

Tractable Probabilistic Circuits

Guy Van den Broeck

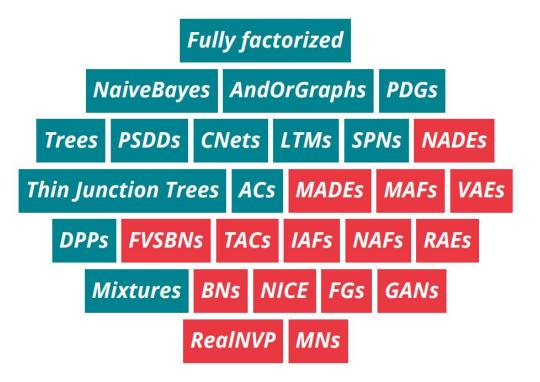
Dagstuhl Seminar on Recent Advancements in Tractable Probabilistic Inference - Apr 19, 2022

Outline

- 1. What are tractable probabilistic circuits?
- 2. Are these models any good?
- 3. How far can we push tractable inference?
- 4. What is their expressive power?

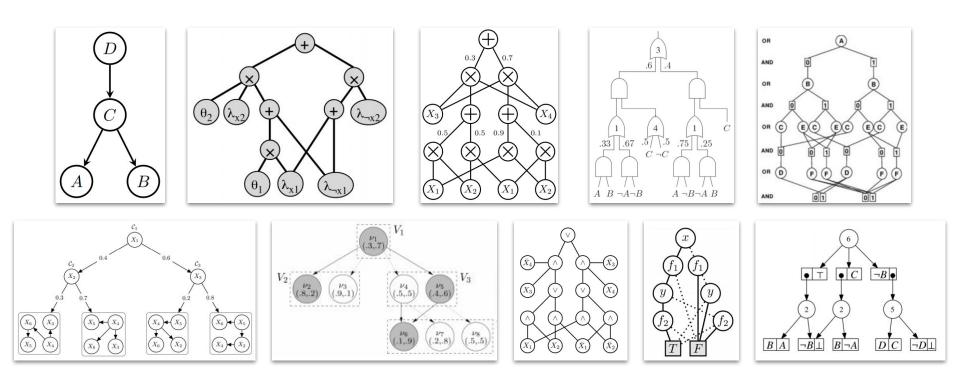
Outline

- 1. What are tractable probabilistic circuits?
- 2. Are these models any good?
- 3. How far can we push tractable inference?
- 4. What is their expressive power?

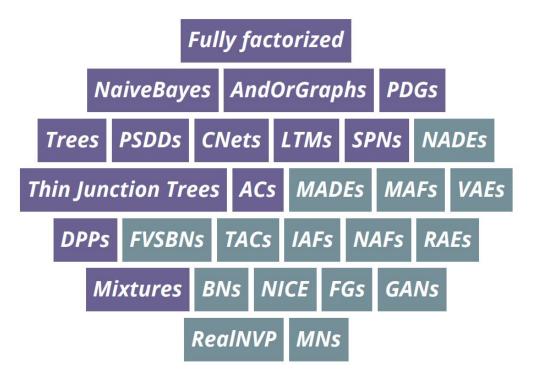


Intractable and tractable models

Tractable Probabilistic Models



"Every talk needs a joke and a literature overview slide, not necessarily distinct"
- after Ron Graham

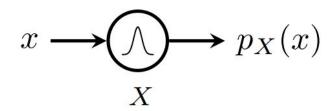


a unifying framework for tractable models

Probabilistic circuits

computational graphs that recursively define distributions

 X_1

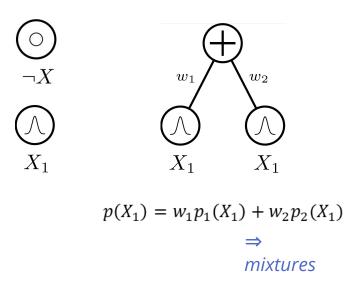


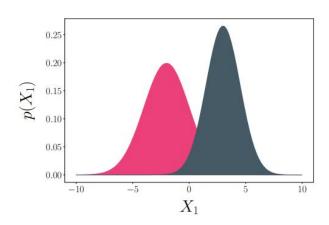
Simple distributions are tractable "black boxes" for:

- **EVI**: output $p(\mathbf{x})$ (density or mass)
- MAR: output 1 (normalized) or Z (unnormalized)
- MAP: output the mode

Probabilistic circuits

computational graphs that recursively define distributions



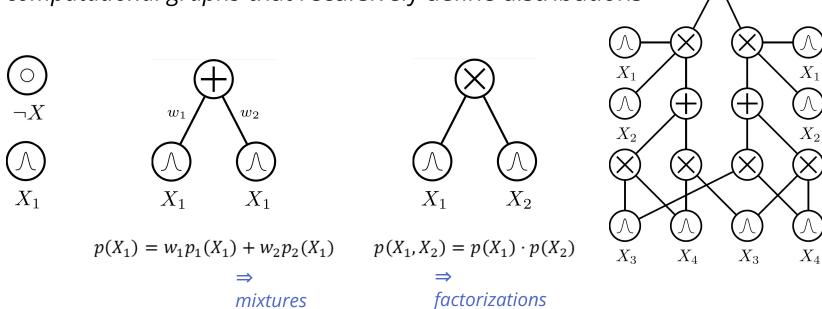


$$p(X) = p(Z = 1) \cdot p_1(X|Z = 1)$$

$$+ p(Z = 2) \cdot p_2(X|Z = 2)$$

Probabilistic circuits

computational graphs that recursively define distributions



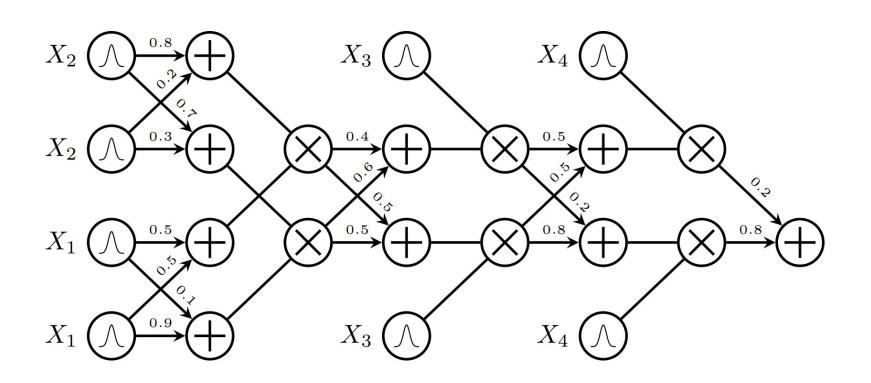
Tractable Probabilistic Inference

A class of queries Q is tractable on a family of probabilistic models M iff for any query $\mathbf{q} \in Q$ and model $\mathbf{m} \in M$ exactly computing $\mathbf{q}(\mathbf{m})$ runs in time $O(\mathsf{poly}(|\mathbf{m}|))$.

- → often poly will in fact be linear!
- Note: if \mathcal{M} is compact in the number of random variables \mathbf{X} , that is, $|\mathbf{m}| \in O(\mathsf{poly}(|\mathbf{X}|))$, then query time is $O(\mathsf{poly}(|\mathbf{X}|))$.

