Tractable Learning in Structured Probability Spaces

Guy Van den Broeck

UCLA

DTAI Seminar - KU Leuven Dec 20, 2016

Running Example

Courses:

- Logic (L)
- Knowledge Representation (K)
- Probability (P)
- Artificial Intelligence (A)

Constraints

- Must take at least one of Probability or Logic.
- Probability is a prerequisite for AI.
- The prerequisites for KR is either AI or Logic.

Data

	\mathbf{L}	Κ	Р	A	Students
-	0	0	1	0	6
	0	0	1	1	54
	0	1	1	1	10
	1	0	0	0	5
	1	0	1	0	1
	1	0	1	1	0
	1	1	0	0	17
	1	1	1	0	4
	1	1	1	1	3

Probability Space

unstructured

L	К	Р	А
0	0	0	0
0	0	0	1
0	0	1	0
0	0	1	1
0	1	0	0
0	1	0	1
0	1	1	0
0	1	1	1
1	0	0	0
1	0	0	1
1	0	1	0
1	0	1	1
1	1	0	0
1	1	0	1
1	1	1	0
1	1	1	1

unstructured

L	К	Р	А
0	0	0	0
0	0	0	1
0	0	1	0
0	0	1	1
0	1	0	0
0	1	0	1
0	1	1	0
0	1	1	1
1	0	0	0
1	0	0	1
1	0	1	0
1	0	1	1
1	1	0	0
1	1	0	1
1	1	1	0
1	1	1	1

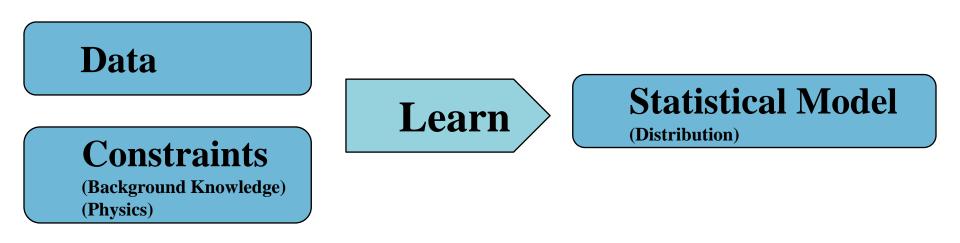
- Must take at least one of Probability or Logic.
- Probability is a prerequisite for AI.
- The prerequisites for KR is either AI or Logic.

7 out of 16 instantiations are impossible

structured

L	К	Р	А
0	0	0	0
0	0	0	1
0	0	1	0
0	0	1	1
0	1		0
0	1	0	1
0	1	1	0
0	1	1	1
1	0	0	0
1	0	0	1
1	0	1	0
1	0	1	1
1	1	0	0
1	1	0	1
1	1	1	0
1	1	1	1

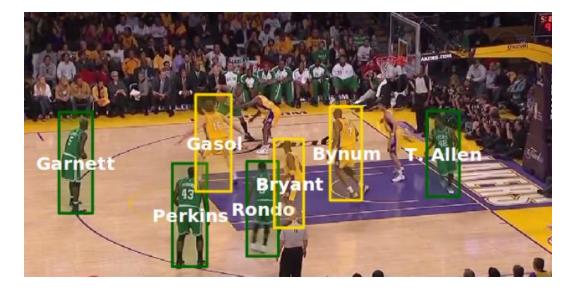
Learning with Constraints



Learn a statistical model that assigns **zero probability**

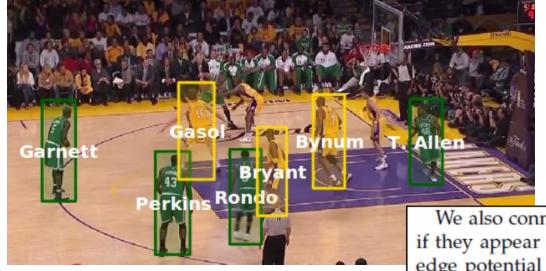
to instantiations that violate the constraints.

Example: Video



[Lu, W. L., Ting, J. A., Little, J. J., & Murphy, K. P. (2013). Learning to track and identify players from broadcast sports videos.]

Example: Video



We also connect all pairs of identity nodes $y_{t,i}$ and $y_{t,j}$ if they appear in the same time *t*. We then introduce an edge potential that enforces mutual exclusion:

$$\psi_{\text{mutex}}(y_{t,i}, y_{t,j}) = \begin{cases} 1 & \text{if } y_{t,i} \neq y_{t,j} \\ 0 & \text{otherwise} \end{cases}$$
(5)

This potential specifies the constraint that a player can be appear only *once* in a frame. For example, if the *i*-th detection $y_{t,i}$ has been assign to Bryant, $y_{t,j}$ cannot have the same identity because Bryant is impossible to appear twice in a frame.

[Lu, W. L., Ting, J. A., Little, J. J., & Murphy, K. P. (2013). Learning to track and identify players from broadcast sports videos.]

Non-local dependencies:

At least one verb in each sentence

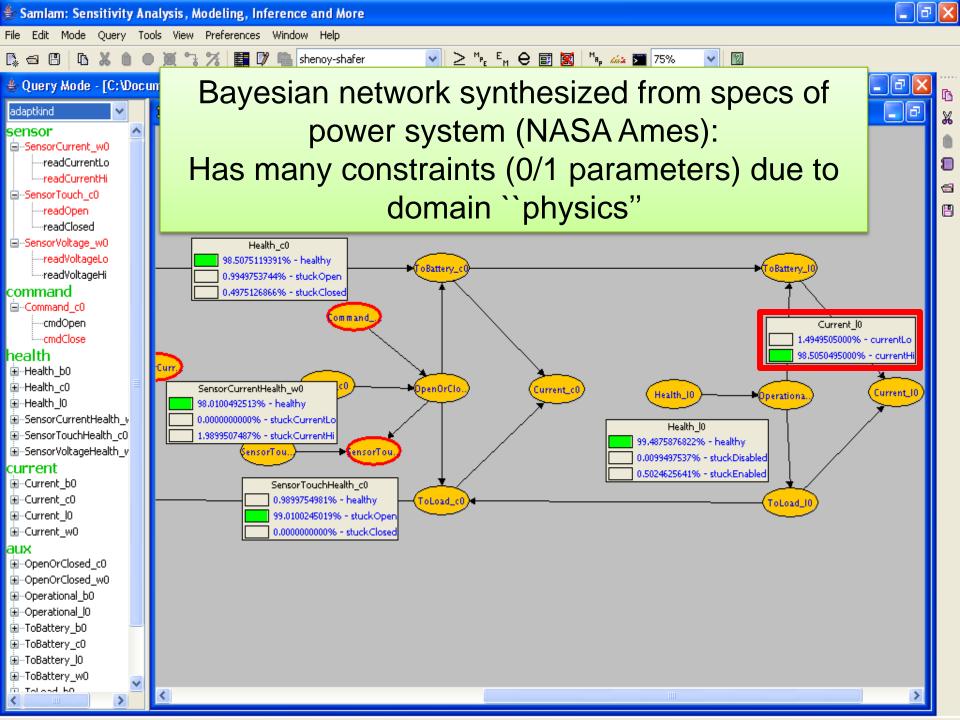
- Non-local dependencies:
 At least one verb in each sentence
- Sentence compression
 If a modifier is kept, its subject is also kept

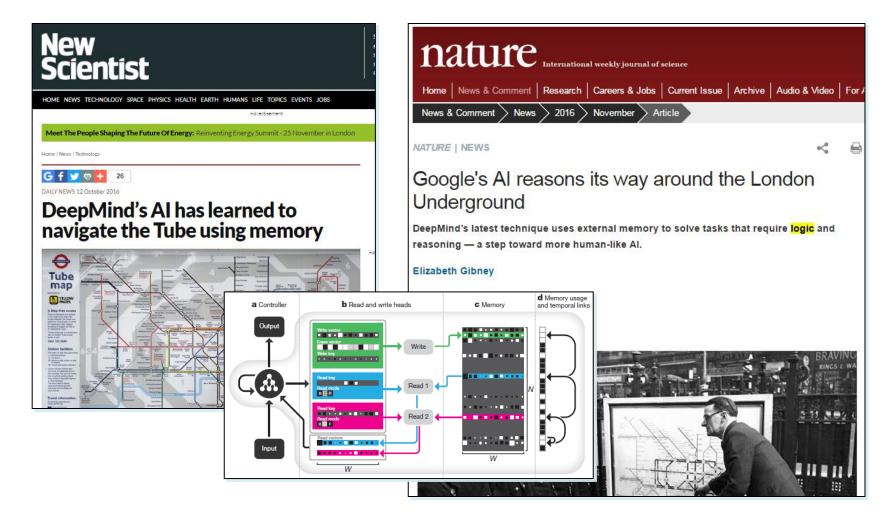
- Non-local dependencies:
 At least one verb in each sentence
- Sentence compression If a modifier is kept, its subject is also kept
- Information extraction

	Citations				
Start	The citation must start with author				
	or editor.				
AppearsOnce	Each field must be a consecutive list				
	of words, and can appear at most				
	once in a citation.				
Punctuation	State transitions must occur on				
	punctuation marks.				
BookJournal	The words proc, journal, proceed-				
	ings, ACM				
	are JOURNAL or BOOKTITLE.				
TechReport	The words <i>tech</i> , <i>technical</i> are				
	TECH_REPORT.				
Title	Quotations can appear only in titles.				
Location	The words CA, Australia, NY are				
	LOCATION.				

- Non-local dependencies:
 At least one verb in each sentence
- Sentence compression If a modifier is kept, its subject is also kept
- Information extraction
- Semantic role labeling
- ... and many more!

	Citations				
Start	The citation must start with author				
	or editor.				
AppearsOnce	Each field must be a consecutive list				
	of words, and can appear at most				
	once in a citation.				
Punctuation	State transitions must occur on				
	punctuation marks.				
BookJournal	The words proc, journal, proceed-				
	ings, ACM				
are JOURNAL or BOOKTITLE.					
TechReport	The words <i>tech</i> , <i>technical</i> are				
	TECH_REPORT.				
Title	itle Quotations can appear only in titles.				
Location	The words CA, Australia, NY are				
	LOCATION.				





