 0.70 \end{array}$	8.83 ± 1.00 9.44 ± 3.80 13.83 ± 2.90		12.49 ± 2.60 13.79 ± 3.90 19.54 ± 1.70
Scil	Semantic Loss + Full Entropy + NeSy Entropy	$6.47 \pm 1.02 6.26 \pm 1.21 6.19 \pm 2.40$	$\begin{array}{c} \textbf{9.31} \pm 0.76 \\ 8.49 \pm 0.85 \\ 8.11 \pm 3.66 \end{array}$	$ \begin{array}{c} 11.50 \pm 1.53 \\ 11.12 \pm 1.22 \\ \textbf{13.17} \pm 1.08 \end{array} $	$ \begin{vmatrix} 12.97 \pm 2.86 \\ 14.10 \pm 2.79 \\ \textbf{15.47} \pm 2.19 \end{vmatrix} $	$ \begin{array}{c} 14.07 \pm 2.33 \\ 17.25 \pm 2.75 \\ \textbf{17.45} \pm 1.52 \end{array} $	$\begin{array}{c} 20.47 \pm 2.50 \\ \textbf{22.42} \pm 0.43 \\ 22.14 \pm 1.46 \end{array}$	23.72 ± 0.38 24.37 ± 1.62 25.11 ± 1.03


Semantic Probabilistic Layers

- How to give a 100% guarantee that Boolean constraints will be satisfied?
- Bake the constraint into the neural network as a special layer

Secret sauce is again tractable circuits – computation graphs for reasoning

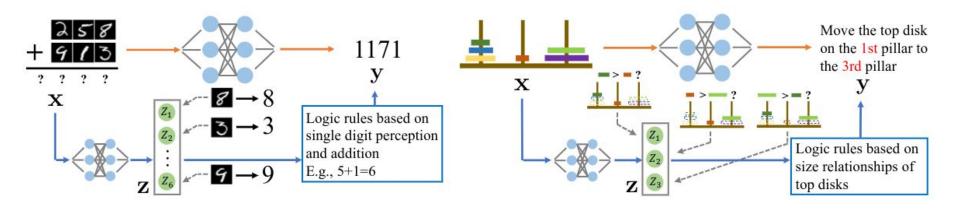
Warcraft Shortest Path

Hierarchical Multi-Label Classification

"if the image is classified as a dog, it must also be classified as an animal"

"if the image is classified as an animal, it must be classified as either cat or dog"

DATASET	EXACT	т Матсн		
	HMCNN	MLP+SPL		
CELLCYCLE	3.05 ± 0.11	$\textbf{3.79} \pm \textbf{0.18}$		
DERISI	1.39 ± 0.47	$\textbf{2.28} \pm \textbf{0.23}$		
EISEN	5.40 ± 0.15	$\textbf{6.18} \pm \textbf{0.33}$		
EXPR	4.20 ± 0.21	$\textbf{5.54} \pm \textbf{0.36}$		
GASCH1	3.48 ± 0.96	$\textbf{4.65} \pm \textbf{0.30}$		
GASCH2	3.11 ± 0.08	$\textbf{3.95} \pm \textbf{0.28}$		
SEQ	5.24 ± 0.27	$\textbf{7.98} \pm \textbf{0.28}$		
SPO	$\boldsymbol{1.97 \pm 0.06}$	$\boldsymbol{1.92 \pm 0.11}$		
DIATOMS	48.21 ± 0.57	$\textbf{58.71} \pm \textbf{0.68}$		
ENRON	5.97 ± 0.56	8.18 ± 0.68		
IMCLEF07A	79.75 ± 0.38	86.08 ± 0.45		
IMCLEF07D	76.47 ± 0.35	81.06 ± 0.68		


Neuro-Symbolic Learning Settings

Learn

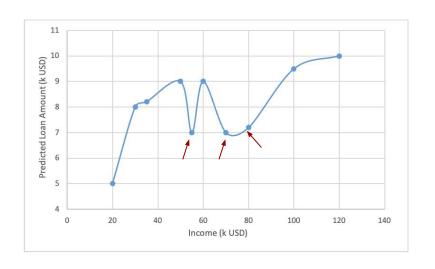
- 1. neural network given symbols and constraints and data
- 2. neural network and constraints given symbols and data
- 3. neural network and constraints and symbols given data

Everyone is working on 1. Ongoing work on 2.