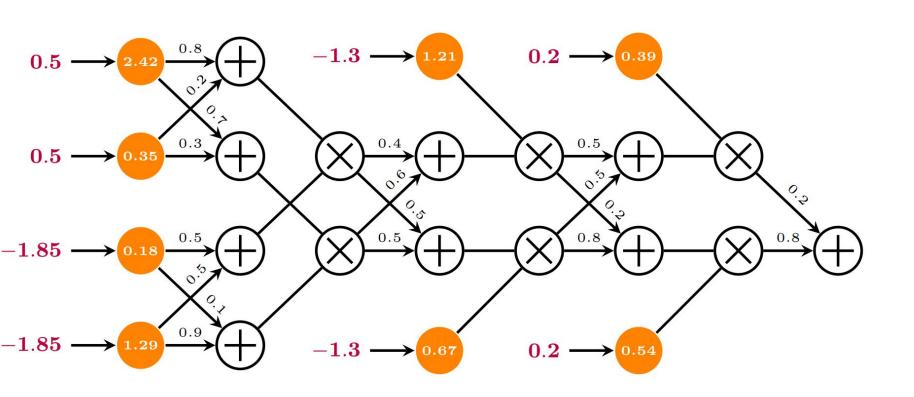
Likelihood

$$p(X_1 = -1.85, X_2 = 0.5, X_3 = -1.3, X_4 = 0.2)$$



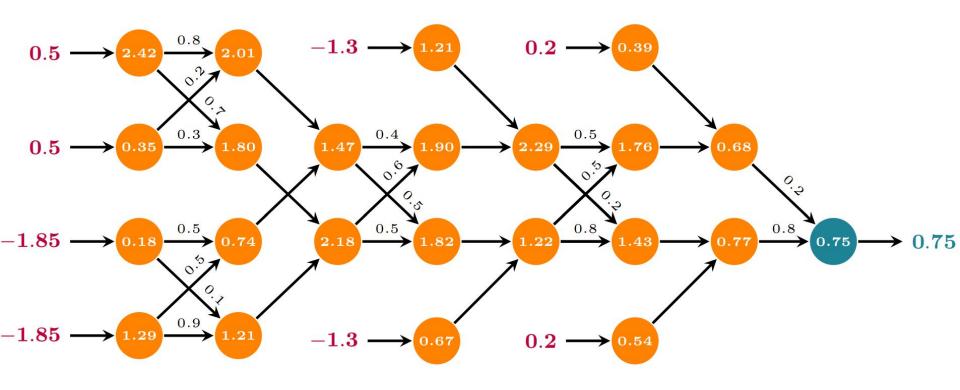
Likelihood

 $p(X_1 = -1.85, X_2 = 0.5, X_3 = -1.3, X_4 = 0.2)$

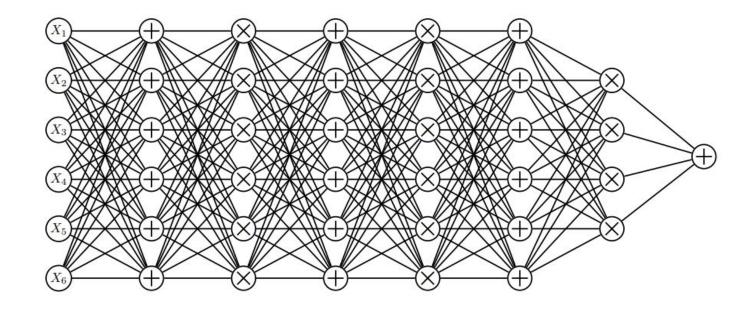


Likelihood

 $p(X_1 = -1.85, X_2 = 0.5, X_3 = -1.3, X_4 = 0.2)$

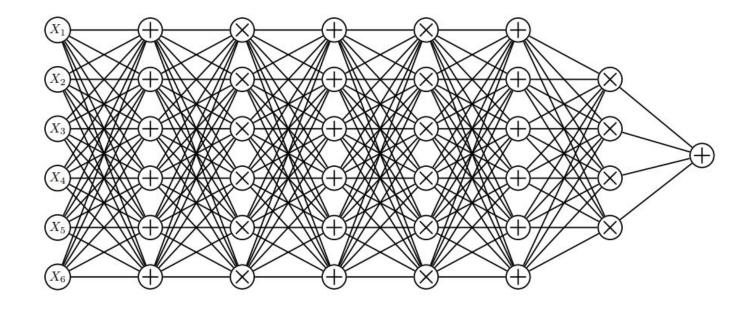


Just sum, products and distributions?



just arbitrarily compose them like a neural network!

Just sum, products and distributions?



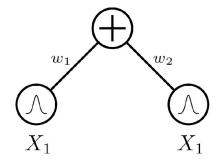
just arbitrarily compose them like a neural network!

structural constraints needed for tractability

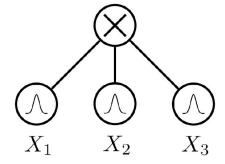
Tractable marginals

A sum node is **smooth** if its children depend on the same set of variables.

A product node is *decomposable* if its children depend on disjoint sets of variables.



smooth circuit



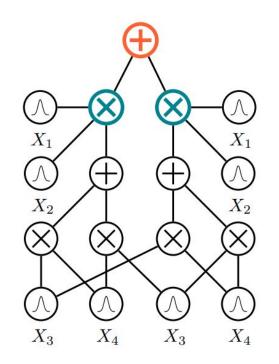
decomposable circuit

If
$$\mathbf{p}(\mathbf{x}) = \sum_i w_i \mathbf{p}_i(\mathbf{x})$$
, (smoothness):

$$\int \mathbf{p}(\mathbf{x}) d\mathbf{x} = \int \sum_{i} w_{i} \mathbf{p}_{i}(\mathbf{x}) d\mathbf{x} =$$

$$= \sum_{i} w_{i} \int \mathbf{p}_{i}(\mathbf{x}) d\mathbf{x}$$

integrals are "pushed down" to children

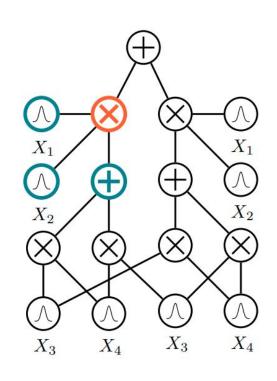


If
$$p(\mathbf{x}, \mathbf{y}, \mathbf{z}) = p(\mathbf{x})p(\mathbf{y})p(\mathbf{z})$$
, (decomposability):

$$\int \int \int \mathbf{p}(\mathbf{x}, \mathbf{y}, \mathbf{z}) d\mathbf{x} d\mathbf{y} d\mathbf{z} =$$

$$= \int \int \int \mathbf{p}(\mathbf{x}) \mathbf{p}(\mathbf{y}) \mathbf{p}(\mathbf{z}) d\mathbf{x} d\mathbf{y} d\mathbf{z} =$$

$$= \int \mathbf{p}(\mathbf{x}) d\mathbf{x} \int \mathbf{p}(\mathbf{y}) d\mathbf{y} \int \mathbf{p}(\mathbf{z}) d\mathbf{z}$$

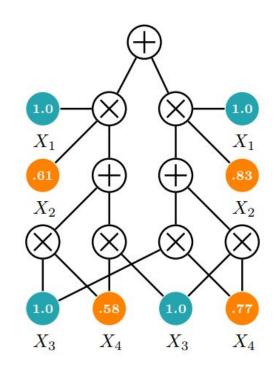


Forward pass evaluation for MAR

linear in circuit size!

E.g. to compute $p(x_2, x_4)$:

- leafs over X_1 and X_3 output $\mathbf{Z}_i = \int p(x_i) dx_i$
 - ⇒ for normalized leaf distributions: 1.0
- leafs over X_2 and X_4 output **EVI**
- feedforward evaluation (bottom-up)

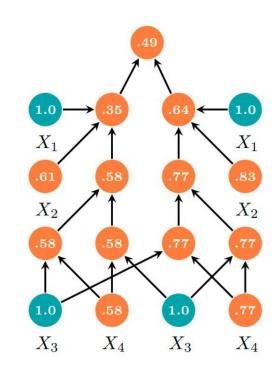


Forward pass evaluation for MAR

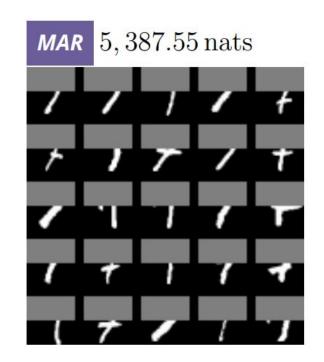
linear in circuit size!