New Scientist

HOME NEWS TECHNOLOGY SPACE PHYSICS HEALTH EARTH HUMANS LIFE TOPICS EVENTS JOBS

Meet The People Shaping The Future Of Energy: Reinventing Energy Summit - 25 November in Londo

iome | News | Technology

G f 🎔 🗢 + 🔤 26

DAILY NEWS 12 October 2016

DeepMind's AI has learned to navigate the Tube using memory

nature International Works

 Home
 News & Comment
 Research
 Careers & Jobs
 Current Issue
 Archive
 Audio & Video
 Fo

 News & Comment
 News
 2016
 November
 Article

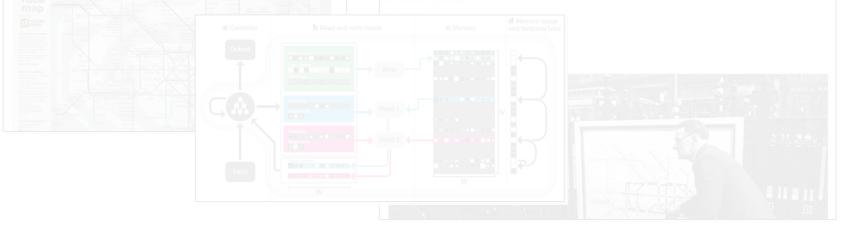
NATURE | NEWS

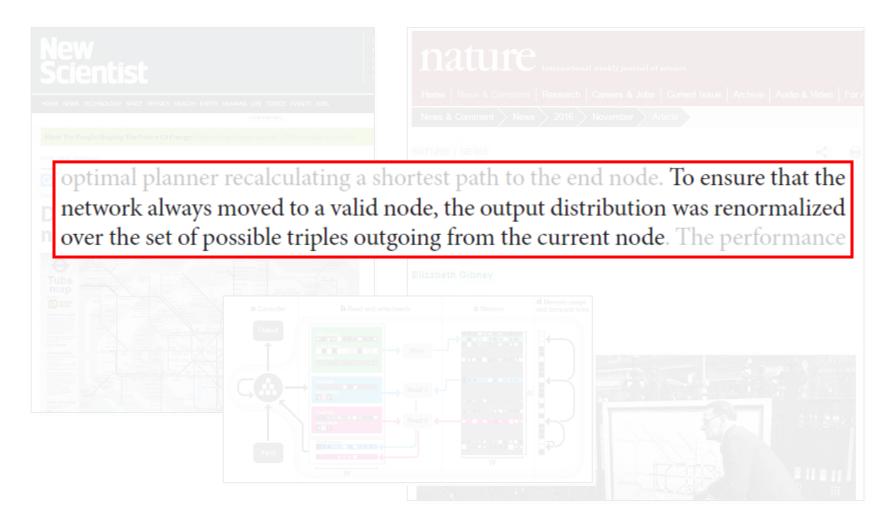
.

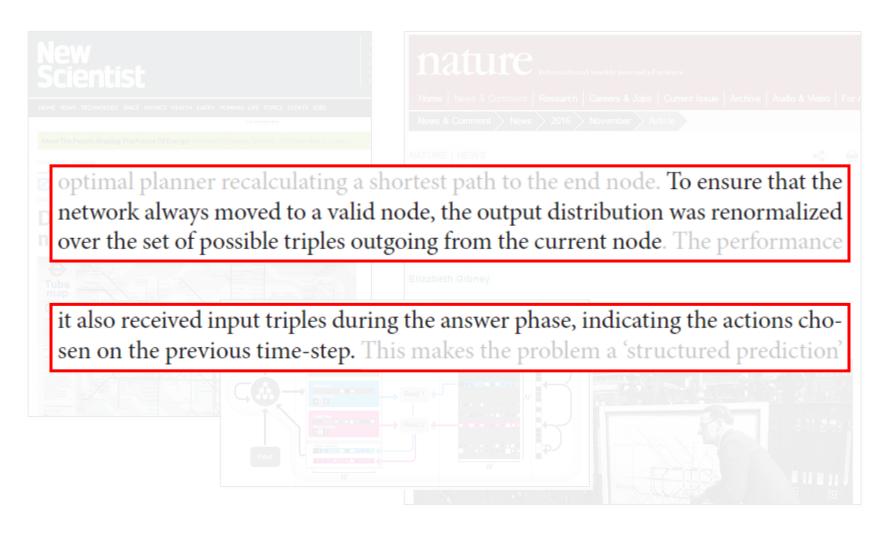
Google's Al reasons its way around the London Underground

DeepMind's latest technique uses external memory to solve tasks that require <mark>logic</mark> and easoning — a step toward more human-like Al.

Elizabeth Gibne

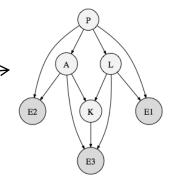






What are people doing now?

- Ignore constraints
- Handcraft into models —
- Use specialized distributions
- Find non-structured encoding
- Try to learn constraints
- Hack your way around



What are people doing now?

E2

Κ

E1

- Ignore constraints
- Handcraft into models —
- Use specialized distributions
- Find non-structured encoding
- Try to learn constraints
- Hack your way around

Accuracy ?

- Specialized skill ?
- Intractable inference ?
 - Intractable learning ?
 - Waste parameters ?

Risk predicting out of space ?

you are on your own 😣

• Everywhere in ML!

- Configuration problems, inventory, video, text, deep learning
- Planning and diagnosis (physics)
- Causal models: cooking scenarios (interpreting videos)
- Combinatorial objects: parse trees, rankings, directed acyclic graphs, trees, simple paths, game traces, etc.

• Everywhere in ML!

- Configuration problems, inventory, video, text, deep learning
- Planning and diagnosis (physics)
- Causal models: cooking scenarios (interpreting videos)
- Combinatorial objects: parse trees, rankings, directed acyclic graphs, trees, simple paths, game traces, etc.
- Some representations: constrained conditional models, mixed networks, probabilistic logics.

• Everywhere in ML!

- Configuration problems, inventory, video, text, deep learning
- Planning and diagnosis (physics)
- Causal models: cooking scenarios (interpreting videos)
- Combinatorial objects: parse trees, rankings, directed acyclic graphs, trees, simple paths, game traces, etc.
- Some representations: constrained conditional models, mixed networks, probabilistic logics.

No ML boxes out there that take constraints as input! 🛞

• Everywhere in ML!

- Configuration problems, inventory, video, text, deep learning
- Planning and diagnosis (physics)
- Causal models: cooking scenarios (interpreting videos)
- Combinatorial objects: parse trees, rankings, directed acyclic graphs, trees, simple paths, game traces, etc.
- Some representations: constrained conditional models, mixed networks, probabilistic logics.

No ML boxes out there that take constraints as input! 🛞

<u>Goal</u>: Constraints as important as data! General purpose!

Specification Language: Logic

unstructured

L	К	Р	А
0	0	0	0
0	0	0	1
0	0	1	0
0	0	1	1
0	1	0	0
0	1	0	1
0	1	1	0
0	1	1	1
1	0	0	0
1	0	0	1
1	0	1	0
1	0	1	1
1	1	0	0
1	1	0	1
1	1	1	0
1	1	1	1

- Must take at least one of Probability or Logic.
- Probability is a prerequisite for AI.
- The prerequisites for KR is either AI or Logic.

7 out of 16 instantiations are impossible

structured

L	К	Р	А
0	0	0	0
0	0	0	1
0	0	1	0
0	0	1	1
0	1		0
0	1	0	1
0	1	1	0
0	1	1	1
1	0	0	0
1	0	0	1
1	0	1	0
1	0	1	1
1	1	0	0
1	1	0	1
1	1	1	0
1	1	1	1

Boolean Constraints

un	stru	ctu	red	
L	K	Р	А	
0	0	0	0	
0	0	0	1	
0	0	1	0	$P \lor L$
0	0	1	1	$A \Rightarrow P$
0	1	0	0	
0	1	0	1	$K \Rightarrow (P \lor L)$
0	1	1	0	
0	1	1	1	
1	0	0	0	
1	0	0	1	
1	0	1	0	7 out of 16 instantiations
1	0	1	1	/ out of to instantiations
1	1	0	0	are impossible
1	1	0	1	L.
1	1	1	0	
1	1	1	1	

structured

L	K	Р	А
	0		0
0	0	0	1
0	0	1	0
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	0
1	0	0	1
1	0	1	0
1	0	1	1
1	1	0	0
1	1	0	1
1	1	1	0
1	1	1	1

Combinatorial Objects: Rankings

rank	sushi	rank	sushi
1	fatty tuna	1	shrimp
2	sea urchin	2	sea urchin
3	salmon roe	3	salmon roe
4	shrimp	4	fatty tuna
5	tuna	5	tuna
6	squid	6	squid
7	tuna roll	7	tuna roll
8	see eel	8	see eel
9	egg	9	egg
10	cucumber roll	10	cucumber roll

10 items: 3,628,800 rankings

20 items: 2,432,902,008,176,640,000 rankings

Combinatorial Objects: Rankings

rank	sushi	rank	sushi
1	fatty tuna	1	shrimp
2	sea urchin	2	sea urchin
3	salmon roe	3	salmon roe
4	shrimp	4	fatty tuna
5	tuna	5	tuna
6	squid	6	squid
7	tuna roll	7	tuna roll
8	see eel	8	see eel
9	egg	9	egg
10	cucumber roll	10	cucumber roll

A_{ij} item *i* at position *j*(*n* items require *n*²
Boolean variables)

Combinatorial Objects: Rankings

rank	sushi	rank	sushi
1	fatty tuna	1	shrimp
2	sea urchin	2	sea urchin
3	salmon roe	3	salmon roe
4	shrimp	4	fatty tuna
5	tuna	5	tuna
6	squid	6	squid
7	tuna roll	7	tuna roll
8	see eel	8	see eel
9	egg	9	egg
10	cucumber roll	10	cucumber roll

A_{ij} item *i* at position *j*(*n* items require *n*²
Boolean variables)

