PSDDs for Tractable Learning in Structured and Unstructured Spaces

Guy Van den Broeck

DeLBP Aug 18, 2017

References

Probabilistic Sentential Decision Diagrams

Doga Kisa, Guy Van den Broeck, Arthur Choi and Adnan Darwiche KR, 2014

Learning with Massive Logical Constraints

Doga Kisa, Guy Van den Broeck, Arthur Choi and Adnan Darwiche ICML LTPM workshop, 2014

Tractable Learning for Structured Probability Spaces

Arthur Choi, Guy Van den Broeck and Adnan Darwiche IJCAI, 2015

Tractable Learning for Complex Probability Queries

Jessa Bekker, Jesse Davis, Arthur Choi, Adnan Darwiche, Guy Van den Broeck. NIPS, 2015

Learning the Structure of PSDDs

Yitao Liang, Jessa Bekker and Guy Van den Broeck UAI, 2017

Towards Compact Interpretable Models: Learning and Shrinking PSDDs

Yitao Liang and Guy Van den Broeck IJCAI XAI workshop, 2017

(P)SDDs in Melbourne

- Sunday: Logical Foundations for Uncertainty and Machine Learning Workshop
 - <u>Adnan Darwiche</u>: "On the Role of Logic in Probabilistic Inference and Machine Learning"
 - <u>YooJung Choi</u>: "Optimal Feature Selection for Decision Robustness in Bayesian Networks"
- Sunday: Explainable AI Workshop
 - <u>Yitao Liang</u>: "Towards Compact Interpretable Models: Learning and Shrinking PSDDs"
- Tuesday: IJCAI
 - <u>YooJung Choi</u> (again)

Structured vs. unstructured probability spaces?

Running Example

Courses:

- Logic (L)
- Knowledge Representation (K)
- Probability (P)
- Artificial Intelligence (A)

Data

	L	Κ	Р	A	Students
-	0	0	1	0	6
	0	0	1	1	54
	0	1	1	1	10
	1	0	0	0	5
	1	0	1	0	1
	1	0	1	1	0
	1	1	0	0	17
	1	1	1	0	4
	1	1	1	1	3

Running Example

Courses:

- Logic (L)
- Knowledge Representation (K)
- Probability (P)
- Artificial Intelligence (A)

Constraints

- Must take at least one of Probability or Logic.
- Probability is a prerequisite for AI.
- The prerequisites for KR is either AI or Logic.

Data

	\mathbf{L}	Κ	Р	A	Students
-	0	0	1	0	6
	0	0	1	1	54
	0	1	1	1	10
	1	0	0	0	5
	1	0	1	0	1
	1	0	1	1	0
	1	1	0	0	17
	1	1	1	0	4
	1	1	1	1	3

Probability Space

unstructured

L	К	Р	А
0	0	0	0
0	0	0	1
0	0	1	0
0	0	1	1
0	1	0	0
0	1	0	1
0	1	1	0
0	1	1	1
1	0	0	0
1	0	0	1
1	0	1	0
1	0	1	1
1	1	0	0
1	1	0	1
1	1	1	0
1	1	1	1

unstructured

L	К	Р	А
0	0	0	0
0	0	0	1
0	0	1	0
0	0	1	1
0	1	0	0
0	1	0	1
0	1	1	0
0	1	1	1
1	0	0	0
1	0	0	1
1	0	1	0
1	0	1	1
1	1	0	0
1	1	0	1
1	1	1	0
1	1	1	1

- Must take at least one of Probability or Logic.
- Probability is a prerequisite for AI.
- The prerequisites for KR is either AI or Logic.

7 out of 16 instantiations are impossible

structured

L	К	Р	А
0	0	0	0
0	0	0	1
0	0	1	0
0	0	1	1
0	1		0
0	1	0	1
0	1	1	0
0	1	1	1
1	0	0	0
1	0	0	1
1	0	1	0
1	0	1	1
1	1	0	0
1	1	0	1
1	1	1	0
1	1	1	1

Learning with Constraints

Learning with Constraints

Learn a statistical model that assigns **zero probability**

to instantiations that violate the constraints.

Example: Video

[Lu, W. L., Ting, J. A., Little, J. J., & Murphy, K. P. (2013). Learning to track and identify players from broadcast sports videos.]

Example: Video

We also connect all pairs of identity nodes $y_{t,i}$ and $y_{t,j}$ if they appear in the same time *t*. We then introduce an edge potential that enforces mutual exclusion:

$$\psi_{\text{mutex}}(y_{t,i}, y_{t,j}) = \begin{cases} 1 & \text{if } y_{t,i} \neq y_{t,j} \\ 0 & \text{otherwise} \end{cases}$$
(5)

This potential specifies the constraint that a player can be appear only *once* in a frame. For example, if the *i*-th detection $y_{t,i}$ has been assign to Bryant, $y_{t,j}$ cannot have the same identity because Bryant is impossible to appear twice in a frame.