E.g. to compute $p(x_2, x_4)$:

- leafs over X_1 and X_3 output $\mathbf{Z}_i = \int p(x_i) dx_i$
 - \Rightarrow for normalized leaf distributions: 1.0
- leafs over X_2 and X_4 output
- feedforward evaluation (bottom-up)



Tractable MAR on PCs (Einsum Networks)



Peharz et al., "Einsum Networks: Fast and Scalable Learning of Tractable Probabilistic Circuits", 2020

We *cannot* decompose bottom-up a MAP query:

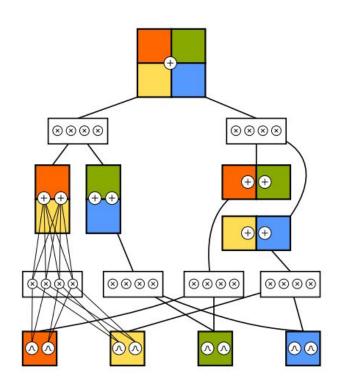
$$\max_{\mathbf{q}} p(\mathbf{q} \mid \mathbf{e})$$

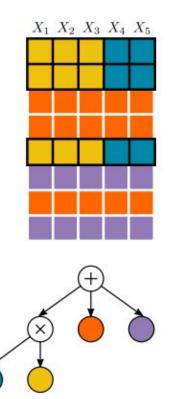
since for a sum node we are marginalizing out a latent variable

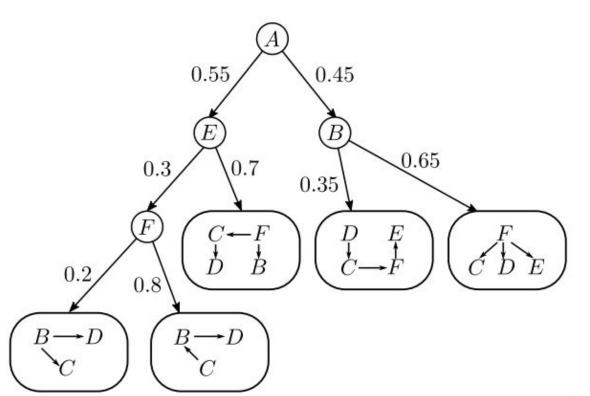
$$\max_{\mathbf{q}} \sum_{i} w_{i} p_{i}(\mathbf{q}, \mathbf{e}) = \max_{\mathbf{q}} \sum_{\mathbf{z}} p(\mathbf{q}, \mathbf{z}, \mathbf{e}) \neq \sum_{\mathbf{z}} \max_{\mathbf{q}} p(\mathbf{q}, \mathbf{z}, \mathbf{e})$$

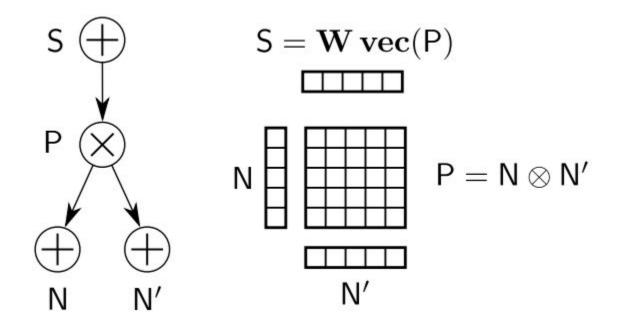
Outline

- 1. What are tractable probabilistic circuits?
- 2. Are these models any good?
- 3. How far can we push tractable inference?
- 4. What is their expressive power?



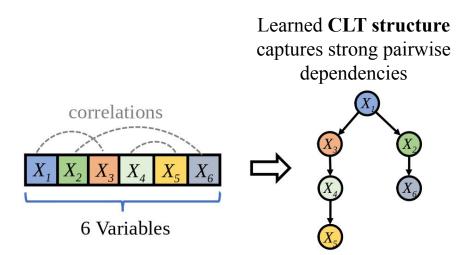






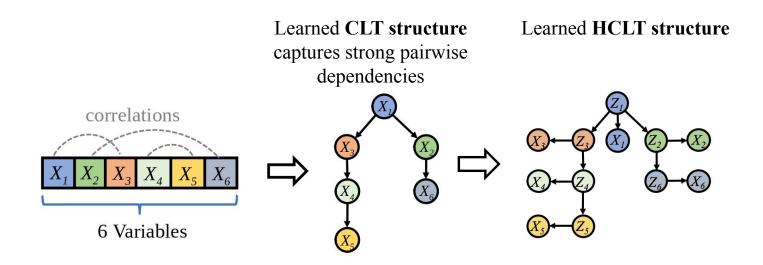
Learning Expressive Probabilistic Circuits

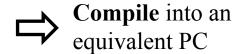
Hidden Chow-Liu Trees



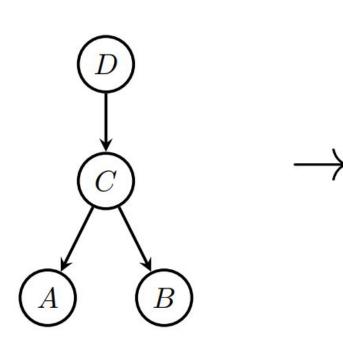
Learning Expressive Probabilistic Circuits

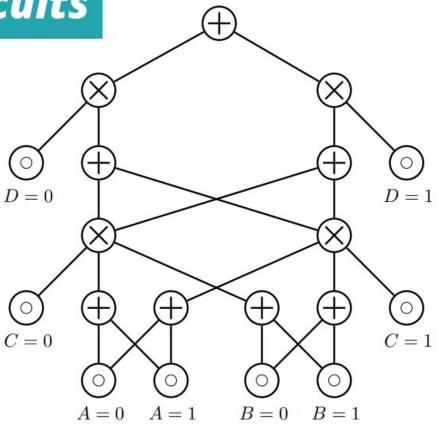
Hidden Chow-Liu Trees



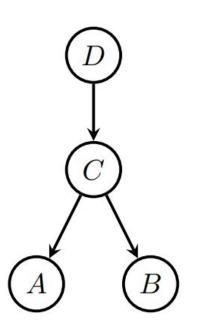


via compilation





via compilation



...compile a leaf CPT

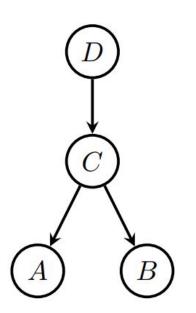
$$p(A|C=0)$$

$$0$$

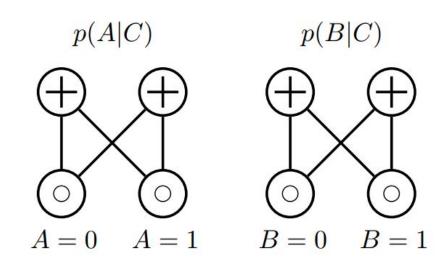
$$A=0$$

$$A=1$$

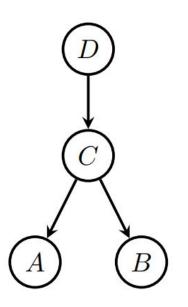
via compilation



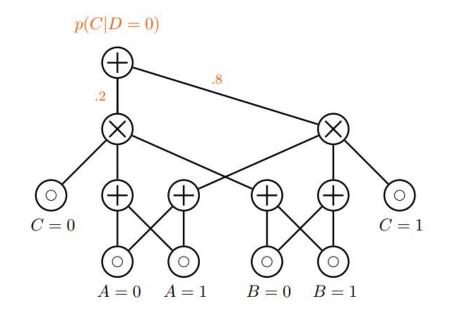
...compile a leaf CPT...for all leaves...



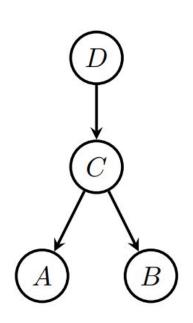
via compilation

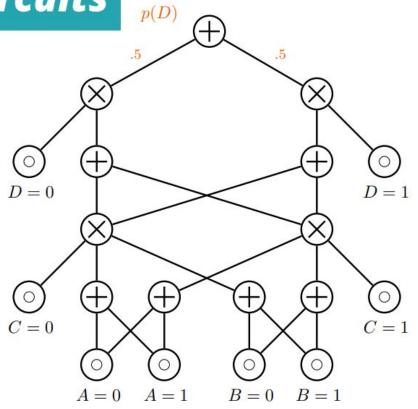


...and recurse over parents...



