Probabilistic and Logistic Circuits:

A New Synthesis of Logic and Machine Learning

Guy Van den Broeck

KULeuven Symposium Dec 12, 2018

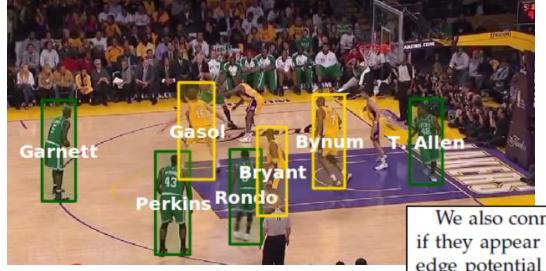
Outline

- Learning
 - Adding knowledge to deep learning
 - Logistic circuits for image classification
- Reasoning
 - Collapsed compilation
 - DIPPL: Imperative probabilistic programs

Outline

- Learning
 - Adding knowledge to deep learning
 - Logistic circuits for image classification
- Reasoning
 - Collapsed compilation
 - DIPPL: Imperative probabilistic programs

Motivation: Video



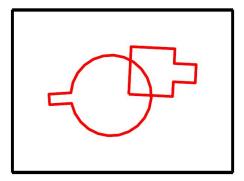
We also connect all pairs of identity nodes $y_{t,i}$ and $y_{t,j}$ if they appear in the same time *t*. We then introduce an edge potential that enforces mutual exclusion:

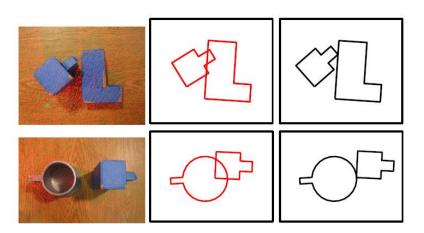
$$\psi_{\text{mutex}}(y_{t,i}, y_{t,j}) = \begin{cases} 1 & \text{if } y_{t,i} \neq y_{t,j} \\ 0 & \text{otherwise} \end{cases}$$
(5)

This potential specifies the constraint that a player can be appear only *once* in a frame. For example, if the *i*-th detection $y_{t,i}$ has been assign to Bryant, $y_{t,j}$ cannot have the same identity because Bryant is impossible to appear twice in a frame.

[Lu, W. L., Ting, J. A., Little, J. J., & Murphy, K. P. (2013). Learning to track and identify players from broadcast sports videos.]

Motivation: Robotics





The method developed in this paper can be used in a broad variety of semantic mapping and object manipulation tasks, providing an efficient and effective way to incorporate collision constraints into a recursive state estimator, obtaining optimal or near-optimal solutions.

Motivation: Language

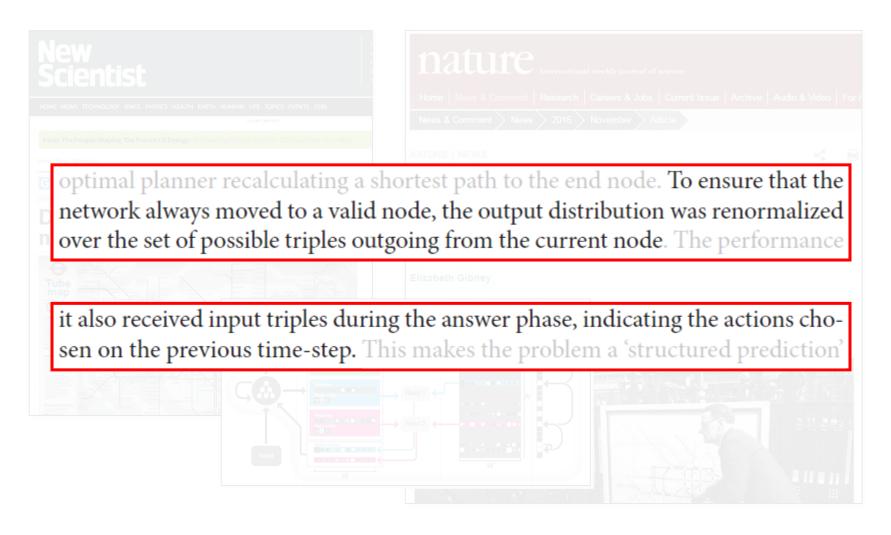
- Non-local dependencies:
 At least one verb in each sentence
- Sentence compression If a modifier is kept, its subject is also kept
- Information extraction
- Semantic role labeling

... and many more!

Citations			
Start	The citation must start with author		
	or editor.		
AppearsOnce	Each field must be a consecutive list		
	of words, and can appear at most		
	once in a citation.		
Punctuation	State transitions must occur on		
	punctuation marks.		
BookJournal	The words proc, journal, proceed-		
	ings, ACM		
	are JOURNAL or BOOKTITLE.		
TechReport	The words <i>tech</i> , <i>technical</i> are		
	TECH_REPORT.		
Title	Quotations can appear only in titles.		
Location	The words CA, Australia, NY are		
	LOCATION.		