[Lu, W. L., Ting, J. A., Little, J. J., & Murphy, K. P. (2013). Learning to track and identify players from broadcast sports videos.]

Example: Robotics

[Wong, L. L., Kaelbling, L. P., & Lozano-Perez, T., Collision-free state estimation. ICRA 2012]

Example: Robotics

The method developed in this paper can be used in a broad variety of semantic mapping and object manipulation tasks, providing an efficient and effective way to incorporate collision constraints into a recursive state estimator, obtaining optimal or near-optimal solutions.

Non-local dependencies:

At least one verb in each sentence

- Non-local dependencies:
 At least one verb in each sentence
- Sentence compression
 If a modifier is kept, its subject is also kept

- Non-local dependencies:
 At least one verb in each sentence
- Sentence compression If a modifier is kept, its subject is also kept
- Information extraction

	Citations					
Start	The citation must start with author					
	or editor.					
AppearsOnce	Each field must be a consecutive list					
	of words, and can appear at most					
	once in a citation.					
Punctuation	State transitions must occur on					
	punctuation marks.					
BookJournal	The words proc, journal, proceed-					
	ings, ACM					
	are JOURNAL or BOOKTITLE.					
TechReport	The words <i>tech</i> , <i>technical</i> are					
	TECH_REPORT.					
Title	Quotations can appear only in titles.					
Location	The words CA, Australia, NY are					
	LOCATION.					

- Non-local dependencies:
 At least one verb in each sentence
- Sentence compression If a modifier is kept, its subject is also kept
- Information extraction
- Semantic role labeling
- ... and many more!

	Citations					
Start	The citation must start with author					
	or editor.					
AppearsOnce	Each field must be a consecutive list					
	of words, and can appear at most					
	once in a citation.					
Punctuation	State transitions must occur on					
	punctuation marks.					
BookJournal	The words proc, journal, proceed-					
	ings, ACM					
	are JOURNAL or BOOKTITLE.					
TechReport	The words <i>tech</i> , <i>technical</i> are					
	TECH_REPORT.					
Title	Quotations can appear only in titles.					
Location	The words CA, Australia, NY are					
	LOCATION.					

New Scientist

HOME NEWS TECHNOLOGY SPACE PHYSICS HEALTH EARTH HUMANS LIFE TOPICS EVENTS JOBS

Meet The People Shaping The Future Of Energy: Reinventing Energy Summit - 25 November in Londo

iome | News | Technology

G f 🎔 🗢 + 🔤 26

DAILY NEWS 12 October 2016

DeepMind's AI has learned to navigate the Tube using memory

nature International Works

 Home
 News & Comment
 Research
 Careers & Jobs
 Current Issue
 Archive
 Audio & Video
 Fo

 News & Comment
 News
 2016
 November
 Article

NATURE | NEWS

Google's Al reasons its way around the London Underground

DeepMind's latest technique uses external memory to solve tasks that require <mark>logic</mark> and easoning — a step toward more human-like Al.

Elizabeth Gibne

What are people doing now?

- Ignore constraints
- Handcraft into models —
- Use specialized distributions
- Find non-structured encoding
- Try to learn constraints
- Hack your way around

What are people doing now?

E2

Κ

E1

- Ignore constraints
- Handcraft into models —
- Use specialized distributions
- Find non-structured encoding
- Try to learn constraints
- Hack your way around

Accuracy ?

- Specialized skill ?
- Intractable inference ?
 - Intractable learning ?
 - Waste parameters ?

Risk predicting out of space ?

you are on your own 😣

• Everywhere in ML!

- Configuration problems, inventory, video, text, deep learning
- Planning and diagnosis (physics)
- Causal models: cooking scenarios (interpreting videos)
- Combinatorial objects: parse trees, rankings, directed acyclic graphs, trees, simple paths, game traces, etc.

• Everywhere in ML!

- Configuration problems, inventory, video, text, deep learning
- Planning and diagnosis (physics)
- Causal models: cooking scenarios (interpreting videos)
- Combinatorial objects: parse trees, rankings, directed acyclic graphs, trees, simple paths, game traces, etc.
- Some representations: constrained conditional models, mixed networks, probabilistic logics.

• Everywhere in ML!

- Configuration problems, inventory, video, text, deep learning
- Planning and diagnosis (physics)
- Causal models: cooking scenarios (interpreting videos)
- Combinatorial objects: parse trees, rankings, directed acyclic graphs, trees, simple paths, game traces, etc.
- Some representations: constrained conditional models, mixed networks, probabilistic logics.

No statistical ML boxes out there that take constraints as input! 🛞

• Everywhere in ML!

- Configuration problems, inventory, video, text, deep learning
- Planning and diagnosis (physics)
- Causal models: cooking scenarios (interpreting videos)
- Combinatorial objects: parse trees, rankings, directed acyclic graphs, trees, simple paths, game traces, etc.
- Some representations: constrained conditional models, mixed networks, probabilistic logics.

