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(P)SDDs in Melbourne 

• Sunday: Logical Foundations for Uncertainty and 

Machine Learning Workshop 

– Adnan Darwiche: “On the Role of Logic in  

Probabilistic Inference and Machine Learning” 

– YooJung Choi: “Optimal Feature Selection for 

Decision Robustness in Bayesian Networks” 

• Sunday: Explainable AI Workshop 

– Yitao Liang: “Towards Compact Interpretable Models: 

Learning and Shrinking PSDDs” 

• Tuesday: IJCAI 

– YooJung Choi (again) 



Structured vs. unstructured 

probability spaces? 



Courses: 
• Logic (L) 

• Knowledge Representation (K) 

• Probability (P)  

• Artificial Intelligence (A) 
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Data 

• Must take at least one of  

Probability or Logic. 

• Probability is a prerequisite for AI. 

• The prerequisites for KR is  

either AI or Logic. 
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Running Example 
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Structured Probability Space 

7 out of 16 instantiations  

are impossible 

• Must take at least one of  

Probability or Logic. 

• Probability is a prerequisite for AI. 

• The prerequisites for KR is  

either AI or Logic. 
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Learning with Constraints 

Learn a statistical model that assigns  

zero probability 

to instantiations that violate the constraints. 

Data 

Constraints 
(Background Knowledge) 

(Physics) 

Statistical Model 
(Distribution) 

Learn          



Example: Video 

[Lu, W. L., Ting, J. A., Little, J. J., & Murphy, K. P. (2013). Learning to track and identify players from broadcast sports videos.] 
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Example: Language 

• Non-local dependencies: 

At least one verb in each sentence 

                      

                                                 

                        

                        

                  

[Chang, M., Ratinov, L., & Roth, D. (2008). Constraints as prior knowledge],…, [Chang, M. W., Ratinov, L., & Roth, D. (2012). 

Structured learning with constrained conditional models.], [https://en.wikipedia.org/wiki/Constrained_conditional_model] 
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Example: Language 

• Non-local dependencies: 

At least one verb in each sentence 

• Sentence compression 

If a modifier is kept, its subject is also kept 

• Information extraction 

                        

                  

[Chang, M., Ratinov, L., & Roth, D. (2008). Constraints as prior knowledge],…, [Chang, M. W., Ratinov, L., & Roth, D. (2012). 

Structured learning with constrained conditional models.], [https://en.wikipedia.org/wiki/Constrained_conditional_model] 

   



Example: Language 

• Non-local dependencies: 

At least one verb in each sentence 

• Sentence compression 

If a modifier is kept, its subject is also kept 

• Information extraction 

• Semantic role labeling 

• … and many more! 

 

[Chang, M., Ratinov, L., & Roth, D. (2008). Constraints as prior knowledge],…, [Chang, M. W., Ratinov, L., & Roth, D. (2012). 

Structured learning with constrained conditional models.], [https://en.wikipedia.org/wiki/Constrained_conditional_model] 

   



Example: Deep Learning 

[Graves, A., Wayne, G., Reynolds, M., Harley, T., Danihelka, I., Grabska-Barwińska, A., et al.. (2016).  

Hybrid computing using a neural network with dynamic external memory. Nature, 538(7626), 471-476.] 
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What are people doing now? 

• Ignore constraints 

• Handcraft into models 

• Use specialized distributions 

• Find non-structured encoding 

• Try to learn constraints 

• Hack your way around 
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Accuracy ? 

Specialized skill ? 

Intractable inference ? 

Intractable learning ? 

Waste parameters ? 

Risk predicting out of space ? 

 

you are on your own  

 

+ 



Structured Probability Spaces 

• Everywhere in ML! 
– Configuration problems, inventory, video, text, deep learning 

– Planning and diagnosis (physics) 

– Causal models: cooking scenarios (interpreting videos) 

– Combinatorial objects: parse trees, rankings, directed acyclic graphs, 

trees, simple paths, game traces, etc. 
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– Planning and diagnosis (physics) 

– Causal models: cooking scenarios (interpreting videos) 

– Combinatorial objects: parse trees, rankings, directed acyclic graphs, 

trees, simple paths, game traces, etc. 

• Some representations: constrained conditional 

models, mixed networks, probabilistic logics. 

 

 
No statistical ML boxes out there 

that take constraints as input!  

Goal: Constraints as important as data! General purpose! 