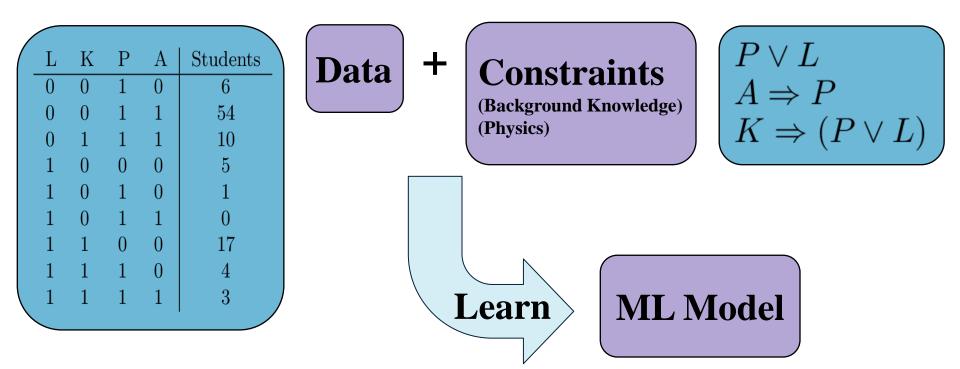
[Chang, M., Ratinov, L., & Roth, D. (2008). Constraints as prior knowledge],..., [Chang, M. W., Ratinov, L., & Roth, D. (2012). Structured learning with constrained conditional models.], [https://en.wikipedia.org/wiki/Constrained_conditional_model]

Motivation: Deep Learning



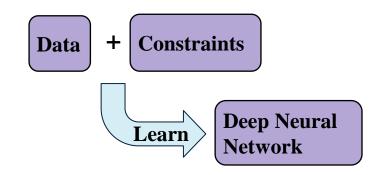
[Graves, A., Wayne, G., Reynolds, M., Harley, T., Danihelka, I., Grabska-Barwińska, A., et al.. (2016). Hybrid computing using a neural network with dynamic external memory. *Nature*, *538*(7626), 471-476.]

Learning in Structured Spaces



Today's machine learning tools don't take knowledge as input! ③

Deep Learning with Logical Knowledge



Neural Network

Output is probability vector **p**, not Boolean logic!

Semantic Loss

Q: How close is output **p** to satisfying constraint? Answer: Semantic loss function L(α,**p**)

- Axioms, for example:
 - If **p** is Boolean then $L(\mathbf{p},\mathbf{p}) = 0$
 - If α implies β then $L(\alpha, \mathbf{p}) \ge L(\beta, \mathbf{p})$ (α more strict)
- Properties:
 - If α is equivalent to β then $L(\alpha, \mathbf{p}) = L(\beta, \mathbf{p})$ Loss!

SEMANTIC

– If **p** is Boolean and satisfies α then L(α ,**p**) = 0

Semantic Loss: Definition

<u>Theorem</u>: Axioms imply unique semantic loss:

$$L^{s}(\alpha, p) \propto -\log \sum_{\mathbf{x} \models \alpha} \prod_{i:\mathbf{x} \models X_{i}} p_{i} \prod_{i:\mathbf{x} \models \neg X_{i}} (1 - p_{i})$$
Probability of getting **x** after flipping coins with prob. **p**
Probability of satisfying α after flipping coins with prob. **p**

Example: Exactly-One

- Data must have some label
 We agree this must be one of the 10 digits:
- Exactly-one constraint $\begin{cases} x_1 \\ \neg z \\ \neg z \\ \neg z \end{cases}$
- Semantic loss:

$$\begin{cases}
x_1 \lor x_2 \lor x_3 \\
\neg x_1 \lor \neg x_2 \\
\neg x_2 \lor \neg x_3 \\
\neg x_1 \lor \neg x_3
\end{cases}$$

$$L^{s}(exactly-one, p) \propto -\log \sum_{i=1} p_{i} \prod_{j=1, j \neq i}$$

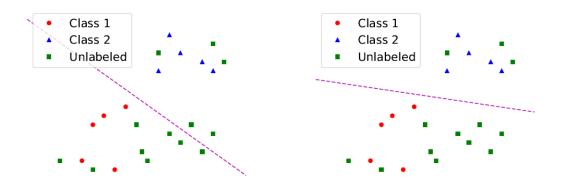
Only $x_i = 1$ after flipping coins

 $(1 - p_i)$

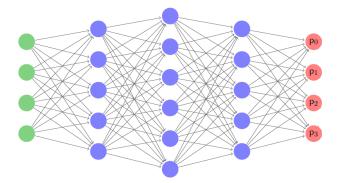
Exactly one true *x* after flipping coins

Semi-Supervised Learning

 Intuition: Unlabeled data must have some label Cf. entropy constraints, manifold learning



· Minimize exactly-one semantic loss on unlabeled data



Train with *existing loss* + *w* · *semantic loss*

MNIST Experiment

Accuracy % with # of used labels	100	1000	ALL
AtlasRBF (Pitelis et al., 2014)	91.9 (± 0.95)	96.32 (± 0.12)	98.69
Deep Generative (Kingma et al., 2014)	$96.67(\pm 0.14)$	$97.60(\pm 0.02)$	99.04
Virtual Adversarial (Miyato et al., 2016)	97.67	98.64	99.36
Ladder Net (Rasmus et al., 2015)	98.94 (±0.37)	99.16 (±0.08)	99.43 (± 0.02)
Baseline: MLP, Gaussian Noise	78.46 (±1.94)	94.26 (±0.31)	99.34 (±0.08)
Baseline: Self-Training	72.55 (±4.21)	87.43 (±3.07)	
MLP with Semantic Loss	98.38 (±0.51)	98.78 (±0.17)	99.36 (±0.02)

Competitive with state of the art in semi-supervised deep learning

FASHION Experiment

(a) Confidently Correct

(b) Unconfidently Correct

(c) Unconfidently Incorrect

(d) Confidently Incorrect

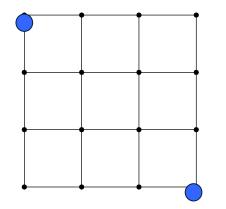
Accuracy % with # of used labels	100	500	1000	ALL
Ladder Net (Rasmus et al., 2015)	81.46 (±0.64)	85.18 (±0.27)	86.48 (± 0.15)	90.46
Baseline: MLP, Gaussian Noise	69.45 (±2.03)	78.12 (±1.41)	80.94 (±0.84)	89.87
MLP with Semantic Loss	86.74 (±0.71)	89.49 (±0.24)	$89.67 (\pm 0.09)$	89.81

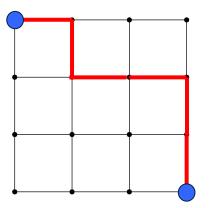
Outperforms Ladder Nets!