No statistical ML boxes out there that take constraints as input! 🛞

<u>Goal</u>: Constraints as important as data! General purpose!

Specification Language: Logic

unstructured

L	К	Р	А
0	0	0	0
0	0	0	1
0	0	1	0
0	0	1	1
0	1	0	0
0	1	0	1
0	1	1	0
0	1	1	1
1	0	0	0
1	0	0	1
1	0	1	0
1	0	1	1
1	1	0	0
1	1	0	1
1	1	1	0
1	1	1	1

- Must take at least one of Probability or Logic.
- Probability is a prerequisite for AI.
- The prerequisites for KR is either AI or Logic.

7 out of 16 instantiations are impossible

structured

L	К	Р	А
0	0	0	0
0	0	0	1
0	0	1	0
0	0	1	1
0	1		0
0	1	0	1
0	1	1	0
0	1	1	1
1	0	0	0
1	0	0	1
1	0	1	0
1	0	1	1
1	1	0	0
1	1	0	1
1	1	1	0
1	1	1	1

Boolean Constraints

un	stru	ctu	red	
L	K	Р	А	
0	0	0	0	
0	0	0	1	
0	0	1	0	$P \lor L$
0	0	1	1	$A \Rightarrow P$
0	1	0	0	
0	1	0	1	$K \Rightarrow (P \lor L)$
0	1	1	0	
0	1	1	1	
1	0	0	0	
1	0	0	1	
1	0	1	0	7 out of 16 instantiations
1	0	1	1	/ out of to instantiations
1	1	0	0	are impossible
1	1	0	1	L.
1	1	1	0	
1	1	1	1	

structured

L	K	Р	А
	0		0
0	0	0	1
0	0	1	0
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	0
1	0	0	1
1	0	1	0
1	0	1	1
1	1	0	0
1	1	0	1
1	1	1	0
1	1	1	1

Combinatorial Objects: Rankings

rank	sushi	rank	sushi
1	fatty tuna	1	shrimp
2	sea urchin	2	sea urchin
3	salmon roe	3	salmon roe
4	shrimp	4	fatty tuna
5	tuna	5	tuna
6	squid	6	squid
7	tuna roll	7	tuna roll
8	see eel	8	see eel
9	egg	9	egg
10	cucumber roll	10	cucumber rol

10 items: 3,628,800 rankings

20 items: 2,432,902,008,176,640,000 rankings

Combinatorial Objects: Rankings

rank	sushi	rank	sushi
1	fatty tuna	1	shrimp
2	sea urchin	2	sea urchin
3	salmon roe	3	salmon roe
4	shrimp	4	fatty tuna
5	tuna	5	tuna
6	squid	6	squid
7	tuna roll	7	tuna roll
8	see eel	8	see eel
9	egg	9	egg
10	cucumber roll	10	cucumber roll

A_{ij} item *i* at position *j*(*n* items require *n*²
Boolean variables)

Combinatorial Objects: Rankings

rank	sushi	rank	sushi
1	fatty tuna	1	shrimp
2	sea urchin	2	sea urchin
3	salmon roe	3	salmon roe
4	shrimp	4	fatty tuna
5	tuna	5	tuna
6	squid	6	squid
7	tuna roll	7	tuna roll
8	see eel	8	see eel
9	egg	9	egg
10	cucumber roll	10	cucumber roll

A_{ij} item *i* at position *j*(*n* items require *n*²
Boolean variables)

An item may be assigned to more than one position

A position may contain more than one item

Encoding Rankings in Logic

A_{ij} : item *i* at position *j*

	pos 1	pos 2	pos 3	pos 4
item 1	<i>A</i> ₁₁	<i>A</i> ₁₂	<i>A</i> ₁₃	<i>A</i> ₁₄
item 2	<i>A</i> ₂₁	A ₂₂	A ₂₃	<i>A</i> ₂₄
item 3	<i>A</i> ₃₁	<i>A</i> ₃₂	<i>A</i> ₃₃	<i>A</i> ₃₄
item 4	A_{41}	A_{42}	<i>A</i> ₄₃	A_{44}

Encoding Rankings in Logic

A_{ij} : item *i* at position *j*

	pos 1	pos 2	pos 3	pos 4
item 1	<i>A</i> ₁₁	<i>A</i> ₁₂	<i>A</i> ₁₃	<i>A</i> ₁₄
item 2	<i>A</i> ₂₁	A ₂₂	A ₂₃	<i>A</i> ₂₄
item 3	<i>A</i> ₃₁	<i>A</i> ₃₂	<i>A</i> ₃₃	<i>A</i> ₃₄
item 4	A_{41}	A_{42}	A_{43}	A_{44}

constraint: each item *i* assigned to a unique position (*n* constraints)