An item may be assigned to more than one position

A position may contain more than one item

A_{ij} : item *i* at position *j*

	pos 1	pos 2	pos 3	pos 4
item 1	<i>A</i> ₁₁	<i>A</i> ₁₂	<i>A</i> ₁₃	<i>A</i> ₁₄
item 2	<i>A</i> ₂₁	A ₂₂	A ₂₃	<i>A</i> ₂₄
item 3	<i>A</i> ₃₁	<i>A</i> ₃₂	<i>A</i> ₃₃	<i>A</i> ₃₄
item 4	A_{41}	A ₄₂	<i>A</i> ₄₃	A_{44}

A_{ij} : item *i* at position *j*

	pos 1	pos 2	pos 3	pos 4
item 1	<i>A</i> ₁₁	<i>A</i> ₁₂	<i>A</i> ₁₃	<i>A</i> ₁₄
item 2	<i>A</i> ₂₁	A ₂₂	A ₂₃	<i>A</i> ₂₄
item 3	<i>A</i> ₃₁	<i>A</i> ₃₂	<i>A</i> ₃₃	<i>A</i> ₃₄
item 4	A_{41}	A_{42}	A_{43}	A_{44}

constraint: each item *i* assigned to a unique position (*n* constraints)

$$\bigvee_{j} A_{ij} \wedge \left(\bigwedge_{k \neq j} \neg A_{ik}\right)$$

A_{ij} : item *i* at position *j*

	pos 1	pos 2	pos 3	pos 4
item 1	<i>A</i> ₁₁	A ₁₂	<i>A</i> ₁₃	<i>A</i> ₁₄
item 2	A ₂₁	A ₂₂	A ₂₃	<i>A</i> ₂₄
item 3	<i>A</i> ₃₁	A ₃₂	<i>A</i> ₃₃	<i>A</i> ₃₄
item 4	A ₄₁	A ₄₂	A ₄₃	A_{44}

constraint: each item *i* assigned to a unique position (*n* constraints)

$$\bigvee_{j} A_{ij} \wedge \left(\bigwedge_{k \neq j} \neg A_{ik}\right)$$

constraint: each position *j* assigned a unique item (*n* constraints)

$$\bigvee_i A_{ij} \wedge \left(\bigwedge_{k \neq i} \neg A_{kj}\right)$$

A_{ij} : item *i* at position *j*

	pos 1	pos 2	pos 3	pos 4
item 1	<i>A</i> ₁₁	A ₁₂	<i>A</i> ₁₃	<i>A</i> ₁₄
item 2	A ₂₁	A ₂₂	A ₂₃	<i>A</i> ₂₄
item 3	<i>A</i> ₃₁	A ₃₂	A ₃₃	<i>A</i> ₃₄
item 4	<i>A</i> ₄₁	A ₄₂	A ₄₃	A_{44}

constraint: each item *i* assigned to a unique position (*n* constraints)

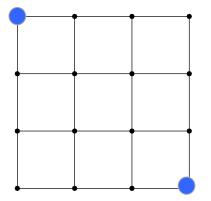
$$\bigvee_{j} A_{ij} \wedge \left(\bigwedge_{k \neq j} \neg A_{ik}\right)$$

constraint: each position *j* assigned a unique item (*n* constraints)

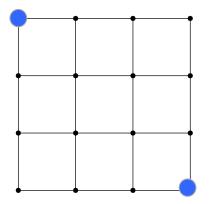
$$\bigvee_i A_{ij} \wedge \left(\bigwedge_{k \neq i} \neg A_{kj}\right)$$

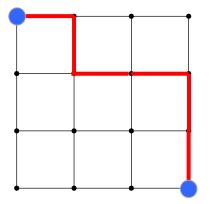
total constraints 2n<u>unstructured</u> space 2^{n^2} structured space n!

Structured Space for Paths



Structured Space for Paths

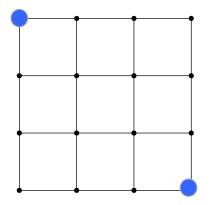


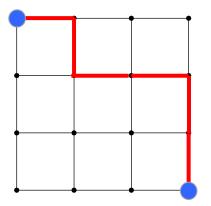


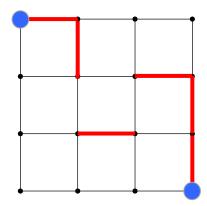
Good variable assignment (represents route)

184

Structured Space for Paths







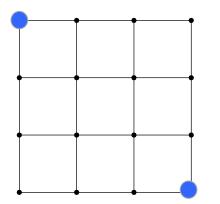
Good variable assignment (represents route)

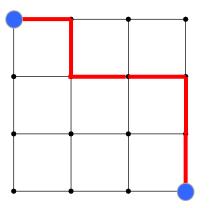
Bad variable assignment (does not represent route)

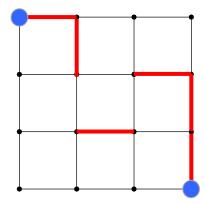
184

16,777,032

Structured Space for Paths







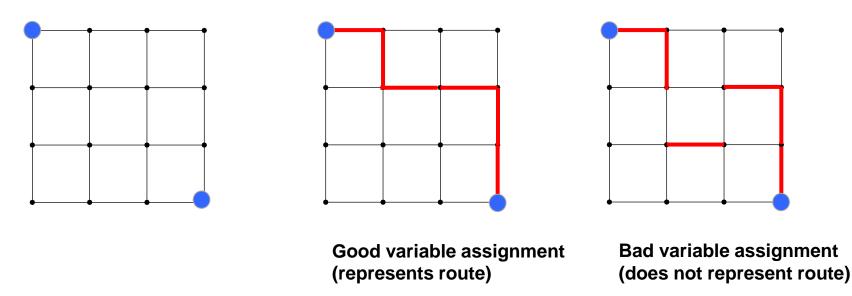
Good variable assignment (represents route) Bad variable assignment (does not represent route)

184

16,777,032

Space easily encoded in logical constraints ©

Structured Space for Paths



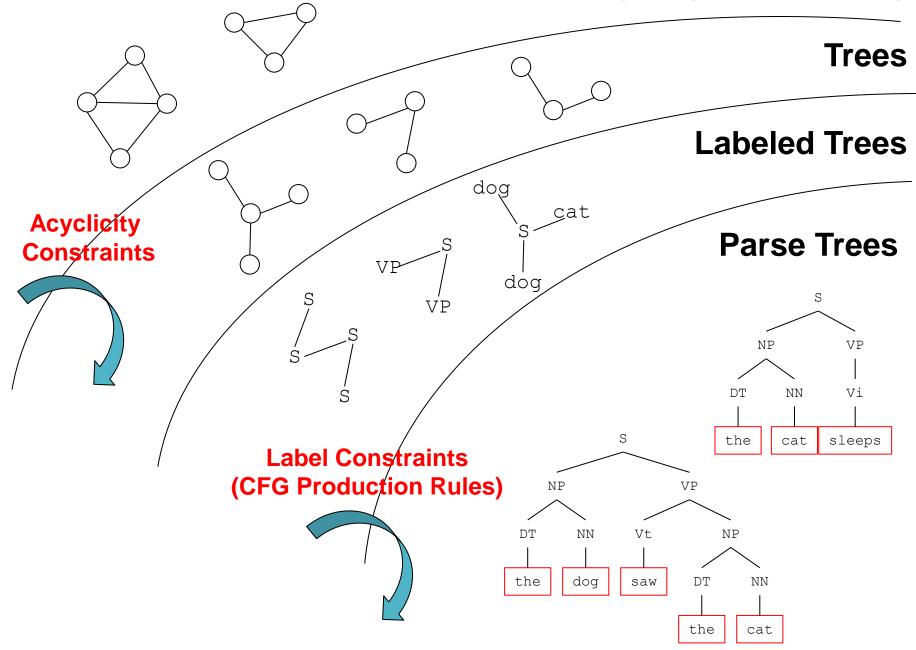
184

16,777,032

Space easily encoded in logical constraints ©

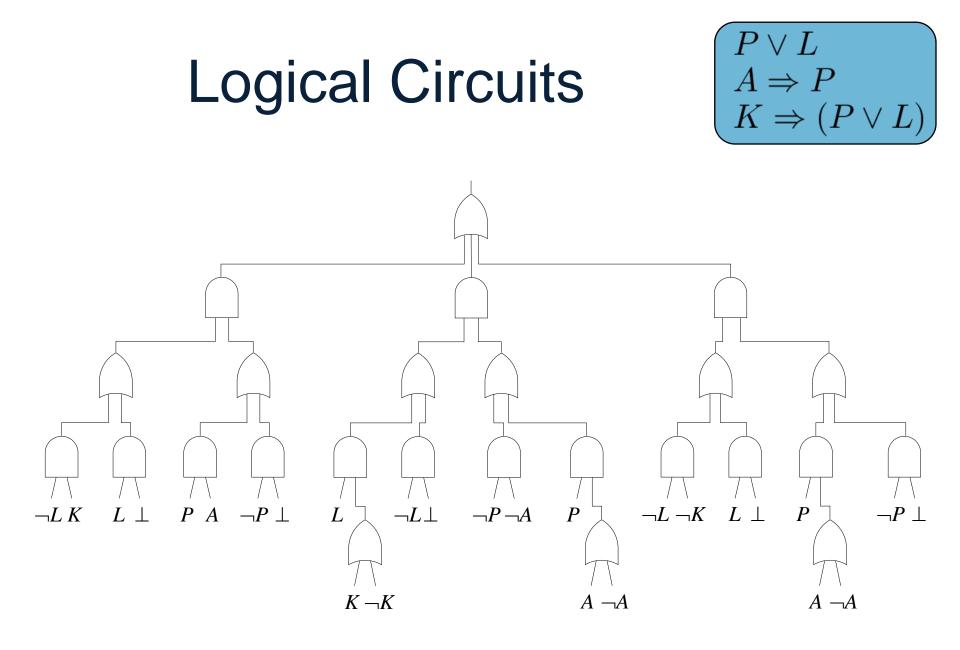
Unstructured probability space: $184+16,777,032 = 2^{24}$