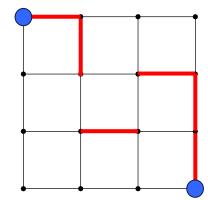
Same conclusion on CIFAR10

Accuracy % with # of used labels	4000	ALL
CNN Baseline in Ladder Net	76.67 (± 0.61) 79.60 (± 0.47)	90.73
Ladder Net (Rasmus et al., 2015)	$79.60(\pm 0.47)$	
Baseline: CNN, Whitening, Cropping	77.13	90.96
CNN with Semantic Loss	81.79	90.92

What about real constraints? Paths cf. Nature paper







Good variable assignment (represents route) 184 Bad variable assignment (does not represent route)

16,777,032

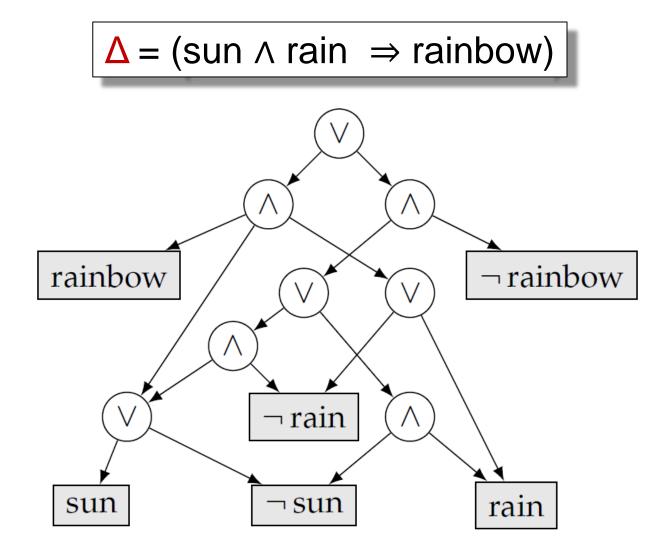
Unstructured probability space: $184+16,777,032 = 2^{24}$

Space easily encoded in logical constraints ③ [Nishino et al.]

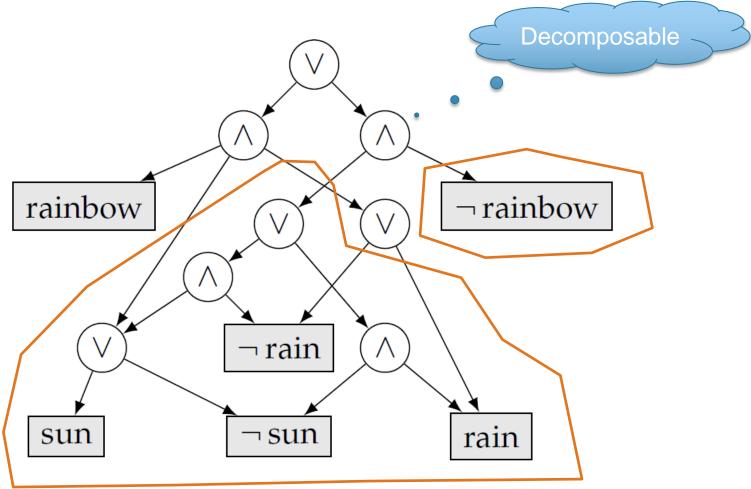
How to Compute Semantic Loss?

• In general: #P-hard ⊗

Negation Normal Form Circuits



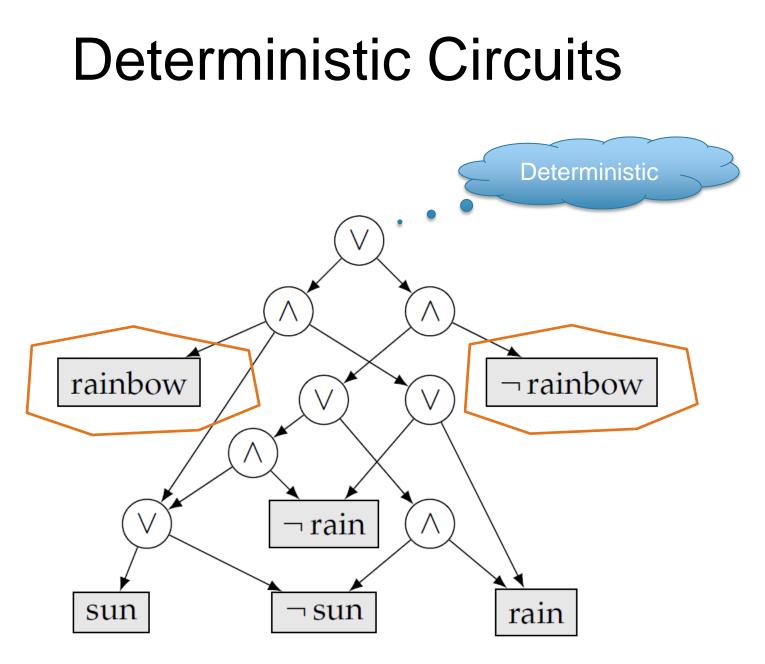
Decomposable Circuits



[Darwiche 2002]