$$\bigvee_{j} A_{ij} \wedge \left(\bigwedge_{k \neq j} \neg A_{ik}\right)$$

Encoding Rankings in Logic

A_{ij} : item *i* at position *j*

	pos 1	pos 2	pos 3	pos 4
item 1	<i>A</i> ₁₁	A ₁₂	<i>A</i> ₁₃	<i>A</i> ₁₄
item 2	A ₂₁	A ₂₂	A ₂₃	<i>A</i> ₂₄
item 3	<i>A</i> ₃₁	A ₃₂	<i>A</i> ₃₃	<i>A</i> ₃₄
item 4	A ₄₁	A ₄₂	A ₄₃	A_{44}

constraint: each item *i* assigned to a unique position (*n* constraints)

$$\bigvee_{j} A_{ij} \wedge \left(\bigwedge_{k \neq j} \neg A_{ik}\right)$$

constraint: each position *j* assigned a unique item (*n* constraints)

$$\bigvee_i A_{ij} \wedge \left(\bigwedge_{k \neq i} \neg A_{kj}\right)$$

Encoding Rankings in Logic

A_{ij} : item *i* at position *j*

	pos 1	pos 2	pos 3	pos 4
item 1	<i>A</i> ₁₁	A ₁₂	<i>A</i> ₁₃	<i>A</i> ₁₄
item 2	A ₂₁	A ₂₂	A ₂₃	<i>A</i> ₂₄
item 3	<i>A</i> ₃₁	A ₃₂	A ₃₃	<i>A</i> ₃₄
item 4	<i>A</i> ₄₁	A ₄₂	A ₄₃	A_{44}

constraint: each item i assigned to
a unique position (n constraints)

$$\bigvee_{j} A_{ij} \wedge \left(\bigwedge_{k \neq j} \neg A_{ik}\right)$$

constraint: each position *j* assigned a unique item (*n* constraints)

$$\bigvee_i A_{ij} \wedge \left(\bigwedge_{k \neq i} \neg A_{kj}\right)$$

total constraints 2n<u>unstructured</u> space 2^{n^2} structured space n!

Structured Space for Paths cf. Nature paper

Structured Space for Paths cf. Nature paper

Good variable assignment (represents route)

184

Structured Space for Paths cf. Nature paper

Good variable assignment (represents route)

184

Bad variable assignment (does not represent route)

16,777,032

Structured Space for Paths cf. Nature paper

Space easily encoded in logical constraints ③ See [Choi, Tavabi, Darwiche, AAAI 2016]

Structured Space for Paths cf. Nature paper

Space easily encoded in logical constraints ③ See [Choi, Tavabi, Darwiche, AAAI 2016]

Unstructured probability space: $184+16,777,032 = 2^{24}$

"Deep Architecture"

Logic + Probability

Sentential Decision Diagram (SDD)

Sentential Decision Diagram (SDD)

Sentential Decision Diagram (SDD)

Tractable for Logical Inference

- Is structured space empty? (SAT)
- Count size of structured space (#SAT)
- Check equivalence of spaces

Tractable for Logical Inference

- Is structured space empty? (SAT)
- Count size of structured space (#SAT)
- Check equivalence of spaces
- Algorithms linear in circuit size (pass up, pass down, similar to backprop)

Tractable for Logical Inference

- Is structured space empty? (SAT)
- Count size of structured space (#SAT)
- Check equivalence of spaces
- Algorithms linear in circuit size (pass up, pass down, similar to backprop)

SCIENCE + TECHNOLOGY

Artificial intelligence framework developed by UCLA professor now powers Toyota websites

Adnan Darwiche's invention helps consumers customize their vehicles online

Input: *L*, *K*, *P*, *A*

Input: *L*, *K*, *P*, *A*

Input: *L*, *K*, *P*, *A* $P(L, K, P, A) = 0.3 \ge 1.0 \ge 0.4 \ge 0.25 = 0.024$

Can read probabilistic independences off the circuit structure

Tractable for Probabilistic Inference

- **MAP inference**: Find most-likely assignment (otherwise NP-complete)
- Computing conditional probabilities Pr(x|y) (otherwise PP-complete)
- **Sample** from Pr(x|y)

Tractable for Probabilistic Inference

- **MAP inference**: Find most-likely assignment (otherwise NP-complete)
- Computing conditional probabilities Pr(x|y) (otherwise PP-complete)
- **Sample** from Pr(x|y)
- Algorithms linear in circuit size ⁽²⁾
 (pass up, pass down, similar to backprop)

Learning PSDDs

Logic + Probability + ML

Explainable AI DARPA Program

Learning Algorithms

• Parameter learning:

Closed form max likelihood from complete data One pass over data to estimate Pr(x|y)

Learning Algorithms

• Parameter learning:

Closed form max likelihood from complete data

One pass over data to estimate Pr(x|y)

Not a lot to say: very easy!

Learning Algorithms

• Parameter learning:

Closed form max likelihood from complete data One pass over data to estimate Pr(x|y)

Not a lot to say: very easy!