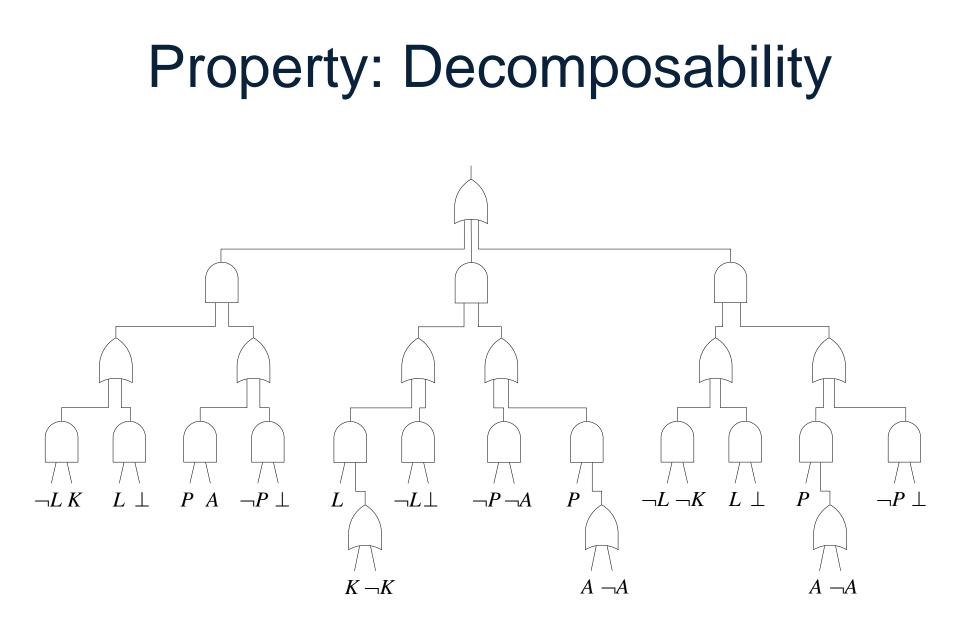
Undirected Graphs (Unstructured)

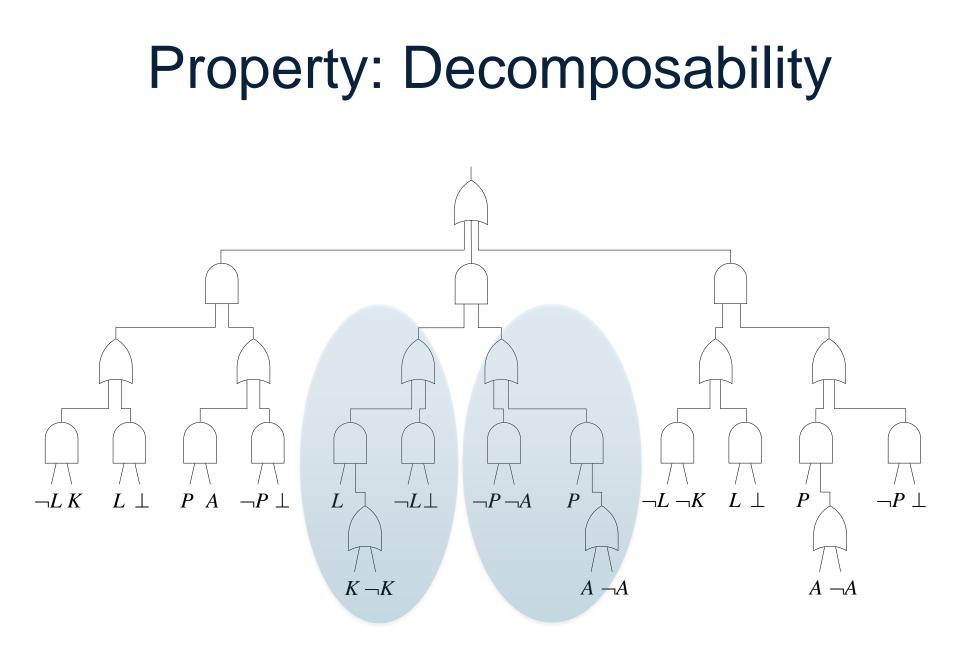


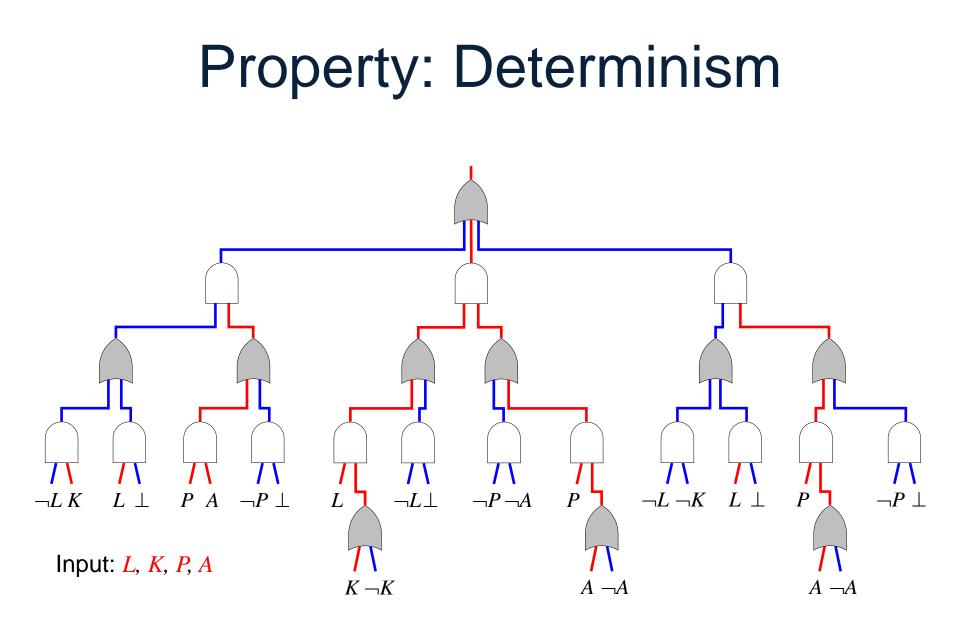
"Deep Architecture"

Logic + Probability

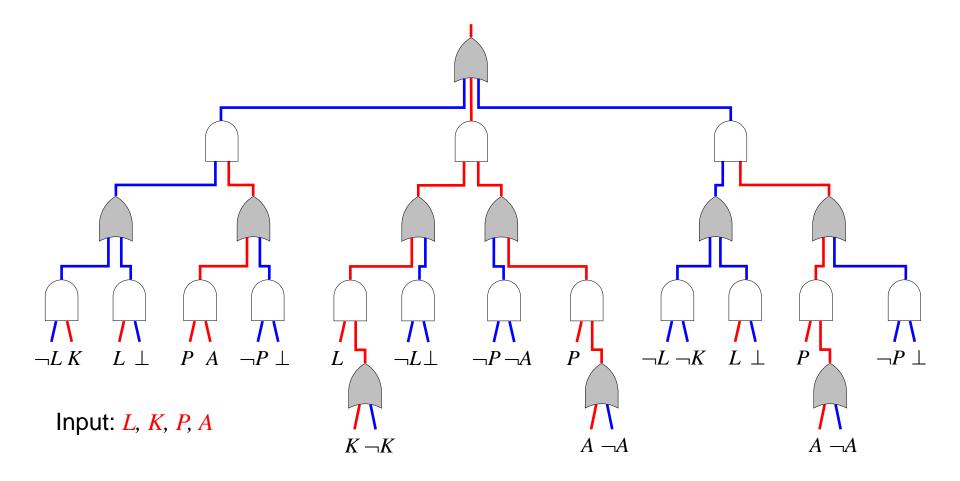




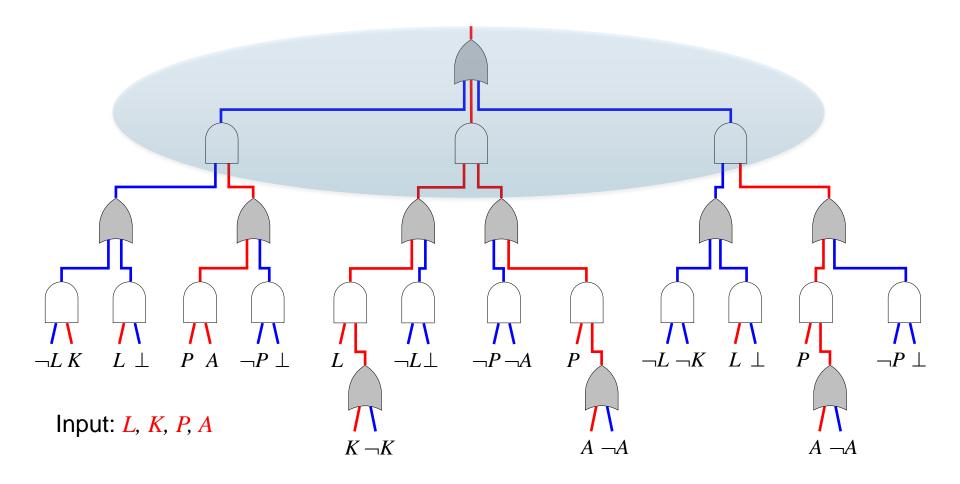




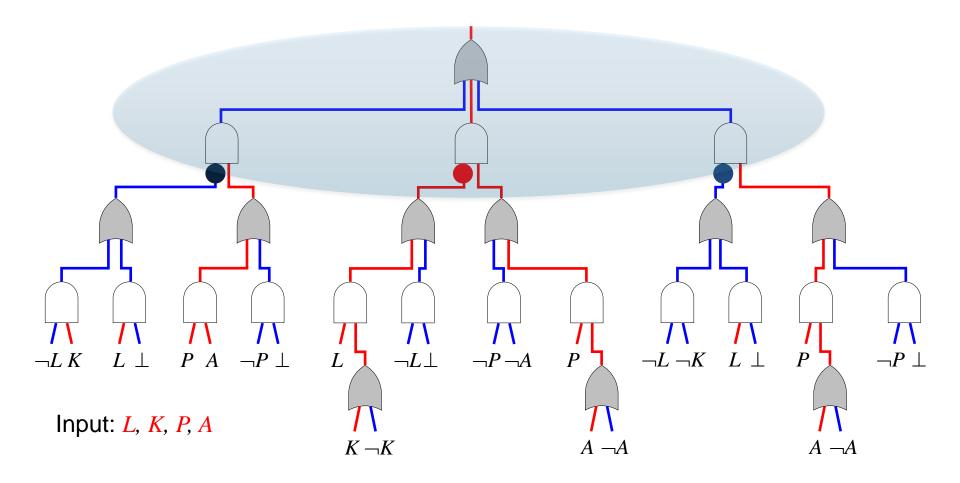
Sentential Decision Diagram (SDD)