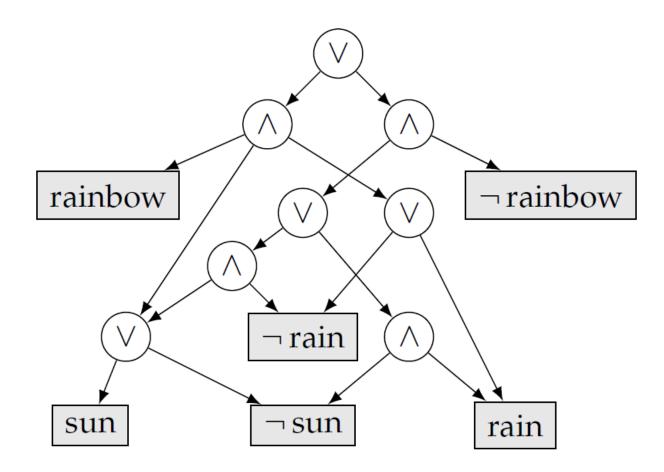
Tractable for Logical Inference

- Is there a solution? (SAT)
 - SAT($\alpha \lor \beta$) iff SAT(α) or SAT(β) (*always*)
 - SAT($\alpha \land \beta$) iff SAT(α) and SAT(β) (decomposable)
- How many solutions are there? (#SAT)
- Complexity linear in circuit size ③

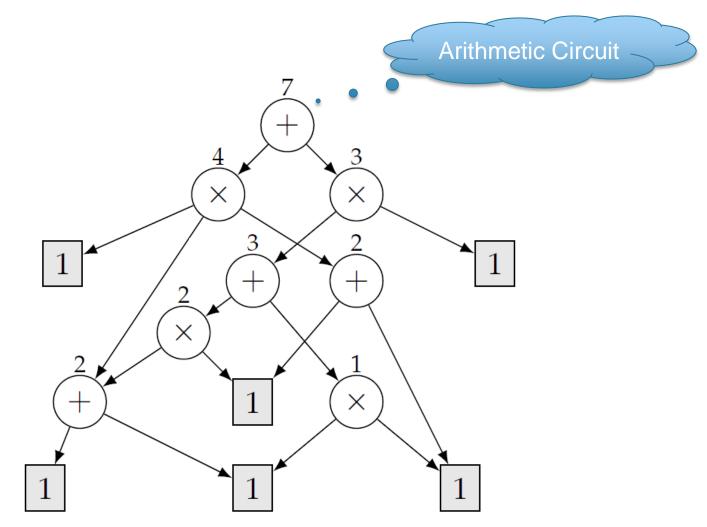


[Darwiche 2002]

How many solutions are there? (#SAT)



How many solutions are there? (#SAT)

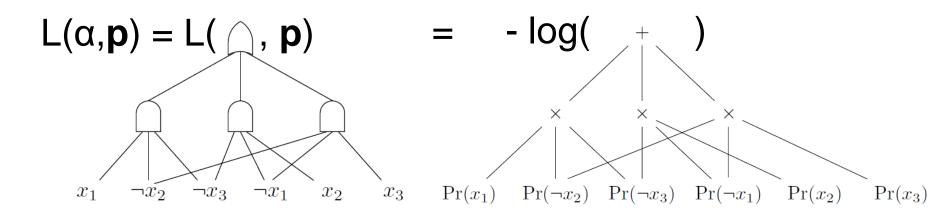


Tractable for Logical Inference

- Is there a solution? (SAT)
- How many solutions are there? (#SAT) ✓
- Stricter languages (e.g., BDD, SDD):
 - Equivalence checking
 - Conjoin/disjoint/negate circuits
- Complexity linear in circuit size ③
- Compilation into circuit language by either
 - $-\downarrow$ exhaustive SAT solver
 - ↑ conjoin/disjoin/negate

How to Compute Semantic Loss?

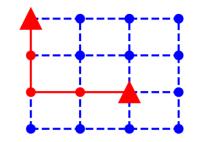
- In general: #P-hard ⊗
- With a logical circuit for α: Linear!
- Example: exactly-one constraint:

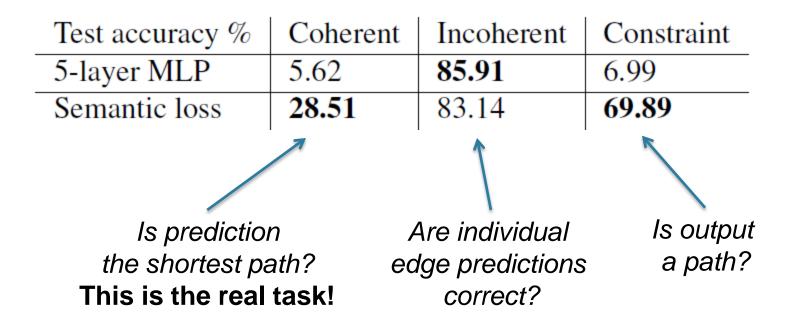


• Why? Decomposability and determinism!