- Circuit learning (naïve):
 Compile constraints to SDD circuit
 Use SAT solver technology
 - Circuit does not depend on data

Learning Preference Distributions

Learning Preference Distributions

This is the naive approach, circuit does not depend on data!

Learn Circuit from Data

Even in unstructured spaces

Bayesian networks

Markov networks

Bayesian networks Markov networks

Do not support linear-time exact inference

Historically: Polytrees, Chow-Liu trees, etc.

Both are Arithmetic Circuits (ACs)

PSDDs are Arithmetic Circuits

Representational Freedom

DNN

Strong Properties

Representational Freedom

Representational Freedom

Representational Freedom

Strong Properties

Strong Properties

Representational Freedom

Perhaps the most powerful circuit proposed to date

Multiply independent distributions

$$\Pr(\texttt{Rain}) = 0.2,$$

 $\Pr(\texttt{Sun} \mid \texttt{Rain}) = \begin{cases} 0.1 \text{ if } \texttt{Rain} \\ 0.7 \text{ if } \neg \texttt{Rain} \end{cases}$
 $\Pr(\texttt{Rbow} \mid \texttt{R}, \texttt{S}) = \begin{cases} 1 \text{ if } \texttt{Rain} \land \texttt{Sun} \\ 0 \text{ otherwise} \end{cases}$

Variable Trees (vtrees)

Learning Variable Trees

• How much do vars depend on each other?

$$\mathrm{MI}(\mathbf{X},\mathbf{Y}) = \sum_{X \in \mathbf{X}} \sum_{Y \in \mathbf{Y}} \mathrm{Pr}(X,Y) \log \frac{\mathrm{Pr}(X,Y)}{\mathrm{Pr}(X) \mathrm{Pr}(Y)}$$

Learn vtree by hierarchical clustering

Learning Variable Trees

How much do vars depend on each other?

$$\mathrm{MI}(\mathbf{X}, \mathbf{Y}) = \sum_{X \in \mathbf{X}} \sum_{Y \in \mathbf{Y}} \mathrm{Pr}(X, Y) \log \frac{\mathrm{Pr}(X, Y)}{\mathrm{Pr}(X) \mathrm{Pr}(Y)}$$

Learn vtree by hierarchical clustering

Learning Primitives

Learning Primitives

Learning Primitives

Primitives maintain PSDD properties and structured space!

LearnPSDD

LearnPSDD

Experiments on 20 datasets

Datasets	Var	Train	Valid	Test	LearnPSDD		EM-LearnPSDD		SearchSPN	Merged L-SPN		Merged O-SPN	
Datasets	Vai	11 am		Test	LL	Size	LL	Size	LL	LL	Size	LL	Size
NLTCS	16	16181	2157	3236	$-6.03^{\dagger *}$	3170	-6.03^{*}	2147	-6.07	-6.04	3988	-6.05	1152
MSNBC	17	291326	38843	58265	-6.05^{\dagger}	8977	-6.04^{*}	3891	-6.06	-6.46	2440	-6.08	9478
KDD	64	1800992	19907	34955	-2.16^{\dagger}	14974	-2.12^{*}	9182	-2.16	-2.14	6670	-2.19	16608
Plants	69	17412	2321	3482	-14.93	13129	-13.79^{*}	13951	-13.12^{\dagger}	-12.69	47802	-13.49	36960
Audio	100	15000	2000	3000	-42.53	13765	-41.98*	9721	-40.13^{\dagger}	-40.02	10804	-42.06	6142
Jester	100	9000	1000	4116	-57.67	11322	-53.47^*	7014	-53.08^{\dagger}	-52.97	10002	-55.36	4996
Netflix	100	15000	2000	3000	-58.92	10997	-58.41^{*}	6250	-56.91^{\dagger}	-56.64	11604	-58.64	6142
Accidents	111	12758	1700	2551	-34.13	10489	-33.64^*	6752	-30.02^{\dagger}	-30.01	13322	-30.83	6846
Retail	135	22041	2938	4408	-11.13	4091	-10.81^{*}	7251	-10.97^{\dagger}	-10.87	2162	-10.95	3158
Pumsb-Star	163	12262	1635	2452	-34.11	10489	-33.67^{*}	7965	-28.69^{\dagger}	-24.11	17604	-24.34	18338
DNA	180	1600	400	1186	-89.11^{*}	6068	-92.67	14864	-81.76^{\dagger}	-85.51	4320	-87.49	1430
Kosarek	190	33375	4450	6675	-10.99^{\dagger}	11034	-10.81^{*}	10179	-11.00	-10.62	5318	-10.98	6712
MSWeb	294	29441	32750	5000	-10.18^{\dagger}	11389	-9.97^*	14512	-10.25	-9.90	16484	-10.06	12770
Book	500	8700	1159	1739	-35.90	15197	-34.97^*	11292	-34.91^{\dagger}	-34.76	11998	-37.44	11916
EachMovie	500	4524	1002	591	-56.43^{*}	12483	-58.01	16074	-53.28^{\dagger}	-52.07	15998	-58.05	19846
WebKB	839	2803	558	838	-163.42	10033	-161.09^{*}	18431	-157.88^{\dagger}	-153.55	20134	-161.17	10046
Reuters-52	889	6532	1028	1530	-94.94	10585	-89.61*	9546	-86.38^{\dagger}	-83.90	46232	-87.49	28334
20NewsGrp.	910	11293	3764	3764	-161.41	12222	-161.09^{*}	18431	-153.63^{\dagger}	-154.67	43684	-161.46	29016
BBC	1058	1670	225	330	-260.83	10585	-253.19^{*}	20327	-252.13^{\dagger}	-253.45	21160	-260.59	8454
AD	1556	2461	327	491	-30.49^{*}	9666	-31.78	9521	-16.97^{\dagger}	-16.77	49790	-15.39	31070