Sentential Decision Diagram (SDD)



Sentential Decision Diagram (SDD)



Tractable for Logical Inference

- Is structured space empty? (SAT)
- Count size of structured space (#SAT)
- Check equivalence of spaces
- Algorithms linear in circuit size (pass up, pass down, similar to backprop)

Tractable for Logical Inference

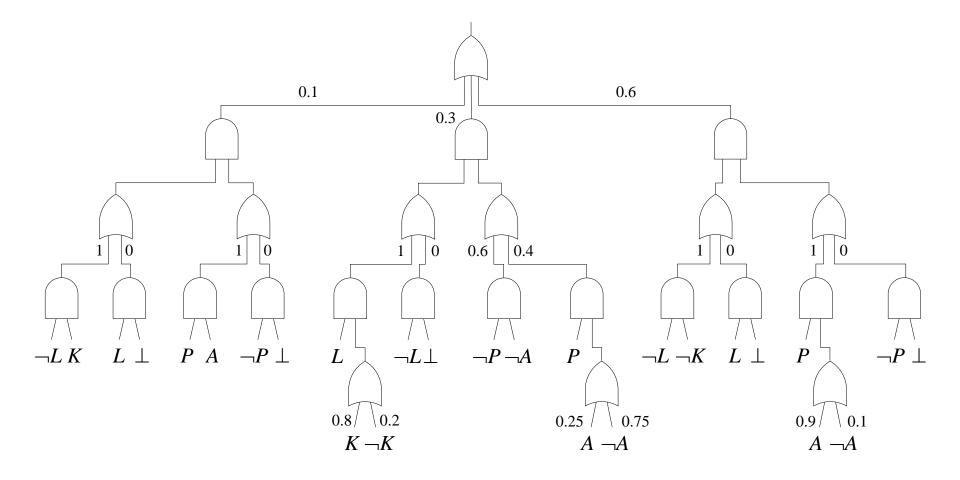
- Is structured space empty? (SAT)
- Count size of structured space (#SAT)
- Check equivalence of spaces
- Algorithms linear in circuit size (pass up, pass down, similar to backprop)

SCIENCE + TECHNOLOGY

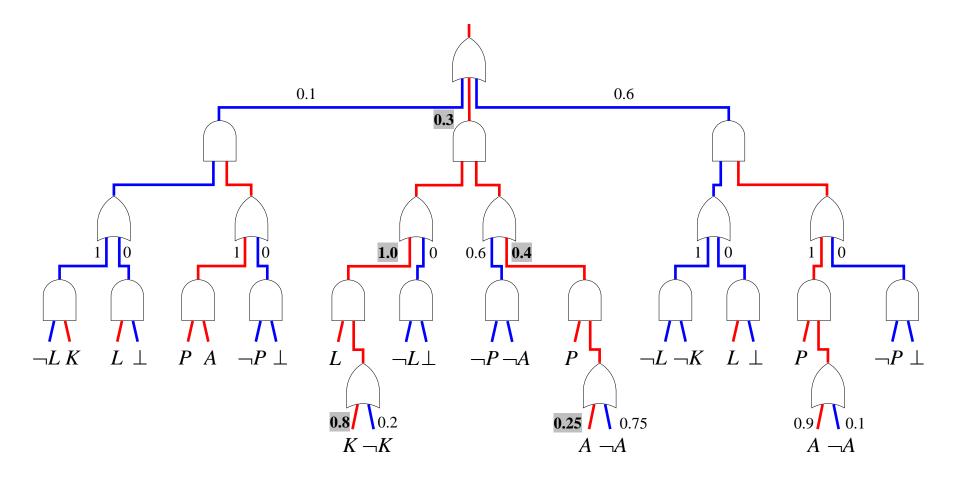
Artificial intelligence framework developed by UCLA professor now powers Toyota websites

Adnan Darwiche's invention helps consumers customize their vehicles online

PSDD: Probabilistic SDD

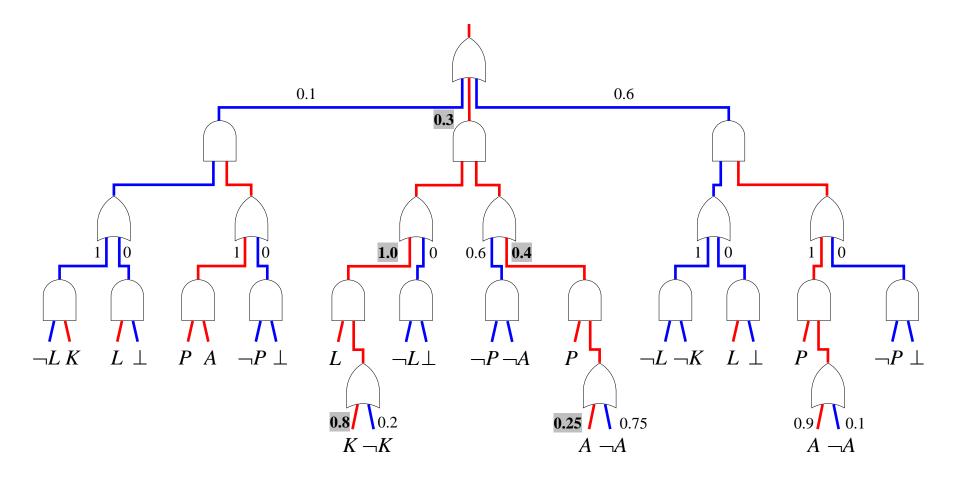


PSDD: Probabilistic SDD

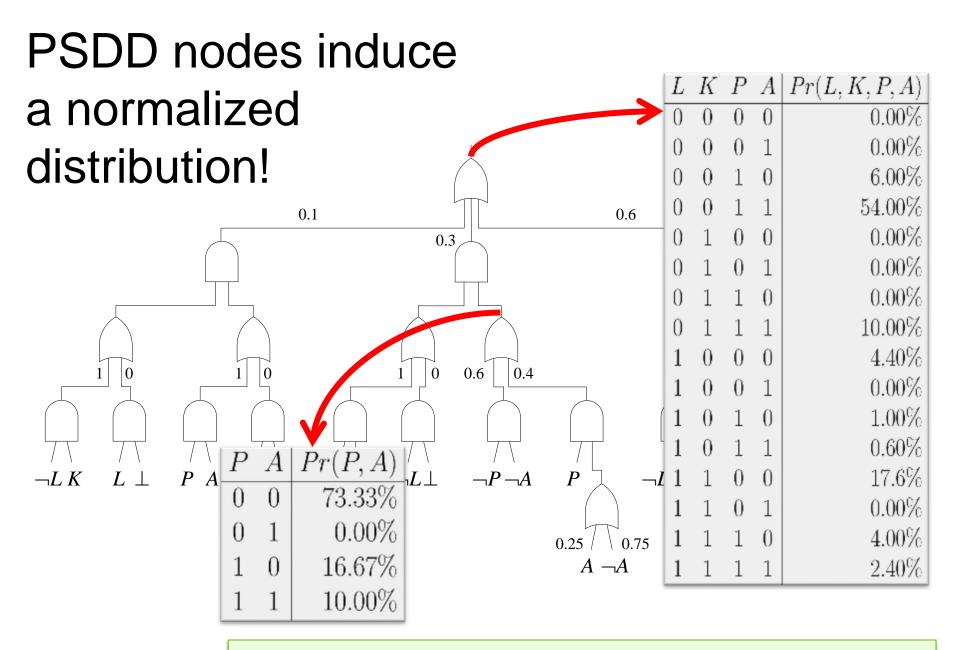


Input: *L*, *K*, *P*, *A*

PSDD: Probabilistic SDD



Input: *L*, *K*, *P*, *A* $P(L, K, P, A) = 0.3 \ge 1.0 \ge 0.4 \ge 0.25 = 0.024$

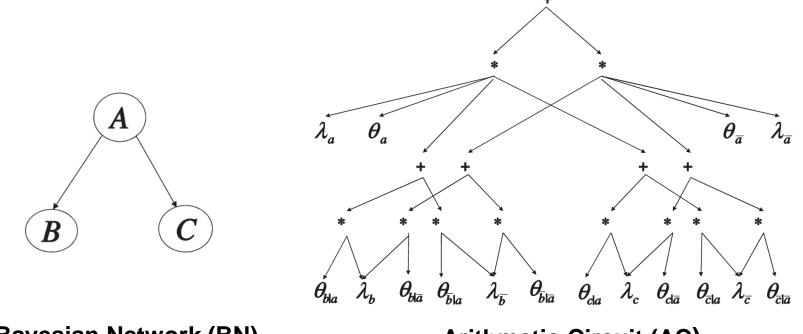


Can read independences off the circuit structure

Tractable for Probabilistic Inference

- **MAP inference**: Find most-likely assignment (otherwise NP-complete)
- Computing conditional probabilities Pr(x|y) (otherwise PP-complete)
- **Sample** from Pr(x|y)
- Algorithms linear in circuit size (pass up, pass down, similar to backprop)

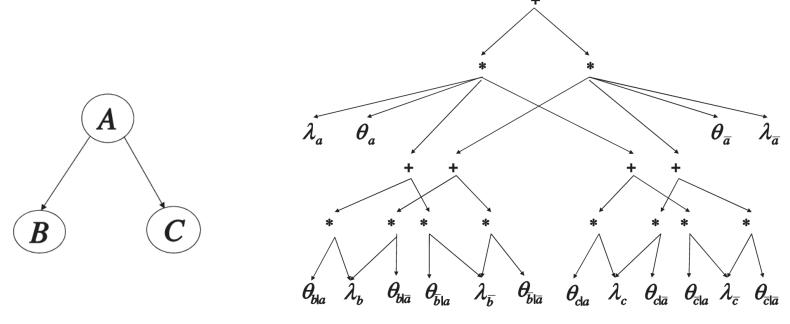
PSDDs are Arithmetic Circuits (ACs) [Darwiche, JACM 2003]



Bayesian Network (BN)