Predict Shortest Paths

Add semantic loss for path constraint

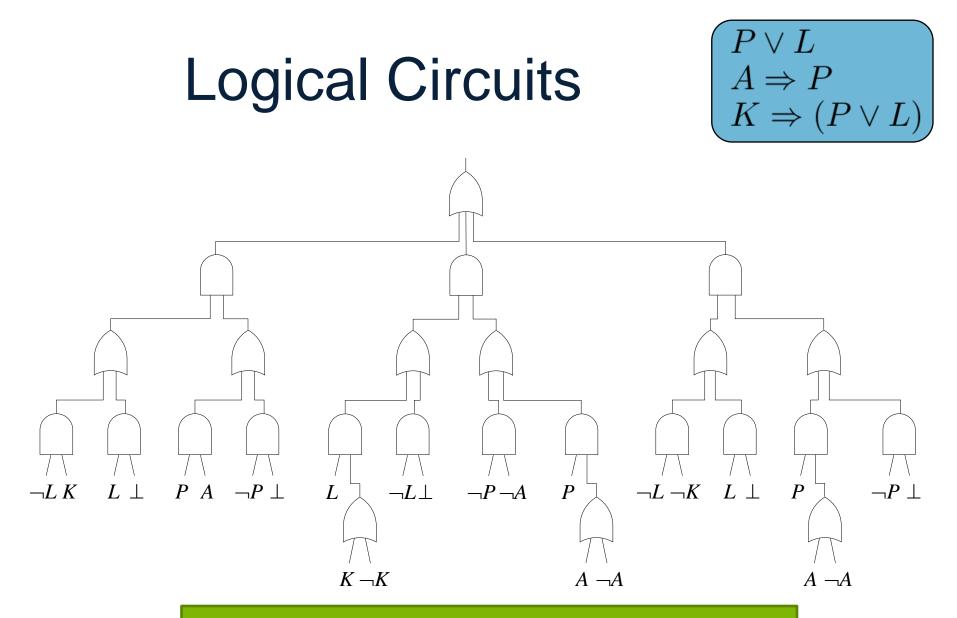




(same conclusion for predicting sushi preferences, see paper)

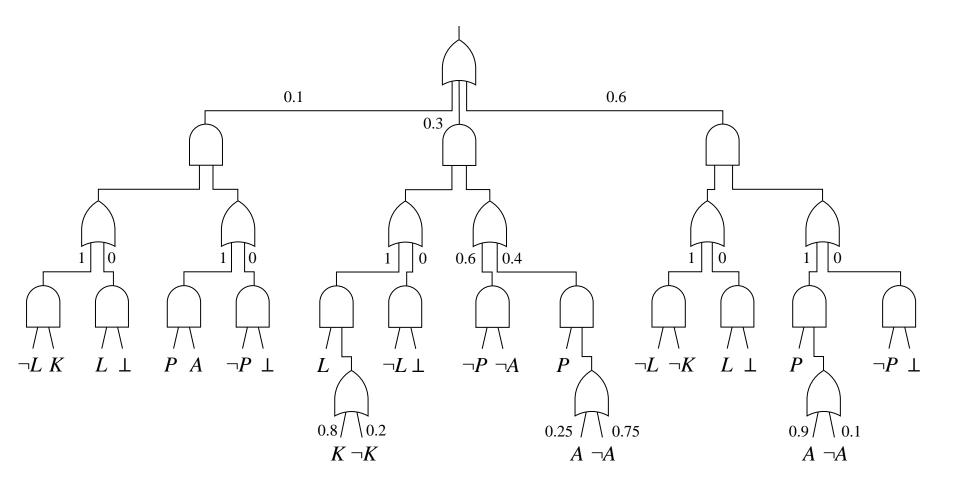
Outline

- Learning
 - Adding knowledge to deep learning
 - Logistic circuits for image classification
- Reasoning
 - Collapsed compilation
 - DIPPL: Imperative probabilistic programs



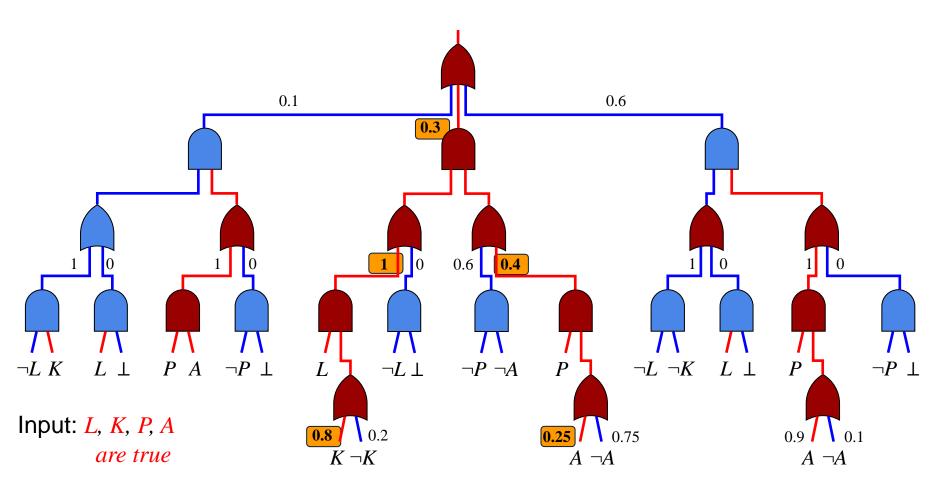
Can we represent a **distribution** over the solutions to the constraint?