Neuro-Symbolic Joint Training

Learn invariant features using neural networks. Learn logic to tie it all together.

Neuro-Symbolic Joint Training

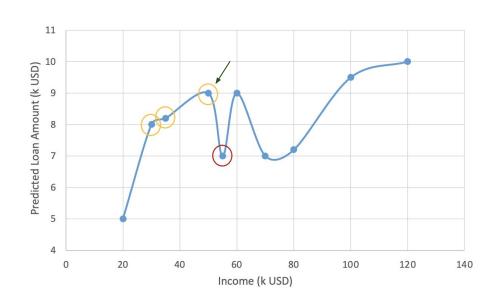

Multi-digit addition [test seq length + train/test img]				Tower of Hanoi				
5 w/ test	10 w/ test	20 w/ test	5 w/ train	10 w/ train	20 w/ train	Task #1	Task #2	Task #3
88.30	77.46	timeout	94.92	89.74	timeout	89.28	97.96	89.33
81.40	56.97	39.05	88.92	77.40	63.23	78.26	98.32	74.36
81.49 89.82	59.64	33.83 63.55	81.88 89.97	59.96 86.07	37.85 71.96	76.20 85.16	97.87 97.94	73.87 85.49
	88.30 81.40	88.30 77.46 81.40 56.97 81.49 59.64	88.30 77.46 timeout 81.40 56.97 39.05 81.49 59.64 33.83	5 w/ test 10 w/ test 20 w/ test 5 w/ train 88.30 77.46 timeout 94.92 81.40 56.97 39.05 88.92 81.49 59.64 33.83 81.88	5 w/ test 10 w/ test 20 w/ test 5 w/ train 10 w/ train 88.30 77.46 timeout 94.92 89.74 81.40 56.97 39.05 88.92 77.40 81.49 59.64 33.83 81.88 59.96	88.30 77.46 timeout 94.92 89.74 timeout 81.40 56.97 39.05 88.92 77.40 63.23 81.49 59.64 33.83 81.88 59.96 37.85	6 w/ test 10 w/ test 20 w/ test 5 w/ train 10 w/ train 20 w/ train Task #1 88.30 77.46 timeout 94.92 89.74 timeout 89.28 81.40 56.97 39.05 88.92 77.40 63.23 78.26 81.49 59.64 33.83 81.88 59.96 37.85 76.20	6 w/ test 10 w/ test 20 w/ test 5 w/ train 10 w/ train 20 w/ train Task #1 Task #2 88.30 77.46 timeout 94.92 89.74 timeout 89.28 97.96 81.40 56.97 39.05 88.92 77.40 63.23 78.26 98.32 81.49 59.64 33.83 81.88 59.96 37.85 76.20 97.87

Learn invariant features using neural networks. Learn logic to tie it all together.

Neural Networks

Monotonicity Invariants for

Predict Loan Amount

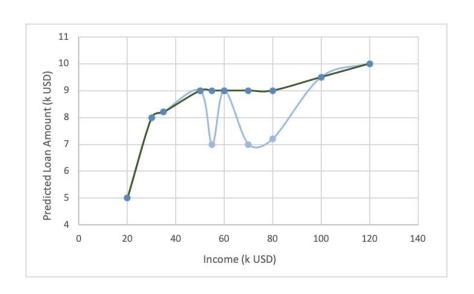


Neural Network Model: Increasing income can decrease the approved loan amount

Monotonicity (Prior Knowledge):

Increasing income should increase the approved loan amount

Counterexamples



$$\exists x, y \ x \le y \implies f(x) > f(y)$$

Computed using SMT(LRA) logical reasoning solver

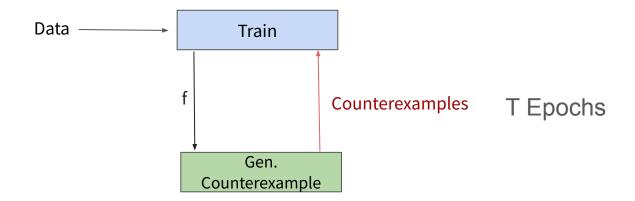
Maximal counterexamples (largest violation) using OMT