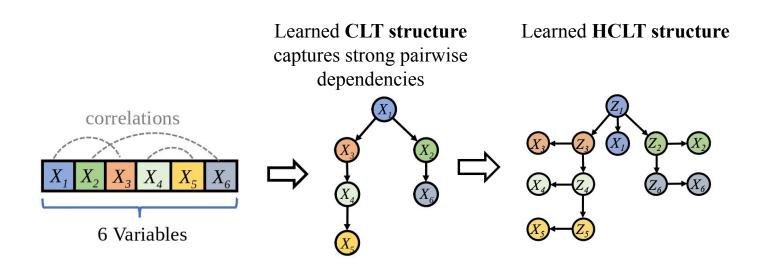
via compilation



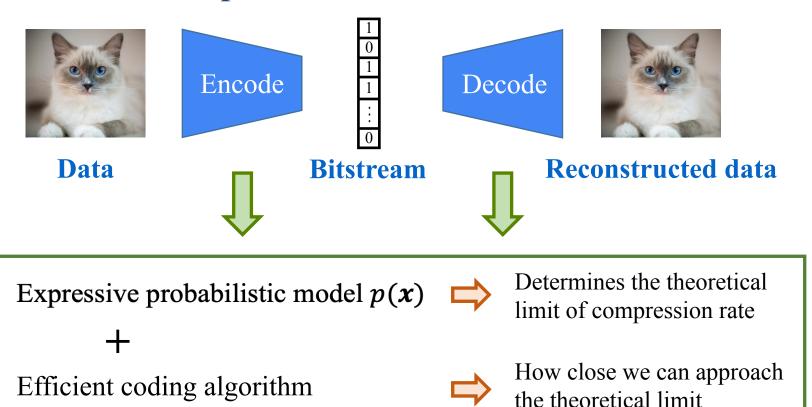


Learning Expressive Probabilistic Circuits

Hidden Chow-Liu Trees

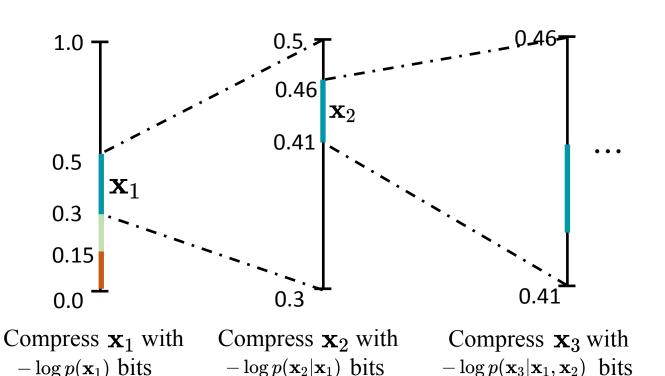


Lossless Data Compression



A Typical Streaming Code – Arithmetic Coding

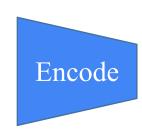
We want to compress a set of variables (e.g., pixels, letters) $\{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_k\}$



Need to compute $p(X_1 < x_1)$ $p(X_1 \leq x_1)$ $p(X_2 < x_2 | x_1)$ $p(X_2 \leq x_2|x_1)$ $p(X_3 < x_3 | x_1, x_2)$ $p(X_3 \leq x_3 | x_1, x_2)$

Lossless Neural Compression with Probabilistic Circuits

Data



Bitstream

Reconstructed data

Probabilistic Circuits

- Expressive
- → SoTA likelihood on MNIST.

- Fast

→ Time complexity of en/decoding is **O(|p| log(D))**, where D is the # variables and |p| is the size of the PC.

Arithmetic Coding:

```
egin{aligned} p(X_1 < x_1) \ p(X_1 \le x_1) \ p(X_2 < x_2 | x_1) \ p(X_2 \le x_2 | x_1) \ p(X_3 < x_3 | x_1, x_2) \ p(X_3 \le x_3 | x_1, x_2) \ dots \end{aligned}
```

Lossless Neural Compression with Probabilistic Circuits

SoTA compression rates

Dataset	HCLT (ours)	IDF	BitSwap	BB-ANS	JPEG2000	WebP	McBits
MNIST	1.24 (1.20)	1.96 (1.90)	1.31 (1.27)	1.42 (1.39)	3.37	2.09	(1.98)
FashionMNIST	3.37 (3.34)	3.50 (3.47)	3.35 (3.28)	3.69 (3.66)	3.93	4.62	(3.72)
EMNIST (Letter)	1.84 (1.80)	2.02 (1.95)	1.90 (1.84)	2.29 (2.26)	3.62	3.31	(3.12)
EMNIST (ByClass)	1.89 (1.85)	2.04 (1.98)	1.91 (1.87)	2.24 (2.23)	3.61	3.34	(3.14)

Compress and decompress 5-40x faster than NN methods with similar bitrates

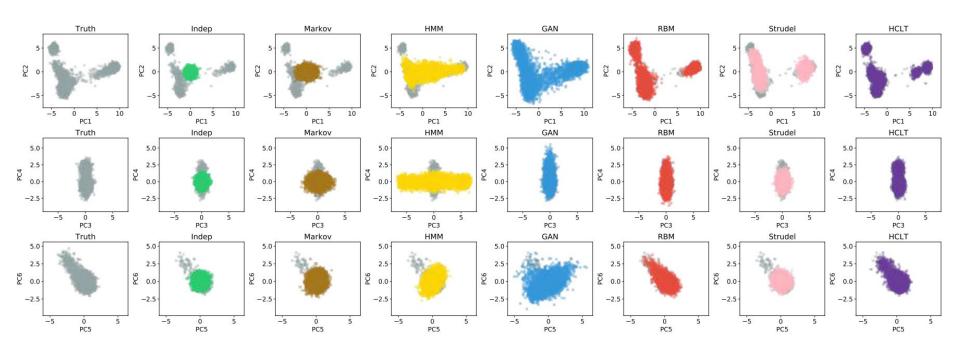
Method	# parameters	Theoretical bpd	Codeword bpd	Comp. time (s)	Decomp. time (s)
PC (HCLT, $M=16$)	3.3M	1.26	1.30	9	44
PC (HCLT, $M=24$)	5.1M	1.22	1.26	15	86
PC (HCLT, $M=32$)	7.0M	1.20	1.24	26	142
IDF	24.1M	1.90	1.96	288	592
BitSwap	2.8M	1.27	1.31	578	326

Lossless Neural Compression with Probabilistic Circuits

Can be effectively combined with Flow models to achieve better generative performance

Model	CIFAR10	ImageNet32	ImageNet64
RealNVP	3.49	4.28	3.98
Glow	3.35	4.09	3.81
IDF	3.32	4.15	3.90
IDF++	3.24	4.10	3.81
PC+IDF	3.28	3.99	3.71

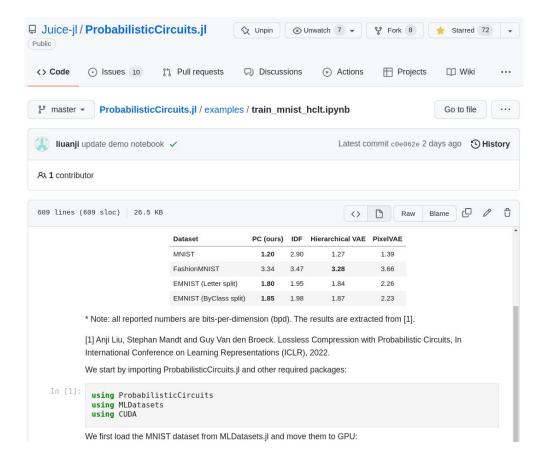
Tractable and expressive generative models of genetic variation data

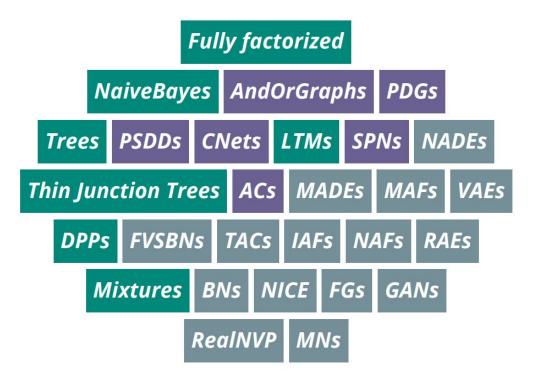


Text data

Dataset	PC	Bipartite flow	AF/SCF	IAF/SCF
Penn Treebank	1.23	1.38	1.46	1.63

Training SotA likelihood full MNIST probabilistic circuit model in ~7 minutes on GPU: https://github.com/Juice-jl/ProbabilisticCircuits.jl/blob/master/examples/train_mnist_hclt.ipynb





Expressive models without compromises

Outline

- 1. What are tractable probabilistic circuits?
- 2. Are these models any good?
- 3. How far can we push tractable inference?
- 4. What is their expressive power?