Probabilistic Circuits

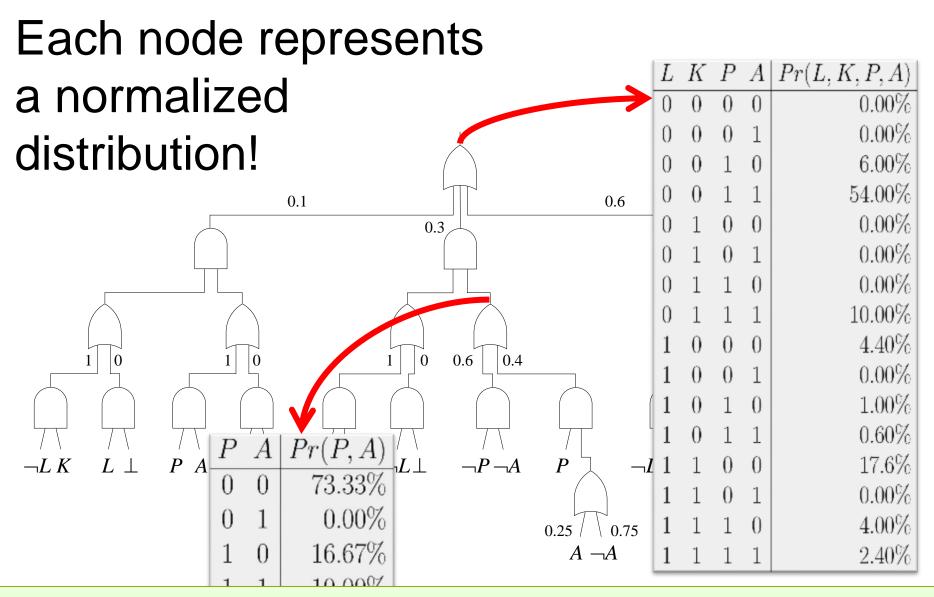


Syntax: assign a normalized probability to each OR gate input

PSDD: Probabilistic SDD



 $Pr(L, K, P, A) = 0.3 \times 1 \times 0.8 \times 0.4 \times 0.25 = 0.024$



Can read probabilistic independences off the circuit structure!

Can interpret every parameter as a conditional probability! (XAI)

Tractable for Probabilistic Inference

• MAP inference:

Find most-likely assignment to x given y (otherwise NP-hard)

- Computing conditional probabilities Pr(x|y) (otherwise #P-hard)
- Sample from Pr(x|y)
- Algorithms linear in circuit size (pass up, pass down, similar to backprop)

Parameter Learning Algorithms

 Closed form max likelihood from complete data

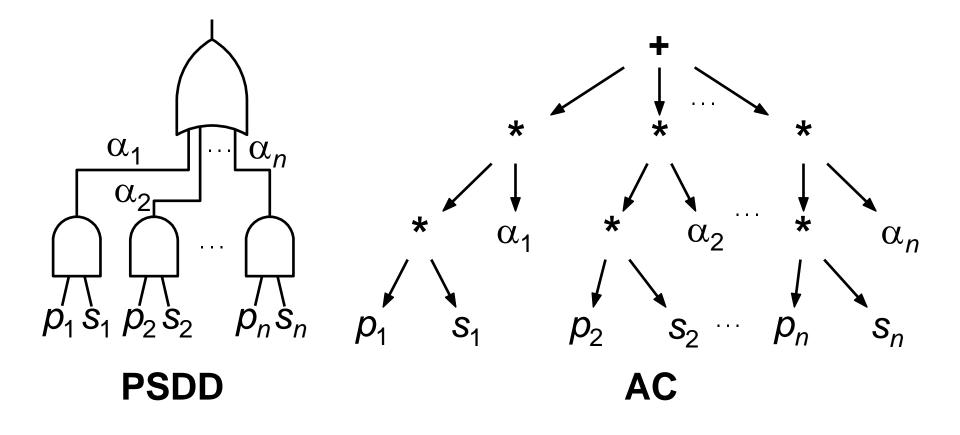
	Κ	Р	Α	Students
0	0	1	0	6
0	0	1	1	54
0	1	1	1	10
1	0	0	0	5
1	0	1	0	1
1	0	1	1	0
1	1	0	0	17
1	1	1	0	4
1	1	1	1	3
				·

One pass over data to estimate Pr(x|y)

Not a lot to say: very easy! ③

PSDDs

...are Sum-Product Networks ...are Arithmetic Circuits



Learn Mixtures of PSDD Structures

Datasets	Var	LearnPSDD Ensemble	Best-to-Date
NLTCS	16	-5.99^{\dagger}	-6.00
MSNBC	17	-6.04^{\dagger}	-6.04^{\dagger}
KDD	64	-2.11^{\dagger}	-2.12
Plants	69	-13.02	-11.99^{\dagger}
Audio	100	-39.94	-39.49^{\dagger}
Jester	100	-51.29	-41.11^{\dagger}
Netflix	100	-55.71^{\dagger}	-55.84
Accidents	111	-30.16	-24.87^\dagger
Retail	135	-10.72^{\dagger}	-10.78
Pumsb-Star	163	-26.12	-22.40^\dagger
DNA	180	-88.01	-80.03^{\dagger}
Kosarek	190	-10.52^{\dagger}	-10.54
MSWeb	294	-9.89	-9.22^{\dagger}
Book	500	-34.97	-30.18^{\dagger}
EachMovie	500	-58.01	-51.14^{\dagger}
WebKB	839	-161.09	-150.10^{\dagger}
Reuters-52	889	-89.61	-80.66^{\dagger}
20NewsGrp.	910	-155.97	-150.88^{\dagger}
BBC	1058	-253.19	-233.26^\dagger
AD	1556	-31.78	-14.36^{\dagger}

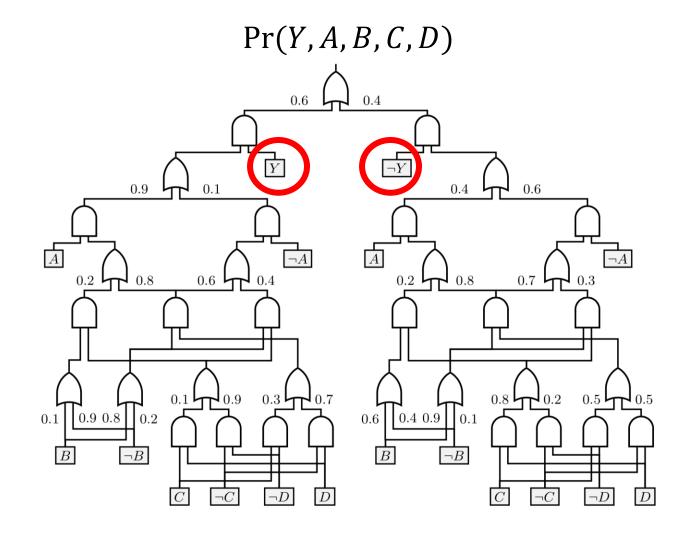
State of the art on 6 datasets!