Experiments on 20 datasets

Compare with O-SPN: smaller size in 14, better LL in 11, win on both in 6

Compare with L-SPN: smaller size in 14, better LL in 6, win on both in 2

Experiments on 20 datasets

Compare with O-SPN: smaller size in 14, better LL in 11, win on both in 6

Compare with L-SPN: smaller size in 14, better LL in 6, win on both in 2

Comparable in performance & Smaller in size

Ensembles of PSDDs

Ensembles of PSDDs

EM/Bagging

Ensembles of PSDDs

EM/Bagging

State-of-the-Art Performance

Datasets	Var	LearnPSDD Ensemble	Best-to-Date		
NLTCS	16	-5.99^\dagger	-6.00		
MSNBC	17	-6.04^{\dagger}	-6.04^{\dagger}		
KDD	64	-2.11^\dagger	-2.12		
Plants	69	-13.02	-11.99^{\dagger}		
Audio	100	-39.94	-39.49^{+}		
Jester	100	-51.29	-41.11^{\dagger}		
Netflix	100	-55.71^{+}	-55.84		
Accidents	111	-30.16	-24.87^{\dagger}		
Retail	135	-10.72^{\dagger}	-10.78		
Pumsb-Star	163	-26.12	-22.40^{\dagger}		
DNA	180	-88.01	-80.03^{\dagger}		
Kosarek	190	-10.52^\dagger	-10.54		
MSWeb	294	-9.89	-9.22^{\dagger}		
Book	500	-34.97	-30.18^{\dagger}		
EachMovie	500	-58.01	-51.14^{\dagger}		
WebKB	839	-161.09	-150.10^{\dagger}		
Reuters-52	889	-89.61	-80.66^{\dagger}		
20NewsGrp.	910	-155.97	-150.88^{\dagger}		
BBC	1058	-253.19	-233.26^{\dagger}		
AD	1556	-31.78	-14.36^\dagger		

State-of-the-Art Performance

Datasets	Var	LearnPSDD Ensemble	Best-to-Date
NETCS	16	-5.99^{\dagger}	-6.00
MSNBC	17	-6.04^{\dagger}	-6.04^{\dagger}
KDD	64	-2.11^{\dagger}	-2.12
Plants	69	-13.02	-11.99^{\dagger}
Audio	100	-39.94	-39.49^{\dagger}
Jester	100	-51.29	-41.11^{\dagger}
Netflix	100	-55.71^{\dagger}	-55.84
Accidents	111	-30.16	-24.87^{\dagger}
Retail	135	-10.72^{\dagger}	-10.78
Pumsb-Star	163	-26.12	-22.40^{\dagger}
DNA	180	-88.01	-80.03^{\dagger}
Kosarek	190	-10.52^{\dagger}	-10.54
MSWeb	294	-9.89	-9.22^{\dagger}
Book	500	-34.97	-30.18^{\dagger}
EachMovie	500	-58.01	-51.14^{\dagger}
WebKB	839	-161.09	-150.10^{\dagger}
Reuters-52	889	-89.61	-80.66^{\dagger}
20NewsGrp.	910	-155.97	-150.88^{\dagger}
BBC	1058	-253.19	-233.26^{\dagger}
AD	1556	-31.78	-14.36^{\dagger}

State of the art in 6 datasets

Roadmap

Discrete multi-valued data A: a_1, a_2, a_3

$$\left\{egin{array}{c} a_1 \wedge
eg a_2 \wedge
eg a_3 \ ee \ ee \ ee a_1 \wedge a_2 \wedge
eg a_3 \ ee \$$

Discrete multi-valued data

 $\left\{egin{array}{c} a_1 \wedge
eg a_2 \wedge
eg a_3 \ ee \
eg a_1 \wedge a_2 \wedge
eg a_3 \ ee \
eg a_1 \wedge
eg a_2 \wedge a_3 \ ee \
eg a_1 \wedge
eg a_2 \wedge a_3 \end{array}
ight.$