Arithmetic Circuit (AC)

PSDDs are Arithmetic Circuits (ACs) [Darwiche, JACM 2003]



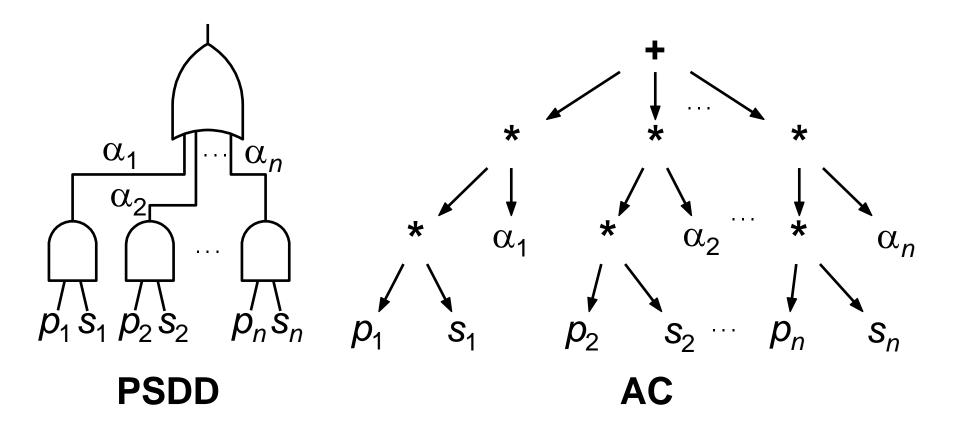
Bayesian Network (BN)

Arithmetic Circuit (AC)

Known in the ML literature as SPNs UAI 2011, NIPS 2012 best paper awards

[ICML 2014] (SPNs equivalent to ACs)

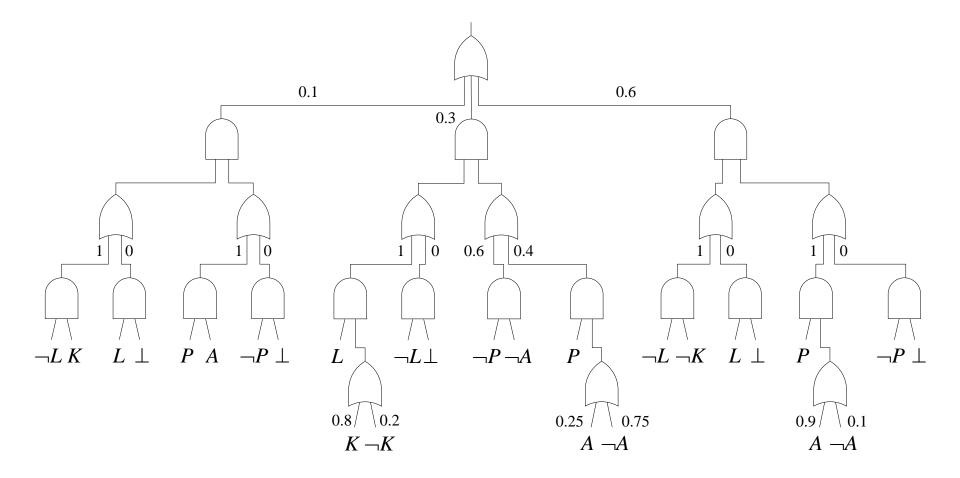
Result: PSDDs are ACs



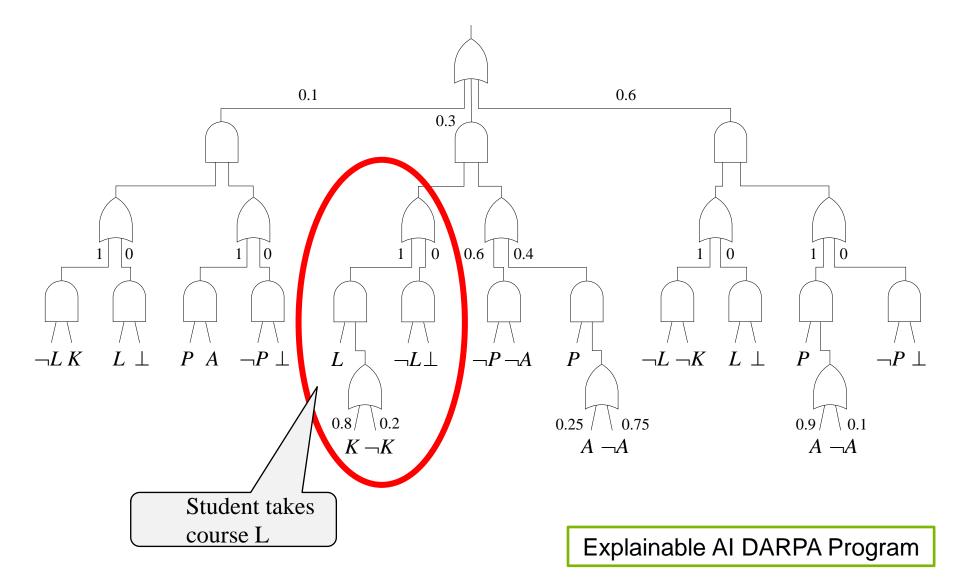
decomposable+ and deterministic+ ACs (over a structured space)

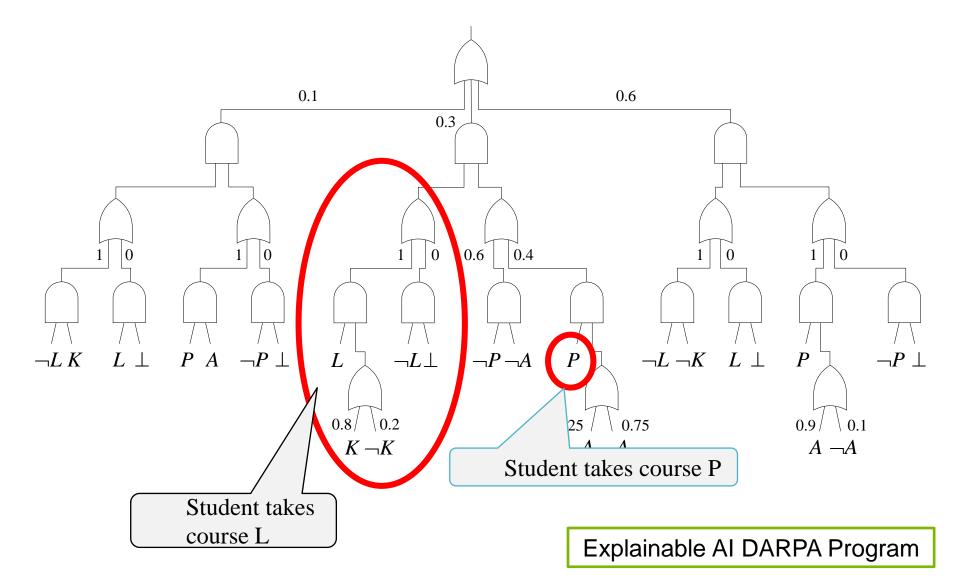
Learning PSDDs

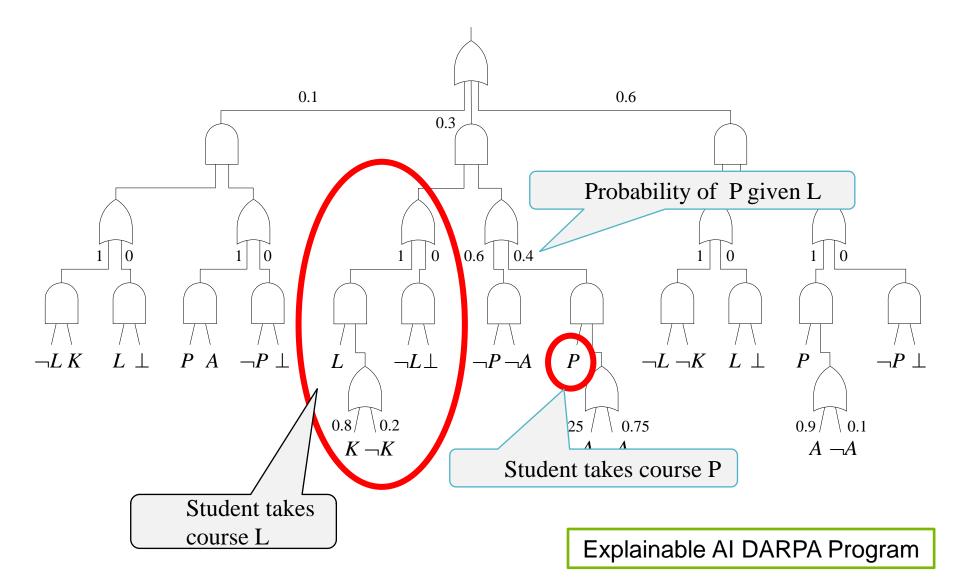
Logic + Probability + ML



Explainable AI DARPA Program







Learning Algorithms

• Parameter learning:

Closed form max likelihood from complete data One pass over data to estimate Pr(x|y)

Note a lot to say: very easy!

Learning Algorithms

• Parameter learning:

Closed form max likelihood from complete data One pass over data to estimate Pr(x|y)

Note a lot to say: very easy!