Q: "Help! I need to learn a discrete probability distribution..." A: Learn mixture of PSDDs!

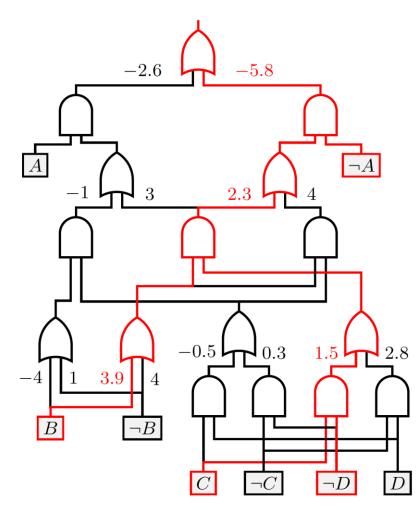
Strongly outperforms

- Bayesian network learners
- Markov network learners Competitive with
- SPN learners
- Cutset network learners

What if I only want to classify Y?

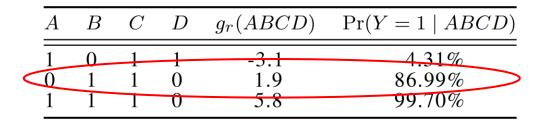


Logistic Circuits

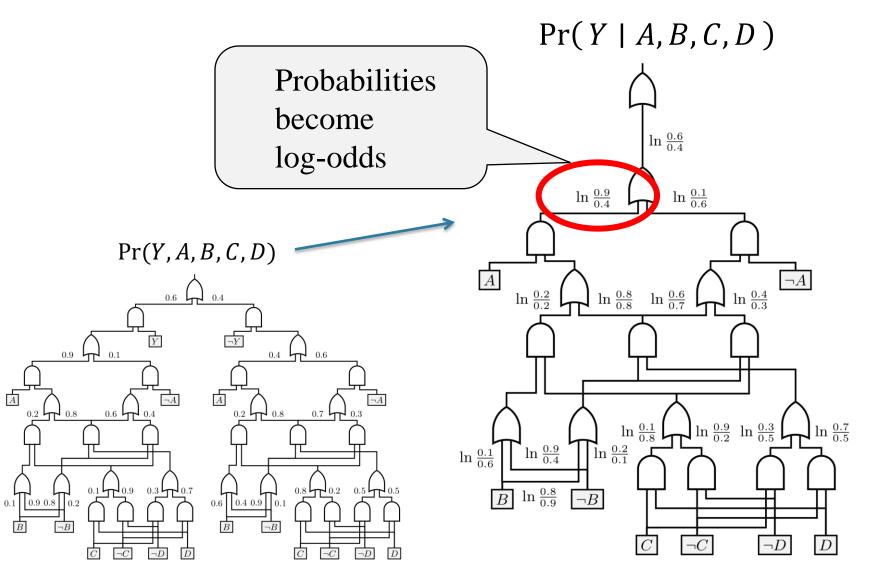


Represents Pr(Y | A, B, C, D)

- Take all 'hot' wires
- Sum their weights
- Push through logistic function

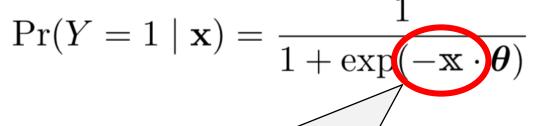


Logistic vs. Probabilistic Circuits



Parameter Learning

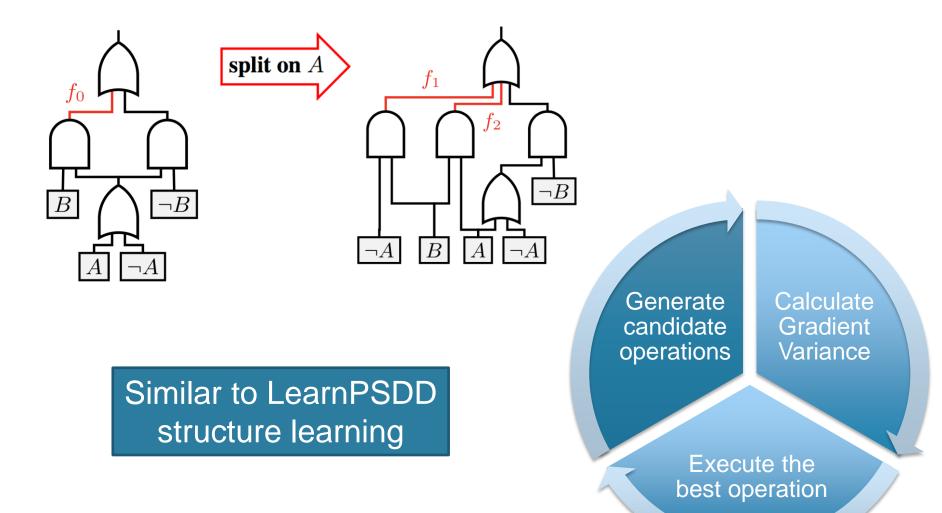
Reduce to logistic regression:



Features associated with each wire "Global Circuit Flow" features

Learning parameters θ is convex optimization!