A: a_1, a_2, a_3

Datasets	No Constraint	PSDD	LEARNPSDD
Adult	-18.41	-14.14	-12.86
CovType	-14.39	-8.81	-7.32

Discrete multi-valued data

 $\left\{egin{array}{c} a_1 \wedge
eg a_2 \wedge
eg a_3 \ ee \
eg a_1 \wedge a_2 \wedge
eg a_3 \ ee \
eg a_1 \wedge
eg a_2 \wedge a_3 \ ee \
eg a_1 \wedge
eg a_2 \wedge a_3 \end{array}
ight.$

A: a_1, a_2, a_3

		2	
Datasets	No Constraint	PSDD	LEARNPSDD
Adult	-18.41	-14.14	-12.86
CovType	-14.39	-8.81	-7.32

Discrete multi-valued data

 $\left\{egin{array}{c} a_1 \wedge
eg a_2 \wedge
eg a_3 \ ee \
eg a_1 \wedge a_2 \wedge
eg a_3 \ ee \
eg a_1 \wedge
eg a_2 \wedge a_3 \ ee \
eg a_1 \wedge
eg a_2 \wedge a_3 \end{array}
ight.$

A: a_1, a_2, a_3

		7	
Datasets	No Constraint	PSDD	LEARNPSDD
Adult	-18.41	-14.14	-12.86
CovType	-14.39	-8.81	-7.32

Never omit domain constraints

Complex queries

and

Learning from constraints

Incomplete Data

a classical complete dataset

id	X	Y	Z
1	x ₁	У ₂	Z ₁
2	x ₂	У ₁	Z ₂
3	x ₂	У ₁	Z ₂
4	x ₁	У ₁	Z ₁
5	x ₁	У ₂	Z ₂

closed-form (maximum-likelihood estimates are unique)

Incomplete Data

a classical complete dataset

id	X	Y	Z
1	x ₁	У ₂	Z ₁
2	x ₂	У ₁	Z_2
3	x ₂	У ₁	Z ₂
4	x ₁	У ₁	Z ₁
5	x ₁	У ₂	Z ₂

a classical incomplete dataset

id	X	Y	Z
1	x ₁	У ₂	?
2	x ₂	У ₁	?
3	?	?	Z ₂
4	?	У ₁	Z ₁
5	x ₁	У ₂	Z ₂

closed-form (maximum-likelihood estimates are unique) EM algorithm (on PSDDs)

Incomplete Data

a classical complete dataset

id	X	Y	Z
1	x ₁	y ₂	Z ₁
2	x ₂	У ₁	Z ₂
3	x ₂	У ₁	Z ₂
4	x ₁	У ₁	Z ₁
5	x ₁	У ₂	Z ₂

a classical incomplete dataset

id	X	Y	Z
1	x ₁	У ₂	?
2	x ₂	У ₁	?
3	?	?	Z ₂
4	?	У ₁	Z ₁
5	x ₁	У ₂	Z ₂

closed-form (maximum-likelihood estimates are unique) EM algorithm (on PSDDs)

a new type of incomplete dataset

id	X Y Z	
1	$X \equiv Z$	
2	x_2 and $(y_2 \text{ or } z_2)$	
3	$x_2 \Rightarrow y_1$	
4	$X \oplus Y \oplus Z \equiv 1$	
5	x_1 and y_2 and z_2	2

Missed in the ML literature

Structured Datasets

a classical **complete** dataset (e.g., total rankings)

id	1 st sushi	2 nd sushi	3 rd sushi	
1	fatty tuna	sea urchin	salmon roe	
2	fatty tuna	tuna	shrimp	
3	tuna	tuna roll	sea eel	
4	fatty tuna	salmon roe	tuna	
5	egg	squid	shrimp	

a classical **incomplete** dataset (e.g., top-*k* rankings)

id	1 st sushi	2 nd sushi	3 rd sushi	
1	fatty tuna	sea urchin	?	
2	fatty tuna	?	?	
3	tuna	tuna roll	?	
4	fatty tuna	salmon roe	?	
5	egg	?	?	

Structured Datasets

a classical **complete** dataset (e.g., total rankings)

id	1 st sushi	2 nd sushi	3 rd sushi	
1	fatty tuna	sea urchin	salmon roe	
2	fatty tuna	tuna	shrimp	
3	tuna	tuna roll	sea eel	
4	fatty tuna	salmon roe	tuna	
5	egg	squid	shrimp	

a new type of **incomplete** dataset (e.g., **partial** rankings)

id	1 st sushi	2 nd sushi	3 rd sushi	
1	(fatty tuna > sea urchin) and (tuna > sea eel)			
2	· ·	/ tuna is 1 ^s mon roe >	•	
3	t	una > squ	id	
4		egg is las	t	
5	egg	> squid > s	shrimp	

(represents constraints on possible *total rankings*)