Smoothness + decomposability = tractable MAP

We *cannot* decompose bottom-up a MAP query:

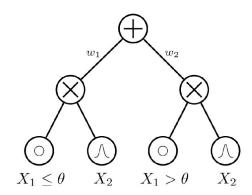
$$\max_{\mathbf{q}} p(\mathbf{q} \mid \mathbf{e})$$

since for a sum node we are marginalizing out a latent variable

$$\max_{\mathbf{q}} \sum_{i} w_{i} p_{i}(\mathbf{q}, \mathbf{e}) = \max_{\mathbf{q}} \sum_{\mathbf{z}} p(\mathbf{q}, \mathbf{z}, \mathbf{e}) \neq \sum_{\mathbf{z}} \max_{\mathbf{q}} p(\mathbf{q}, \mathbf{z}, \mathbf{e})$$

Determinism

A sum node is *deterministic* if only one of its children outputs non-zero for any input



deterministic circuit

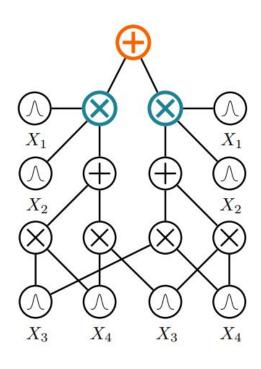
 \Rightarrow allows **tractable MAP** inference $argmax_x p(x)$

Determinism + decomposability = tractable MAP

If
$$\mathbf{p}(\mathbf{q}, \mathbf{e}) = \sum_{i} w_{i} \mathbf{p}_{i}(\mathbf{q}, \mathbf{e}) = \max_{i} w_{i} \mathbf{p}_{i}(\mathbf{q}, \mathbf{e})$$
, (**deterministic** sum node):

$$\max_{\mathbf{q}} \mathbf{p}(\mathbf{q}, \mathbf{e}) = \max_{\mathbf{q}} \sum_{i} w_{i} \mathbf{p}_{i}(\mathbf{q}, \mathbf{e})$$
$$= \max_{\mathbf{q}} \max_{i} w_{i} \mathbf{p}_{i}(\mathbf{q}, \mathbf{e})$$
$$= \max_{i} \max_{\mathbf{q}} w_{i} \mathbf{p}_{i}(\mathbf{q}, \mathbf{e})$$

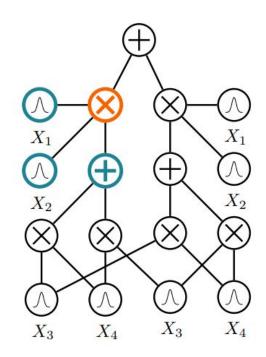
one non-zero child term, thus sum is max



Determinism + decomposability = tractable MAP

If $\mathbf{p}(\mathbf{q}, \mathbf{e}) = \mathbf{p}(\mathbf{q}_{\mathbf{x}}, \mathbf{e}_{\mathbf{x}}, \mathbf{q}_{\mathbf{y}}, \mathbf{e}_{\mathbf{y}}) = \mathbf{p}(\mathbf{q}_{\mathbf{x}}, \mathbf{e}_{\mathbf{x}})\mathbf{p}(\mathbf{q}_{\mathbf{y}}, \mathbf{e}_{\mathbf{y}})$ (decomposable product node):

$$\begin{aligned} \max_{\mathbf{q}} \mathbf{p}(\mathbf{q} \mid \mathbf{e}) &= \max_{\mathbf{q}} \mathbf{p}(\mathbf{q}, \mathbf{e}) \\ &= \max_{\mathbf{q_x}, \mathbf{q_y}} \mathbf{p}(\mathbf{q_x}, \mathbf{e_x}, \mathbf{q_y}, \mathbf{e_y}) \\ &= \max_{\mathbf{q_x}} \mathbf{p}(\mathbf{q_x}, \mathbf{e_x}) \cdot \max_{\mathbf{q_y}} \mathbf{p}(\mathbf{q_y}, \mathbf{e_y}) \\ &\Longrightarrow \text{solving optimization independently} \end{aligned}$$



Determinism + decomposability = tractable MAP

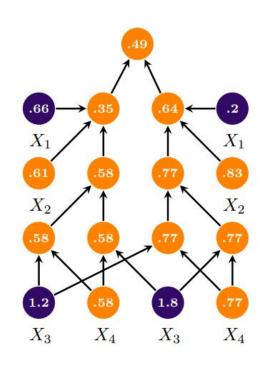
Evaluating the circuit twice:

bottom-up and top-down

still linear in circuit size!

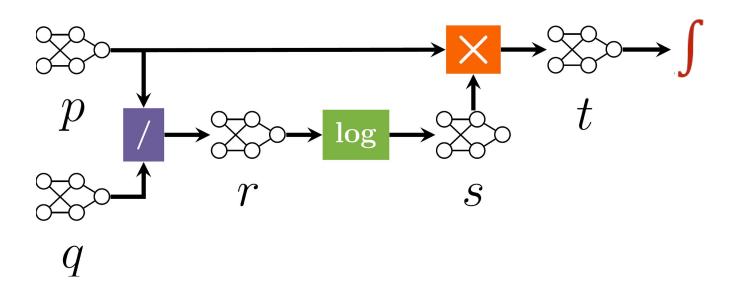
E.g., for $\operatorname{argmax}_{x_1,x_3} p(x_1,x_3 \mid x_2,x_4)$:

- turn sum into max nodes and distributions into max distributions
- 2. evaluate $p(x_2, x_4)$ bottom-up
- 3. retrieve max activations top-down
- 4. compute MAP states for X_1 and X_3 at leaves



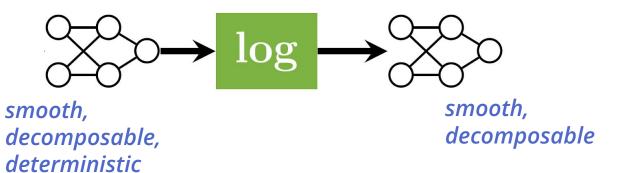
Queries as pipelines: KLD

$$\mathbb{KLD}(p \parallel q) = \int p(\mathbf{x}) \times \log((p(\mathbf{x})/q(\mathbf{x}))d\mathbf{X}$$



Queries as pipelines: Cross Entropy

Operation			Tractability
		Input conditions	Output conditions
Log	$\log(p)$	Sm, Dec, Det	Sm, Dec



Tractable circuit operations

Operation			Hondross	
		Input properties	Output properties	Hardness
SUM	$\theta_1 p + \theta_2 q$	(+Cmp)	(+SD)	NP-hard for Det output
PRODUCT	$p\cdot q$	Cmp (+Det, +SD)	Dec (+Det, +SD)	#P-hard w/o Cmp
Power	$p^n, n \in \mathbb{N}$	SD (+Det)	SD (+Det)	#P-hard w/o SD
TOWER	$p^{\alpha}, \alpha \in \mathbb{R}$	Sm, Dec, Det (+SD)	Sm, Dec, Det (+SD)	#P-hard w/o Det
QUOTIENT	p/q	Cmp; q Det (+ p Det,+SD)	Dec (+Det, +SD)	#P-hard w/o Det
Log	$\log(p)$	Sm, Dec, Det	Sm, Dec	#P-hard w/o Det
EXP	$\exp(p)$	linear	SD	#P-hard