• Structure learning:

Compile constraints to SDD
 Use SAT solver technology
 (naive? see later)

Learning Algorithms

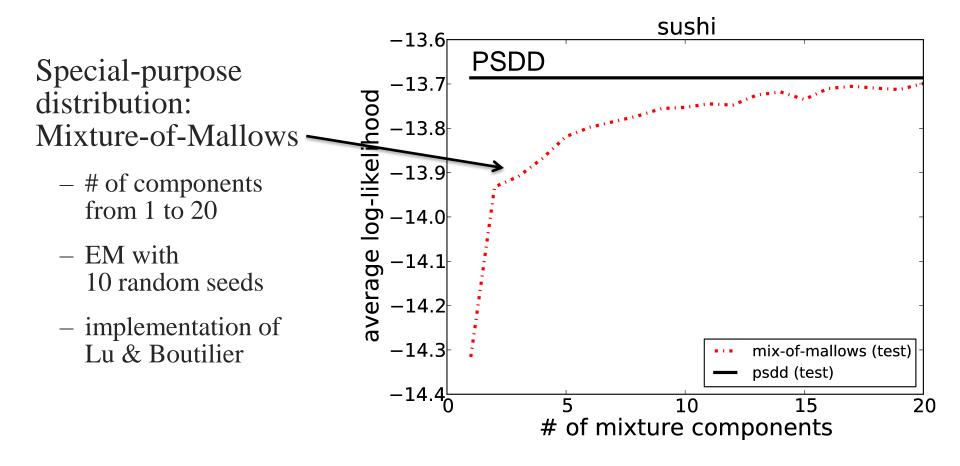
• Parameter learning:

Closed form max likelihood from complete data One pass over data to estimate Pr(x|y)

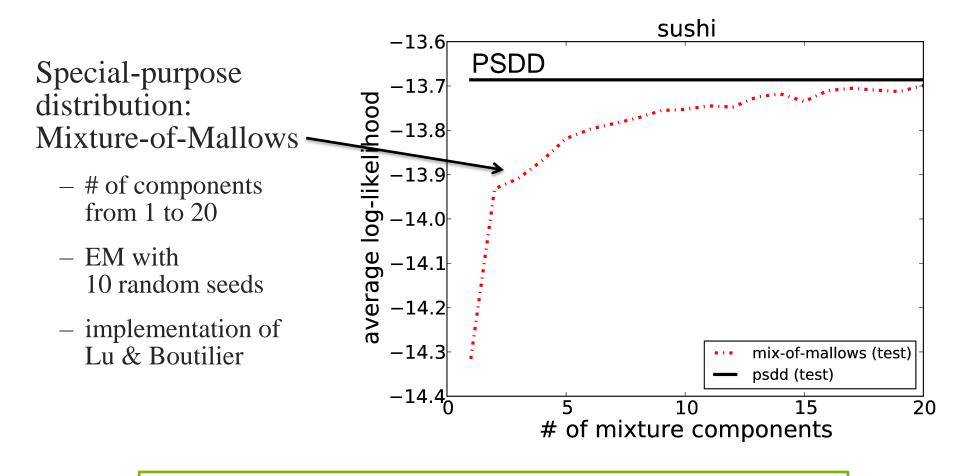
Note a lot to say: very easy!

- Structure learning:
 - Compile constraints to SDD
 Use SAT solver technology
 (naive? see later)
 - Search for structure to fit data (ongoing work)

Learning Preference Distributions

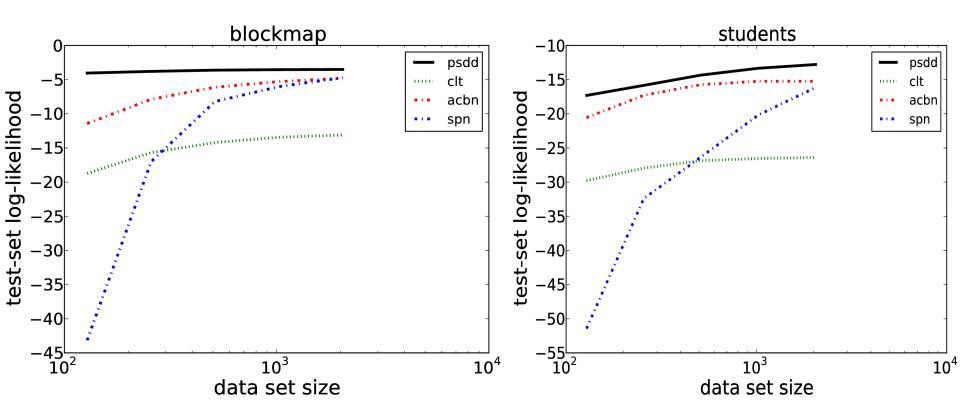


Learning Preference Distributions

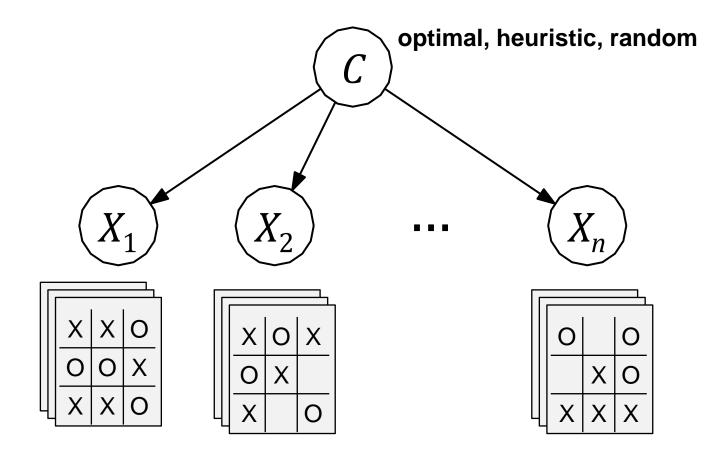


This is the naive approach, without real structure learning!

What happens if you ignore constraints?

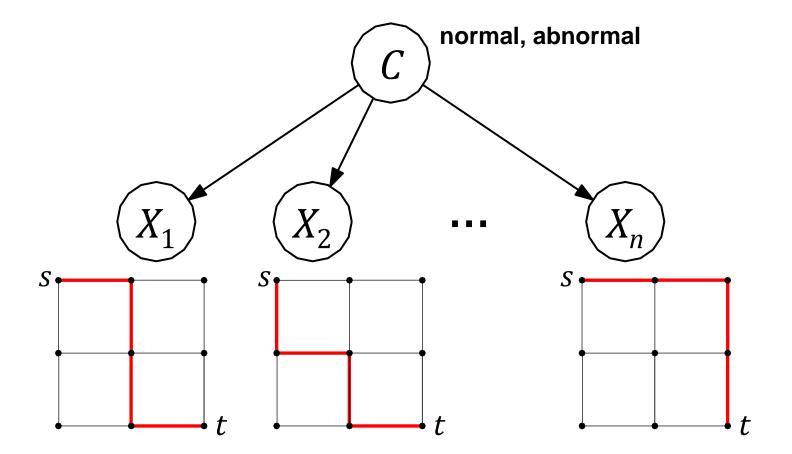


Structured Naïve Bayes Classifier



Attribute with 362,880 values (possible game traces)

Structured Naïve Bayes Classifier



Attribute with 789,360,053,252 values (routes in 8×8 grid)

Learning Route Distributions (ongoing)

- Uber GPS data in SF
- Project GPS coordinates onto a graph, then learn distributions over routes
- Applications:
 - Detect anomalies
 - Given a partial route, predict its most likely completion

Parameter Estimation

a classical complete dataset

id	X	Y	Z
1	x ₁	У ₂	Z ₁
2	x ₂	У ₁	Z_2
3	x ₂	У ₁	Z ₂
4	x ₁	У ₁	Z ₁
5	x ₁	У ₂	z ₂

a classical incomplete dataset

id	X	Y	Z
1	x ₁	У ₂	?
2	x ₂	У ₁	?
3	?	?	Z ₂
4	?	У ₁	Z ₁
5	x ₁	У ₂	Z ₂

EM algorithm

closed-form (maximum-likelihood estimates are unique)

Parameter Estimation

a classical complete dataset

id	X	Y	Z
1	x ₁	У ₂	Z ₁
2	x ₂	У ₁	Z ₂
3	x ₂	У ₁	Z ₂
4	x ₁	У ₁	z ₁
5	x ₁	У ₂	Z ₂

a classical incomplete dataset

id	X	Y	Z
1	x ₁	y ₂	?
2	x ₂	У ₁	?
3	?	?	z ₂
4	?	У ₁	Z ₁
5	x ₁	У ₂	Z ₂

EM algorithm

a new type of incomplete dataset

id	X	Y	Z
1		$X \equiv Z$	
2	x ₂ a	nd (y ₂	or z ₂)
3		$x_2 \Rightarrow y$	1
4	Xe	⊕ Y ⊕ Z	Z ≡ 1
5	x ₁ a	nd y ₂ a	nd z ₂

Missed in the ML literature

closed-form (maximum-likelihood estimates are unique)

Structured Datasets

a classical **complete** dataset (e.g., total rankings)

id	1 st sushi	2 nd sushi	3 rd sushi	
1	fatty tuna	sea urchin	salmon roe	
2	fatty tuna	tuna	shrimp	
3	tuna	tuna roll	sea eel	
4	fatty tuna	salmon roe	tuna	
5	egg	squid	shrimp	

a classical **incomplete** dataset (e.g., top-*k* rankings)

id	1 st sushi	2 nd sushi	3 rd sushi	
1	fatty tuna	sea urchin	?	
2	fatty tuna	?	?	
3	tuna	tuna roll	?	
4	fatty tuna	salmon roe	?	
5	egg	?	?	

Structured Datasets

a classical **complete** dataset (e.g., total rankings)

id	1 st sushi	2 nd sushi	3 rd sushi	
1	fatty tuna	sea urchin	salmon roe	
2	fatty tuna	tuna	shrimp	
3	tuna	tuna roll	sea eel	
4	fatty tuna	salmon roe	tuna	
5	egg	squid	shrimp	

a new type of **incomplete** dataset (e.g., **partial** rankings)

id	1 st sushi	2 nd sushi	3 rd sushi	
1	、 ,	una > sea (tuna > se	,	
2	· ·	/ tuna is 1 ^s mon roe >	•	
3	t	una > squ	id	
4		egg is las	t	
5	egg	> squid > s	shrimp	

(represents constraints on possible *total rankings*)

Learning from Incomplete Data

- Movielens Dataset:
 - 3,900 movies, 6,040 users, 1m ratings
 - take ratings from 64 most rated movies
 - ratings 1-5 converted to pairwise prefs.
- PSDD for partial rankings
 - 4 tiers
 - 18,711 parameters

movies by expected tier

rank	movie
1	The Godfather
2	The Usual Suspects
3	Casablanca
4	The Shawshank Redemption
5	Schindler's List
6	One Flew Over the Cuckoo's Nest
7	The Godfather: Part II
8	Monty Python and the Holy Grail
9	Raiders of the Lost Ark
10	Star Wars IV: A New Hope