Counterexample-Guided Predictions

Monotonic Envelope:

- Replace each prediction by its maximal counterexample
- Envelope construction is online (during prediction)
- Guarantees monotonic predictions for any ReLU neural net
- Works for high-dimensional input
- Works for multiple monotonic features

Monotonic Envelope: Performance


Dataset	Feature	NN _b	Envelope	
Auto-MPG	Weight Displ. W,D W,D,HP	9.33±3.22 9.33±3.22 9.33±3.22 9.33±3.22	9.19±3.41 9.63±2.61 9.63±2.61 9.63±2.61	
Boston	Boston Rooms Crime		14.19±2.28 14.02±2.17	

Dataset	Feature	NN_b	Envelope	
Heart	Trestbps Chol. T,C	0.85 ± 0.04 0.85 ± 0.04 0.85 ± 0.04	$0.85\pm0.04 \\ 0.85\pm0.05 \\ 0.85\pm0.05$	
Adult	Cap. Gain Hours	0.84 0.84	0.84 0.84	

Guaranteed monotonicity at little to no cost

Counterexample-Guided Learning

How to use monotonicity to improve model quality? "Monotonicity as inductive bias"

Counterexample-Guided Learning: Performance

O .							
Dataset	Feature	NN _b	CGL	Dataset	Feature	NN _b	CGL
Auto-MPG	Weight 9.33±3.22 9.04±2.76 Displ. 9.33±3.22 9.08±2.87 W,D 9.33±3.22 8.86±2.67 W,D,HP 9.33±3.22 8.63±2.21	Heart	Trestbps Chol. T,C	0.85±0.04 0.85 ± 0.04 0.85±0.04	$0.86\pm0.02 \\ 0.85\pm0.05 \\ 0.86\pm0.06$		
Boston	Rooms Crime	14.37±2.4 14.37±2.4	12.24±2.87 11.66±2.89	Adult	Cap. Gain Hours	0.84 0.84	0.84 0.84

Monotonicity is a *great* inductive bias for learning

COMET:

Counterexample-Guided Monotonicity Enforced Training

Table 4: Monotonicity is an effective inductive bias. COMET outperforms Min-Max networks on all datasets. COMET outperforms DLN in regression datasets and achieves similar results in classification datasets.

Dataset	Features	Min-Max	DLN	Сомет
Auto- MPG	Weight Displ. W,D W,D,HP	9.91 ± 1.20 11.78 ± 2.20 11.60 ± 0.54 10.14 ± 1.54	16.77 ± 2.57 16.67 ± 2.25 16.56 ± 2.27 13.34 ± 2.42	8.92±2.93 9.11±2.25 8.89±2.29 8.81±1.81
Boston	Rooms Crime	30.88 ± 13.78 25.89 ± 2.47	15.93 ± 1.40 12.06 ± 1.44	11.54±2.55 11.07±2.99

Dataset	Features	Min-Max	DLN	Сомет
Heart	Trestbps Chol. T,C	0.75 ± 0.04 0.75 ± 0.04 0.75 ± 0.04	0.85 ± 0.02 0.85 ± 0.04 0.86 ± 0.02	$\begin{array}{c} 0.86{\pm}0.03 \\ 0.87{\pm}0.03 \\ 0.86{\pm}0.03 \end{array}$
Adult	Cap. Gain Hours	0.77 0.73	0.84 0.85	0.84 0.84

COMET = Provable Guarantees + SotA Results

The Al Dilemma

- Knowledge is (hidden) everywhere in ML
- A little bit of reasoning goes a long way!

Deep learning with structured output constraints Learning monotonic neural networks

Thanks

This was the work of many wonderful students/postdoc/collaborators!

References: http://starai.cs.ucla.edu/publications/