Specification Language: Logic 
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Boolean Constraints 

7 out of 16 instantiations  

are impossible 



Combinatorial Objects: Rankings 

10 items:  

3,628,800  

rankings 

20 items:  

2,432,902,008,176,640,000  

rankings 

rank sushi 
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4 shrimp 

5 tuna 

6 squid 

7 tuna roll 

8 see eel 
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10 cucumber roll 
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rank sushi 
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2 sea urchin 
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4 fatty tuna 

5 tuna 

6 squid 

7 tuna roll 

8 see eel 

9 egg 

10 cucumber roll 

Aij  item i at position j    

(n items require n2  

 Boolean variables)  

An item may be assigned   

to more than one position 

A position may contain  

more than one item 



Encoding Rankings in Logic 

Aij  : item i at position j  

pos 1 pos 2 pos 3 pos 4 

item 1 A11 A12 A13 A14 
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Unstructured probability space: 184+16,777,032 = 224  

Structured Space for Paths 
cf. Nature paper 

Good variable assignment 

(represents route) 
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Bad variable assignment 

(does not represent route) 

 

16,777,032 

Space easily encoded in logical constraints  

See [Choi, Tavabi, Darwiche, AAAI 2016] 



“Deep Architecture” 

 
Logic + Probability 
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• Is structured space empty? (SAT) 

• Count size of structured space (#SAT) 
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Can read probabilistic independences off the circuit structure  

PSDD nodes induce 

a normalized 

distribution! 
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Probabilistic Inference 

• MAP inference: Find most-likely assignment  

(otherwise NP-complete) 

• Computing conditional probabilities Pr(x|y) 

(otherwise PP-complete) 

• Sample from Pr(x|y) 
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Learning PSDDs 

 
Logic + Probability + ML 
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Explainable AI DARPA Program 



Learning Algorithms 

• Parameter learning:  

Closed form max likelihood from complete data 

One pass over data to estimate Pr(x|y) 
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• Circuit learning (naïve): 

Compile constraints to SDD circuit 

– Use SAT solver technology 

 Circuit does not depend on data 

 

Not a lot to say: very easy! 
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– # of components 
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Learning Preference Distributions 

Special-purpose  
distribution: 
Mixture-of-Mallows 

– # of components 
from 1 to 20 

– EM with  
10 random seeds 

– implementation of 
Lu & Boutilier 

PSDD 

This is the naive approach, circuit does not depend on data! 



Learn Circuit from Data 

 
Even in unstructured spaces 



Tractable Learning 

Bayesian networks Markov networks 



Tractable Learning 

Bayesian networks Markov networks 

Do not support linear-time exact inference 



Tractable Learning 

SPNs Cutset Networks 

Historically: Polytrees, Chow-Liu trees, etc. 

Both are Arithmetic Circuits (ACs) 

[Darwiche, JACM 2003] 



PSDDs are Arithmetic Circuits 

2 

1 n 

p1 s1 p2 s2 pn sn 

PSDD AC 

+ 

* * * 

* * * 1 2 n 

p1 s1 p2 s2 pn sn 



Tractable Learning 
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Tractable Learning 

Perhaps the most powerful circuit proposed to date 

 

Strong Properties Representational Freedom 

DNN 

SPN 

Cutset 
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PSDDs for the Logic-Phobic 

 



 

PSDDs for the Logic-Phobic 

Multiply independent 

distributions    



PSDDs for the Logic-Phobic 

 



 

PSDDs for the Logic-Phobic 

Weighted mixture of 

lower level 

distributions 
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PSDDs for the Logic-Phobic 



Variable Trees (vtrees) 

PSDD Vtree Correspondence 



Learning Variable Trees 

• How much do vars depend on each other? 
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Learning Primitives 

Primitives maintain PSDD properties and structured space! 
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Vtree learning 

Construct the most 

naïve PSDD 

LearnPSDD 

(search for better 

structure) 

1 

2 

3 

Simulate 
operations 

Execute the 
best 

Generate 
candidate 
operations 



Experiments on 20 datasets 
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Compare with O-SPN: smaller size in 14, better LL in 11,   

                                  win on both in 6 

 

Compare with L-SPN: smaller size in 14, better LL in 6,   

                                  win on both in 2 

 

Comparable in performance & Smaller in size 
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What happens if you  
ignore constraints? 