PSDD Sizes

items	tier size		Size	
n	k	SDD	Structured Space	Unstructured Space
8	2	443	840	$1.84\cdot10^{19}$
27	3	$4,\!114$	$1.18\cdot 10^9$	$2.82 \cdot 10^{219}$
64	4	$23,\!497$	$3.56\cdot10^{18}$	$1.04\cdot 10^{1233}$
125	5	$94,\!616$	$3.45\cdot10^{31}$	$3.92\cdot 10^{4703}$
216	6	$297,\!295$	$1.57\cdot 10^{48}$	$7.16\cdot 10^{14044}$
343	7	$781,\!918$	$4.57\cdot 10^{68}$	$7.55 \cdot 10^{35415}$

rank	movie
1	Star Wars V: The Empire Strikes Back
2	Star Wars IV: A New Hope
3	The Godfather
4	The Shawshank Redemption
5	The Usual Suspects

- no other Star Wars movie in top-5
- at least one comedy in top-5

rank	movie
1	Star Wars V: The Empire Strikes Back
2	Star Wars IV: A New Hope
3	The Godfather
4	The Shawshank Redemption
5	The Usual Suspects

•	no other Star Wars movie in top-5
•	at least one comedy in top-5

rank	movie		
1	Star Wars V: The Empire Strikes Back		
2	Star Wars IV: A New Hope		
3	The Godfather		
4	The Shawshank Redemption		
5	The Usual Suspects		

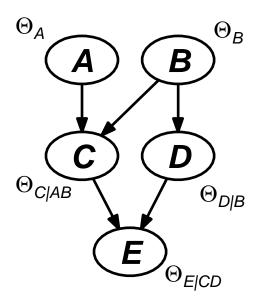
rank	movie			
1	Star Wars V: The Empire Strikes Back			
2	American Beauty			
3	The Godfather			
4	The Usual Suspects			
5	The Shawshank Redemption			

rank	movie		
1	Star Wars V: The Empire Strikes Back		
2	Star Wars IV: A New Hope		
3	The Godfather		
4	The Shawshank Redemption		
5	The Usual Suspects		

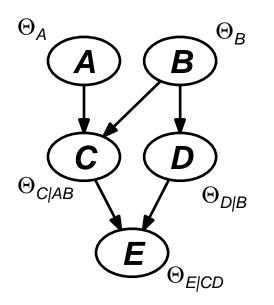
- no other Star Wars movie in top-5
- at least one comedy in top-5

rank	movie			
1	Star Wars V: The Empire Strikes Back			
2	American Beauty			
3	The Godfather			
4	The Usual Suspects			
5	The Shawshank Redemption			

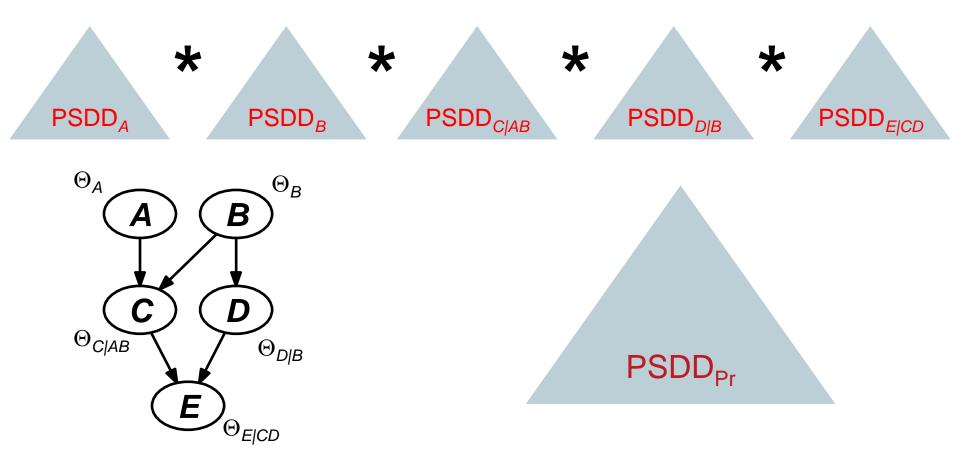
diversified recommendations via *logical constraints*



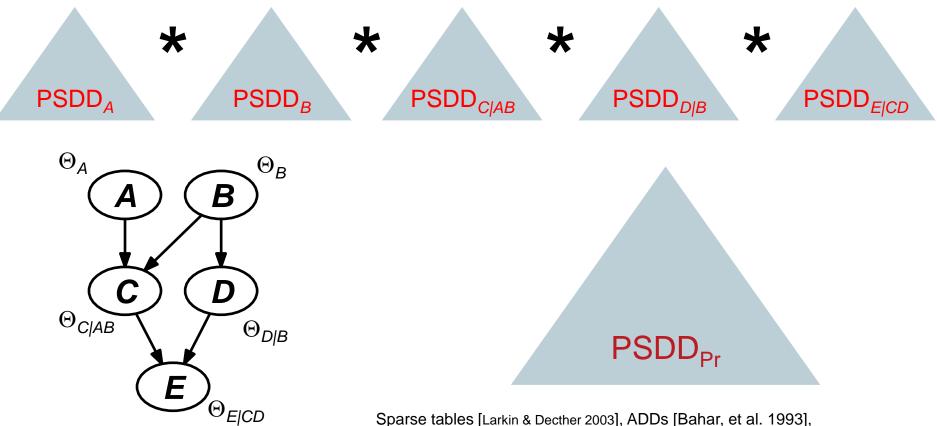
 $\Pr(A, B, C, D, E) = \Theta_A \Theta_B \Theta_{C|AB} \Theta_{D|B} \Theta_{E|CD}$



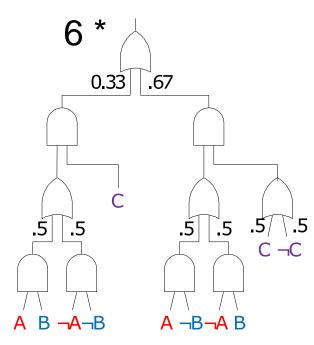
 $\Pr(A, B, C, D, E) = \Theta_A \Theta_B \Theta_{C|AB} \Theta_{D|B} \Theta_{E|CD}$



 $\Pr(A, B, C, D, E) = \Theta_A \Theta_B \Theta_{C|AB} \Theta_{D|B} \Theta_{E|CD}$



Sparse tables [Larkin & Decther 2003], ADDs [Bahar, et al. 1993], AOMDDs [Mateescu, et al., 2008], PDGs [Jaeger, 2004]



Α	В	С	f
Т	Т	Т	1
Т	Т	F	0
Т	F	Т	1
Т	F	F	1
F	Т	Т	1
F	Т	F	1
F	F	Т	1
F	F	F	0

*

*

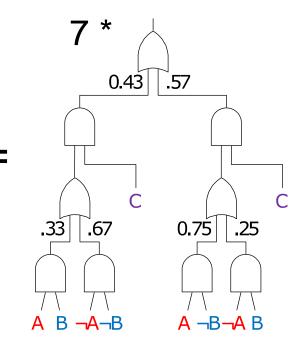
.33 A B	.67	C -		.75 -B-4	25
	Α	В	С	g	
	Т	Т	Т	1	
	Т	Т	F	1	
	Т	F	Т	3	
	Т	F	F	0	
	F	Т	Т	1	
	F	Т	F	0	
	F	F	Т	2	
	F	F	F	2	

10 *

.6

.4

С

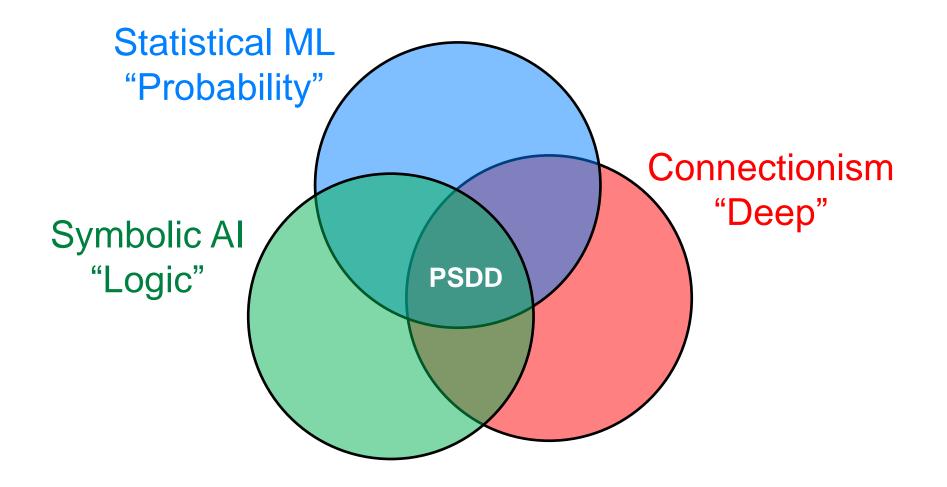


Α	В	С	f*g
Т	Т	Т	1
Т	Т	F	0
Т	F	Т	3
Т	F	F	0
F	Т	Т	1
F	Т	F	0
F	F	Т	2
F	F	F	0

Conclusions

- Structured spaces are everywhere ③
- Roles of Boolean constraints in ML
 - Domain constraints and combinatorial objects (structured probability space)
 - -Incomplete examples (structured datasets)
 - -Questions and evidence (structured queries)
- Learn distributions over combinatorial objects
- Strong properties for inference and learning

Conclusions



References

Probabilistic Sentential Decision Diagrams

Doga Kisa, Guy Van den Broeck, Arthur Choi and Adnan Darwiche KR, 2014

Learning with Massive Logical Constraints

Doga Kisa, Guy Van den Broeck, Arthur Choi and Adnan Darwiche ICML 2014 workshop

Tractable Learning for Structured Probability Spaces

Arthur Choi, Guy Van den Broeck and Adnan Darwiche IJCAI, 2015

Tractable Learning for Complex Probability Queries

Jessa Bekker, Jesse Davis, Arthur Choi, Adnan Darwiche, Guy Van den Broeck. NIPS, 2015

Structured Features in Naive Bayes Classifiers

Arthur Choi, Nazgol Tavabi and Adnan Darwiche AAAI, 2016

Tractable Operations on Arithmetic Circuits

Jason Shen, Arthur Choi and Adnan Darwiche NIPS, 2016

Questions?

PSDD with 15,000 nodes