Inference by tractable operations

systematically derive tractable inference algorithm of complex queries

	Query	Tract. Conditions	Hardness
CROSS ENTROPY	$-\int p(oldsymbol{x}) \log q(oldsymbol{x}) \mathrm{d}\mathbf{X}$	Cmp, q Det	#P-hard w/o Det
SHANNON ENTROPY	$-\sum p(oldsymbol{x})\log p(oldsymbol{x})$	Sm, Dec, Det	coNP-hard w/o Det
RÉNYI ENTROPY	$(1-\alpha)^{-1}\log\int p^{\alpha}(\boldsymbol{x})\ d\mathbf{X}, \alpha\in\mathbb{N}$	SD	#P-hard w/o SD
KEN II EN I KOP I	$(1-\alpha)^{-1}\log\int p^{\alpha}(\boldsymbol{x})d\mathbf{X}, lpha\in\mathbb{R}_{+}$	Sm, Dec, Det	#P-hard w/o Det
MUTUAL INFORMATION	$\int \! p(oldsymbol{x},oldsymbol{y}) \log(p(oldsymbol{x},oldsymbol{y})/(p(oldsymbol{x})p(oldsymbol{y})))$	Sm, SD, Det*	coNP-hard w/o SD
KULLBACK-LEIBLER DIV.	$\int \! p(oldsymbol{x}) \log(p(oldsymbol{x})/q(oldsymbol{x})) d\mathbf{X}$	Cmp, Det	#P-hard w/o Det
RÉNYI'S ALPHA DIV.	$(1-\alpha)^{-1}\log\int p^{\alpha}(\boldsymbol{x})q^{1-\alpha}(\boldsymbol{x})\ d\mathbf{X}, \alpha\in\mathbb{N}$	Cmp, q Det	#P-hard w/o Det
RENTI S ALFHA DIV.	$(1-\alpha)^{-1}\log\int p^{\alpha}(\boldsymbol{x})q^{1-\alpha}(\boldsymbol{x})\;d\mathbf{X}, \alpha\in\mathbb{R}$	Cmp, Det	#P-hard w/o Det
Itakura-Saito Div.	$\int [p(oldsymbol{x})/q(oldsymbol{x}) - \log(p(oldsymbol{x})/q(oldsymbol{x})) - 1]d\mathbf{X}$	Cmp, Det	#P-hard w/o Det
CAUCHY-SCHWARZ DIV.	$-\lograc{\int p(oldsymbol{x})q(oldsymbol{x})d\mathbf{X}}{\sqrt{\int p^2(oldsymbol{x})d\mathbf{X}\int q^2(oldsymbol{x})d\mathbf{X}}}$	Cmp	#P-hard w/o Cmp
SQUARED LOSS	$\int (p(oldsymbol{x}) - q(oldsymbol{x}))^2 d \ \mathbf{X}$	Cmp	#P-hard w/o Cmp

Even harder queries

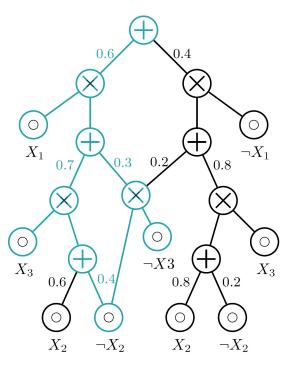
Marginal MAP

Given a set of query variables $Q \subset X$ and evidence e, find: $argmax_q p(q|e)$

 \Rightarrow i.e. MAP of a marginal distribution on **Q**

- **NP**PP-complete for PGMs
- NP-hard even for PCs tractable for marginals, MAP & entropy

Pruning circuits



Any parts of circuit not relevant for MMAP state can be pruned away

e.g.
$$p(X_1 = 1, X_2 = 0)$$

We can find such edges in *linear time*

Iterative MMAP solver

Prune edges

Tighten bounds

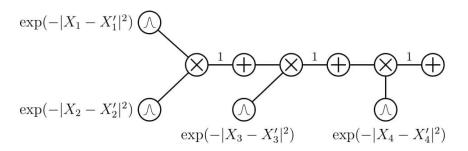
Dataset	runtime search	(# solved) pruning
NLTCS	0.01 (10)	0.63 (10)
MSNBC	0.03 (10)	0.73 (10)
KDD	0.04 (10)	0.68 (10)
Plants	2.95 (10)	2.72 (10)
Audio	2041.33 (6)	13.70 (10)
Jester	2913.04 (2)	14.74 (10)
Netflix	- (0)	47.18 (10)
Accidents	109.56 (10)	15.86 (10)
Retail	0.06 (10)	0.81 (10)
Pumsb-star	2208.27 (7)	20.88 (10)
DNA	- (0)	505.75 (9)
Kosarek	48.74 (10)	3.41 (10)
MSWeb	1543.49 (10)	1.28 (10)
Book	- (0)	46.50 (10)
EachMovie	- (0)	1216.89 (8)
WebKB	- (0)	575.68 (10)
Reuters-52	- (0)	120.58 (10)
20 NewsGrp.	- (0)	504.52 (9)
BBC	- (0)	2757.18 (3)
Ad	- (0)	1254.37 (8)

Tractable Computation of Expected Kernels

- How to compute the expected kernel given two distributions **p**, **q**?

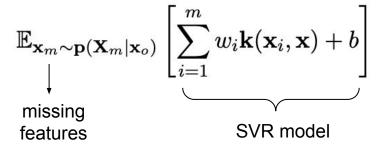
$$\mathbb{E}_{\mathbf{x} \sim \mathbf{p}, \mathbf{x}' \sim \mathbf{q}}[\mathbf{k}(\mathbf{x}, \mathbf{x}')]$$

- Circuit representation for kernel functions, e.g., $\mathbf{k}(\mathbf{x}, \mathbf{x}') = \exp\left(-\sum_{i=1}^{4} |X_i - X_i'|^2\right)$



Tractable Computation of Expected Kernels: Applications

- Reasoning about support vector regression (SVR) with missing features



Collapsed Black-box Importance Sampling: minimize kernelized Stein discrepancy

importance weights
$$m{w}^* = \operatorname*{argmin}_{m{w}} \left\{ m{w}^{ op} m{K}_{p,\mathbf{s}} m{w} \, \middle| \, \sum_{i=1}^n w_i = 1, \; w_i \geq 0 \right\}$$
 expected kernel matrix

Model-Based Algorithmic Fairness: FairPC

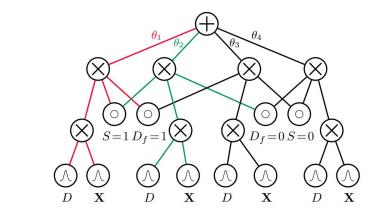
Learn classifier given

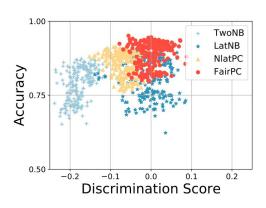
- features S and X
- training labels/decisions D

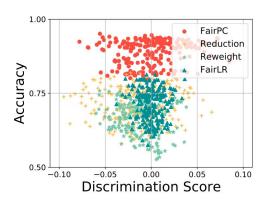
Group fairness by demographic parity:

Fair decision D_f should be independent of the sensitive attribute S

Discover the **latent fair decision** D_f by learning a PC.







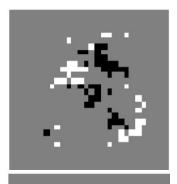
Probabilistic Sufficient Explanations

<u>Goal</u>: explain an instance of classification (a specific prediction)

Explanation is a subset of features, s.t.