Discrete multi-valued data 
𝑨: 𝒂𝟏, 𝒂𝟐, 𝒂𝟑 
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id X Y Z 

1 X  Z 

2 x2 and (y2 or z2) 

3 x2  y1 

4 X  Y  Z  1 

5 x1 and y2 and z2 

closed-form 

(maximum-likelihood  

estimates are unique) 

EM algorithm  

(on PSDDs) 
Missed in the  

ML literature 



id 
1st 

sushi 

2nd 

sushi 

3rd 

sushi 
 

1 
fatty 

tuna 

sea 

urchin 

salmon 

roe 
 

2 
fatty 

tuna 
tuna shrimp  

3 tuna 
tuna 

roll 

sea 

eel 
 

4 
fatty 

tuna 

salmon 

roe 
tuna  

5 egg squid shrimp  

a classical complete dataset 

(e.g., total rankings) 

id 
1st 

sushi 

2nd 

sushi 

3rd 

sushi 
 

1 
fatty 

tuna 

sea 

urchin ?  

2 
fatty 

tuna ? ?  

3 tuna 
tuna 

roll ?  

4 
fatty 

tuna 

salmon 

roe ?  

5 egg ? ?  

a classical incomplete dataset 

(e.g., top-k rankings) 

Structured Datasets 



id 
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id 
1st 

sushi 

2nd 

sushi 

3rd 

sushi 
 

1 
(fatty tuna > sea urchin) 

and (tuna > sea eel)  
 

2 
(fatty tuna is 1st) and 

(salmon roe > egg) 
 

3 tuna > squid  

4 egg is last  

5 egg > squid > shrimp  

a new type of incomplete dataset 

(e.g., partial rankings) 

(represents constraints on  

possible total rankings) 

Structured Datasets 



Learning from Incomplete Data 
 

• Movielens Dataset: 

– 3,900 movies, 6,040 users, 1m ratings 

– take ratings from 64 most rated movies 

– ratings 1-5 converted to pairwise prefs. 

 

• PSDD for partial rankings 

– 4 tiers 

– 18,711 parameters  

rank movie 

1 The Godfather 

2 The Usual Suspects 

3 Casablanca 

4 The Shawshank Redemption 

5 Schindler’s List 

6 One Flew Over the Cuckoo’s Nest 

7 The Godfather: Part II 

8 Monty Python and the Holy Grail 

9 Raiders of the Lost Ark 

10 Star Wars IV: A New Hope 

movies by expected tier 



PSDD Sizes 
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rank movie 

1 Star Wars V: The Empire Strikes Back 

2 Star Wars IV: A New Hope 

3 The Godfather 

4 The Shawshank Redemption 
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• no other Star Wars movie in top-5 

• at least one comedy in top-5 

rank movie 

1 Star Wars V: The Empire Strikes Back 

2 American Beauty 

3 The Godfather 

4 The Usual Suspects 

5 The Shawshank Redemption 

diversified recommendations via 

logical constraints 



Conclusions 

• Structured spaces are everywhere  

• PSDDs build on logical circuits 

1. Tractability   

2. Semantics   

3. Natural encoding of structured spaces 

• Learning is effective 

1. From constraints encoding structured space 

State of the art learning preference distributions 

2. From standard unstructured datasets using search 

State of the art on standard tractable learning datasets 

• Novel settings for inference and learning 
Structured spaces / learning from constraints / complex queries 
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(P)SDDs in Melbourne 

• Sunday: Logical Foundations for Uncertainty and 

Machine Learning Workshop 

– Adnan Darwiche: “On the Role of Logic in  

Probabilistic Inference and Machine Learning” 

– YooJung Choi: “Optimal Feature Selection for 

Decision Robustness in Bayesian Networks” 

• Sunday: Explainable AI Workshop 

– Yitao Liang: “Towards Compact Interpretable Models: 

Learning and Shrinking PSDDs” 

• Tuesday: IJCAI 

– YooJung Choi (again) 



Conclusions 

Statistical ML 

“Probability” 

Symbolic AI 

“Logic” 

Connectionism 

“Deep” 

PSDD 



Questions? 

PSDD with 15,000 nodes 

LearnPSDD code: https://github.com/UCLA-StarAI/LearnPSDD 

Other PSDD code: http://reasoning.cs.ucla.edu/psdd/ 

SDD code: http://reasoning.cs.ucla.edu/sdd/ 
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