Learning from Incomplete Data

- Movielens Dataset:
 - 3,900 movies, 6,040 users, 1m ratings
 - take ratings from 64 most rated movies
 - ratings 1-5 converted to pairwise prefs.
- PSDD for partial rankings
 - 4 tiers
 - 18,711 parameters

movies by expected tier

rank	movie
1	The Godfather
2	The Usual Suspects
3	Casablanca
4	The Shawshank Redemption
5	Schindler's List
6	One Flew Over the Cuckoo's Nest
7	The Godfather: Part II
8	Monty Python and the Holy Grail
9	Raiders of the Lost Ark
10	Star Wars IV: A New Hope

PSDD Sizes

items	tier size		Size	
n	k	SDD	Structured Space	Unstructured Space
8	2	443	840	$1.84\cdot10^{19}$
27	3	$4,\!114$	$1.18\cdot 10^9$	$2.82 \cdot 10^{219}$
64	4	$23,\!497$	$3.56\cdot10^{18}$	$1.04\cdot 10^{1233}$
125	5	$94,\!616$	$3.45\cdot10^{31}$	$3.92\cdot 10^{4703}$
216	6	$297,\!295$	$1.57\cdot 10^{48}$	$7.16\cdot 10^{14044}$
343	7	$781,\!918$	$4.57\cdot 10^{68}$	$7.55 \cdot 10^{35415}$

rank	movie
1	Star Wars V: The Empire Strikes Back
2	Star Wars IV: A New Hope
3	The Godfather
4	The Shawshank Redemption
5	The Usual Suspects

- no other Star Wars movie in top-5
- at least one comedy in top-5

rank	movie
1	Star Wars V: The Empire Strikes Back
2	Star Wars IV: A New Hope
3	The Godfather
4	The Shawshank Redemption
5	The Usual Suspects

•	no other Star Wars movie in top-5
•	at least one comedy in top-5

rank	movie
1	Star Wars V: The Empire Strikes Back
2	Star Wars IV: A New Hope
3	The Godfather
4	The Shawshank Redemption
5	The Usual Suspects

rank	movie
1	Star Wars V: The Empire Strikes Back
2	American Beauty
3	The Godfather
4	The Usual Suspects
5	The Shawshank Redemption

rank	movie
1	Star Wars V: The Empire Strikes Back
2	Star Wars IV: A New Hope
3	The Godfather
4	The Shawshank Redemption
5	The Usual Suspects

- no other Star Wars movie in top-5
- at least one comedy in top-5

rank	movie
1	Star Wars V: The Empire Strikes Back
2	American Beauty
3	The Godfather
4	The Usual Suspects
5	The Shawshank Redemption

diversified recommendations via *logical constraints*

Conclusions

- Structured spaces are everywhere ③
- PSDDs build on logical circuits
 - 1. Tractability
 - 2. Semantics
 - 3. Natural encoding of structured spaces
- Learning is effective
 - From constraints encoding structured space
 State of the art learning preference distributions
 - 2. From standard unstructured datasets using search State of the art on standard tractable learning datasets
- Novel settings for inference and learning Structured spaces / learning from constraints / complex queries

References

Probabilistic Sentential Decision Diagrams

Doga Kisa, Guy Van den Broeck, Arthur Choi and Adnan Darwiche KR, 2014

Learning with Massive Logical Constraints

Doga Kisa, Guy Van den Broeck, Arthur Choi and Adnan Darwiche ICML LTPM workshop, 2014

Tractable Learning for Structured Probability Spaces

Arthur Choi, Guy Van den Broeck and Adnan Darwiche IJCAI, 2015

Tractable Learning for Complex Probability Queries

Jessa Bekker, Jesse Davis, Arthur Choi, Adnan Darwiche, Guy Van den Broeck. NIPS, 2015

Learning the Structure of PSDDs

Yitao Liang, Jessa Bekker and Guy Van den Broeck UAI, 2017

Towards Compact Interpretable Models: Learning and Shrinking PSDDs

Yitao Liang and Guy Van den Broeck IJCAI XAI workshop, 2017

(P)SDDs in Melbourne

- Sunday: Logical Foundations for Uncertainty and Machine Learning Workshop
 - <u>Adnan Darwiche</u>: "On the Role of Logic in Probabilistic Inference and Machine Learning"
 - <u>YooJung Choi</u>: "Optimal Feature Selection for Decision Robustness in Bayesian Networks"
- Sunday: Explainable AI Workshop
 - <u>Yitao Liang</u>: "Towards Compact Interpretable Models: Learning and Shrinking PSDDs"
- Tuesday: IJCAI
 - <u>YooJung Choi</u> (again)

Conclusions

Questions?

PSDD with 15,000 nodes

LearnPSDD code: <u>https://github.com/UCLA-StarAI/LearnPSDD</u> Other PSDD code: <u>http://reasoning.cs.ucla.edu/psdd/</u> SDD code: <u>http://reasoning.cs.ucla.edu/sdd/</u>