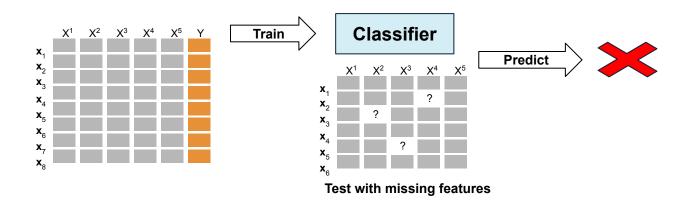
- 1. The explanation is "probabilistically sufficient"

 Under the feature distribution, given the explanation, the classifier is likely to make the observed prediction.
- 2. It is minimal and "simple"



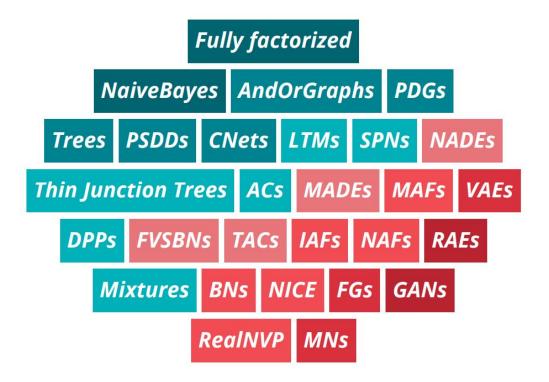


Prediction with Missing Features

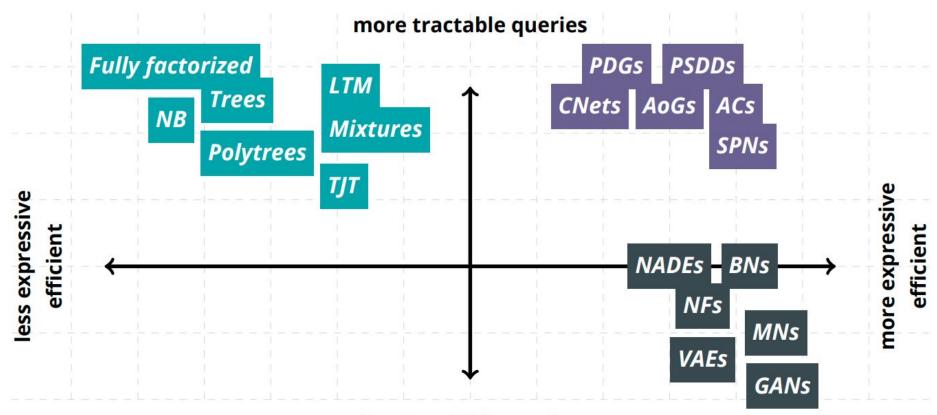


See work on

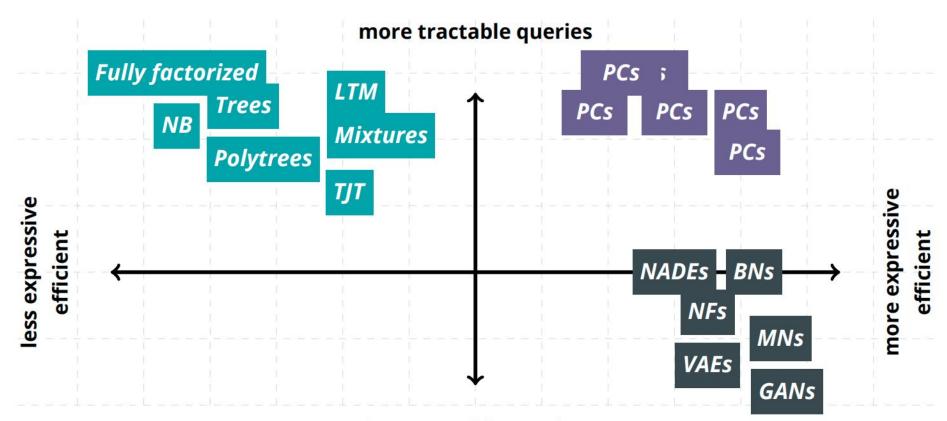
- Expected predictions / conformant learning [Khosravi et al.]
- Generative forests [Correia et al.]



tractability is a spectrum



less tractable queries



less tractable queries

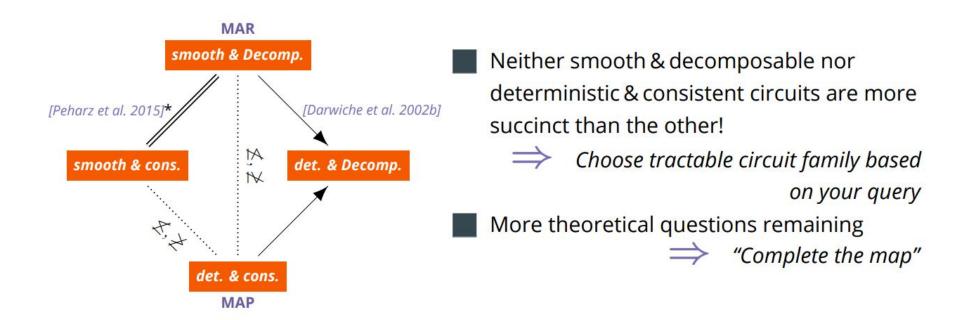
Outline

- 1. What are tractable probabilistic circuits?
- 2. Are these models any good?
- 3. How far can we push tractable inference?
- 4. What is their expressive power?

Expressive efficiency of circuits

: strictly more succinct

=: equally succinct



ask YooJung Choi and Stefan Mengel

Probabilistic circuits seem awfully general.

Are all tractable probabilistic models probabilistic circuits?

Enter: Determinantal Point Processes (DPPs)

DPPs are models where probabilities are specified by (sub)determinants

$$L = \begin{bmatrix} 1 & 0.9 & 0.8 & 0 \\ 0.9 & 0.97 & 0.96 & 0 \\ 0.8 & 0.96 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

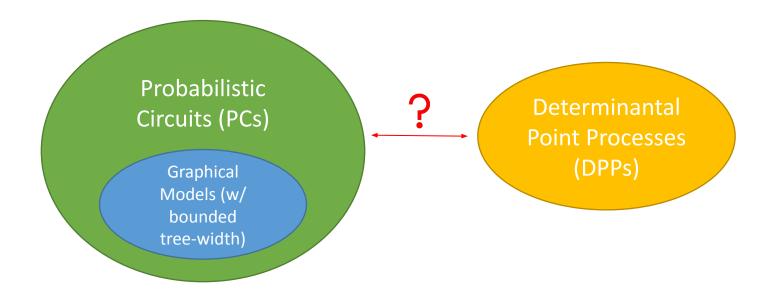
Tractable likelihoods and marginals

Global Negative Dependence

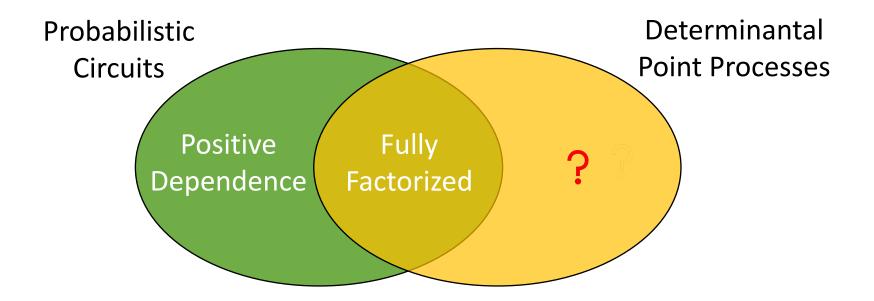
Diversity in recommendation systems

$$\Pr_L(X_1 = 1, X_2 = 0, X_3 = 1, X_4 = 0) = \frac{1}{\det(L+I)} \det(L_{\{1,2\}})$$

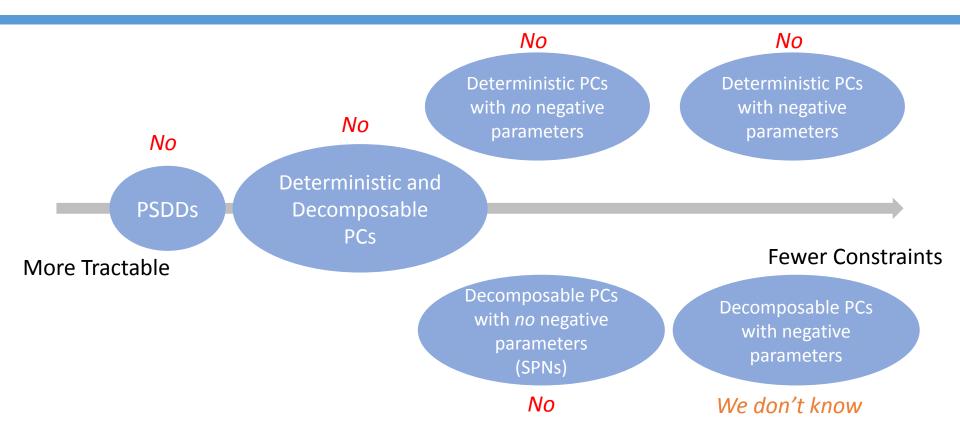
Are all tractable probabilistic models probabilistic circuits?



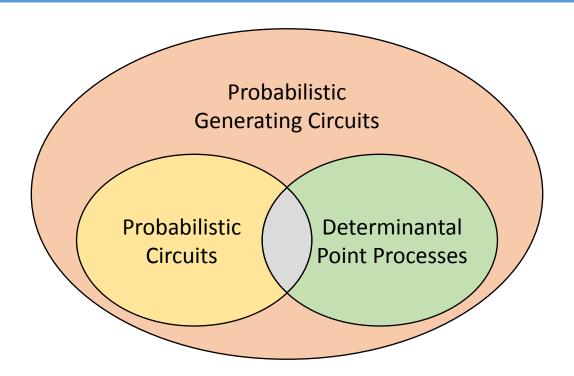
Relationship between PCs and DPPs



We cannot tractably represent DPPs with subclasses of PCs



Probabilistic Generating Circuits



A Tractable Unifying Framework for PCs and DPPs

Probability Generating Functions

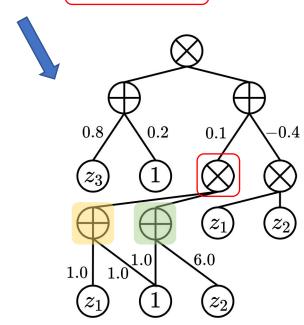
X_1	X_2	X_3	\Pr_{β}
0	0	0	0.02
0	0	1	0.08
0	1	0	0.12
0	1	1	0.48
1	0	0	0.02
1	0	1	0.08
1	1	0	0.04
1	1	1	0.16

$$g_{\beta} = \underbrace{0.16z_1z_2z_3} + 0.04z_1z_2 + 0.08z_1z_3 + 0.02z_1 + 0.48z_2z_3 + 0.12z_2 + 0.08z_3 + 0.02.$$

$$g_{\beta} = (0.1(z_1+1)(6z_2+1) - 0.4z_1z_2)(0.8z_3+0.2)$$

Probabilistic Generating Circuits (PGCs)

$$g_{\beta} = (0.1(z_1+1)(6z_2+1) - 0.4z_1z_2)(0.8z_3+0.2)$$



- 1. Sum nodes with weighted edges to children.
- 2. Product nodes with unweighted edges to children.
- 3. Leaf nodes: z_i or constant.

DPPs as PGCs

The generating polynomial for a DPP with kernel L is given by:

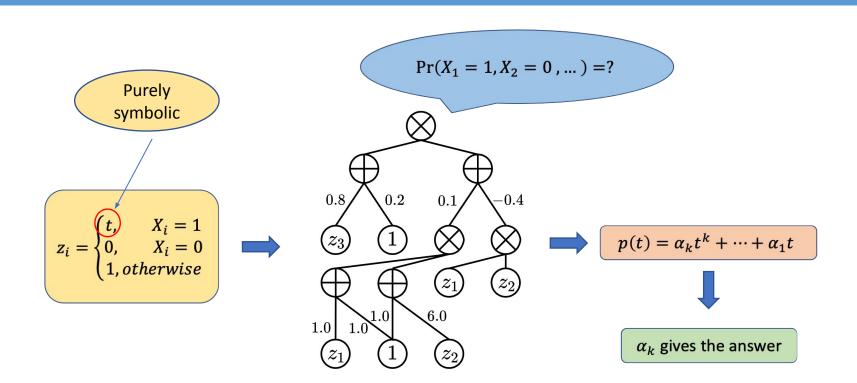
$$g_L = \underbrace{\frac{1}{\det(L+I)}} \det(I + L \operatorname{diag}(z_1, \dots, z_n))$$

Constant

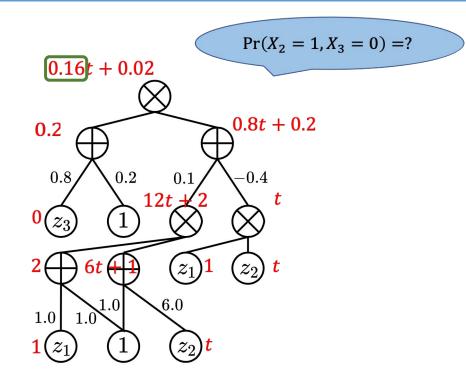
Division-free determinant algorithm (Samuelson-Berkowitz algorithm)

 g_L can be represented as a PGC of size $O(n^4)$

PGCs Support Tractable Likelihoods/Marginals



Example



X_1	X_2	X_3	\Pr_{β}
0	0	0	0.02
0	0	1	0.08
0	1	0	0.12
0	1	1	0.48
1	0	0	0.02
1	0	1	0.08
1	1	0	0.04
1	1	1	0.16

Experiment Results: Amazon Baby Registries

	DPP	Strudel	EiNet	MT	SimplePGC
apparel	-9.88	-9.51	-9.24	-9.31	$-9.10^{*\dagger\circ}$
bath	-8.55	-8.38	-8.49	-8.53	$-8.29^{*\dagger\circ}$
bedding	-8.65	-8.50	-8.55	-8.59	$-8.41^{*\dagger\circ}$
carseats	-4.74	-4.79	-4.72	-4.76	$-4.64^{*\dagger\circ}$
diaper	-10.61	-9.90	-9.86	-9.93	$-9.72^{*\dagger\circ}$
feeding	-11.86	-11.42	-11.27	-11.30	$-11.17^{*\dagger\circ}$
furniture	-4.38	-4.39	-4.38	-4.43	$-4.34^{*\dagger\circ}$
gear	-9.14	-9.15	-9.18	-9.23	$-9.04^{*\dagger\circ}$
gifts	-3.51	-3.39	-3.42	-3.48	-3.47°
health	-7.40	-7.37	-7.47	-7.49	$-7.24^{*\dagger\circ}$
media	-8.36	-7.62	-7.82	-7.93	$-7.69^{\dagger\circ}$
moms	-3.55	-3.52	-3.48	-3.54	-3.53°
safety	-4.28	-4.43	-4.39	-4.36	$-4.28^{*\dagger\circ}$
strollers	-5.30	-5.07	-5.07	-5.14	$-5.00^{*\dagger\circ}$
toys	-8.05	-7.61	-7.84	-7.88	$-7.62^{\dagger \circ}$

SimplePGC achieves SOTA result on 11/15 datasets

Conclusion

- 1. What are tractable probabilistic circuits?
- 2. Are these models any good?
- 3. How far can we push tractable inference?
- 4. What is their expressive power?

Learn more about probabilistic circuits?

Tutorial (3h)

https://youtu.be/2RAG5-L9R70

Overview Paper (80p)

	Probabilistic Circuits: A Unifying Framework for Tractable Probabilistic Model	\mathbf{s}^*
Y	ooJung Choi	
A	ntonio Vergari	
Ca Un	uy Van den Broeck computer Science Department niversity of California ss Angeles, CA, USA	
C	ontents	
1	Introduction	3
2	Probabilistic Inference: Models, Queries, and Tractability	4
	2.1 Probabilistic Models	5
	2.2 Probabilistic Queries	6 8
	2.4 Properties of Tractable Probabilistic Models	9

http://starai.cs.ucla.edu/papers/ProbCirc20.pdf