Logistic Circuit Structure Learning



Comparable Accuracy with Neural Nets

ACCURACY % ON DATASET	MNIST	FASHION		
BASELINE: LOGISTIC REGRESSION	85.3	79.3		
BASELINE: KERNEL LOGISTIC REGRESSION	97.7	88.3		
RANDOM FOREST	97.3	81.6		
3-LAYER MLP	97.5	84.8		
RAT-SPN (PEHARZ ET AL. 2018)	98.1	89.5		
SVM WITH RBF KERNEL	98.5	87.8		
5-LAYER MLP	99.3	89.8		
LOGISTIC CIRCUIT (BINARY)	97.4	87.6		
LOGISTIC CIRCUIT (REAL-VALUED)	99.4	91.3		
CNN WITH 3 CONV LAYERS	99.1	90.7		
Resnet (He et al. 2016)	99.5	93.6		

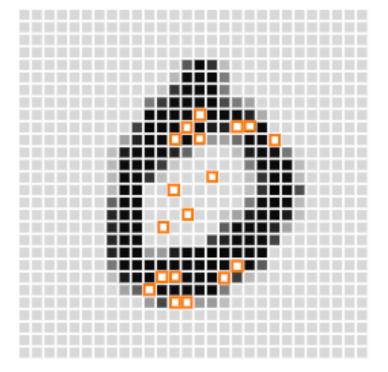
Significantly Smaller in Size

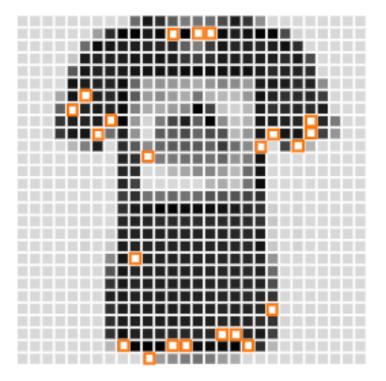
NUMBER OF PARAMETERS	Mnist	FASHION		
BASELINE: LOGISTIC REGRESSION	<1K	<1K		
BASELINE: KERNEL LOGISTIC REGRESSION	1,521 K	3,930K		
LOGISTIC CIRCUIT (REAL-VALUED)	182K	467K		
LOGISTIC CIRCUIT (BINARY)	268K	614K		
3-layer MLP	1,411K	1,411K		
RAT-SPN (Peharz et al. 2018)	8,500K	650K		
CNN with 3 conv layers	2,196K	2,196K		
5-layer MLP	2,411K	2,411K		
Resnet (He et al. 2016)	4,838K	4,838K		

Better Data Efficiency

ACCURACY % WITH % OF TRAINING DATA	MNIST			FASHION		
	100%	10%	2%	100%	10%	2%
5-layer MLP	99.3	98.2	94.3	89.8	86.5	80.9
CNN with 3 Conv Layers	99.1	98.1	95.3	90.7	87.6	83.8
LOGISTIC CIRCUIT (BINARY)	97.4	96.9	94.1	87.6	86.7	83.2
LOGISTIC CIRCUIT (REAL-VALUED)	99.4	97.6	96.1	91.3	87.8	86.0

Interpretable?

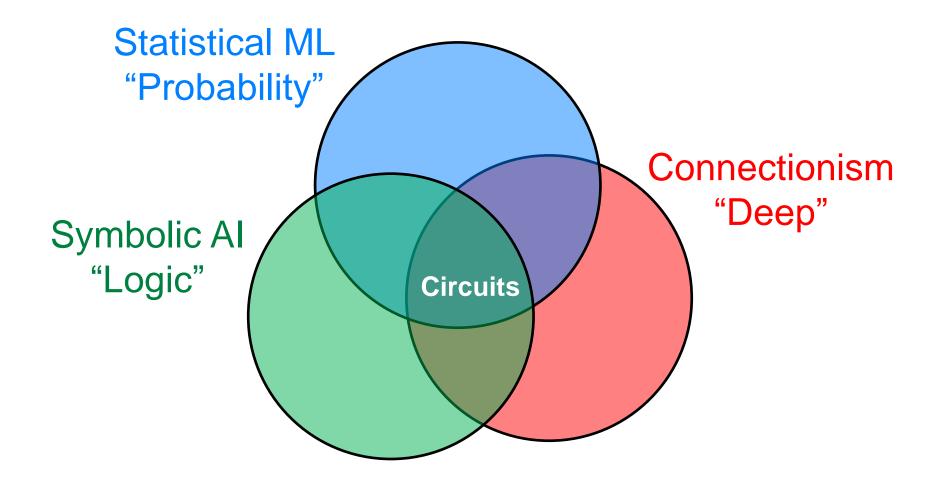




Outline

- Learning
 - Adding knowledge to deep learning
 - Logistic circuits for image classification
- Reasoning
 - Collapsed compilation
 - DIPPL: Imperative probabilistic programs

Conclusions



Questions?

PSDD with 15,000 nodes

References

- Doga Kisa, Guy Van den Broeck, Arthur Choi and Adnan Darwiche. <u>Probabilistic</u> <u>sentential decision diagrams</u>, In Proceedings of the 14th International Conference on Principles of Knowledge Representation and Reasoning (KR), 2014.
- Arthur Choi, Guy Van den Broeck and Adnan Darwiche. <u>Tractable Learning for</u> <u>Structured Probability Spaces: A Case Study in Learning Preference</u> <u>Distributions</u>, In Proceedings of 24th International Joint Conference on Artificial Intelligence (IJCAI), 2015.
- Arthur Choi, Guy Van den Broeck and Adnan Darwiche. Probability Distributions over Structured Spaces, In Proceedings of the AAAI Spring Symposium on KRR, 2015.
- Jessa Bekker, Jesse Davis, Arthur Choi, Adnan Darwiche and Guy Van den Broeck. <u>Tractable Learning for Complex Probability Queries</u>, In Advances in Neural Information Processing Systems 28 (NIPS), 2015
- Yitao Liang, Jessa Bekker and Guy Van den Broeck. <u>Learning the Structure of</u> <u>Probabilistic Sentential Decision Diagrams</u>, In Proceedings of the 33rd Conference on Uncertainty in Artificial Intelligence (UAI), 2017.

References

- Yitao Liang and Guy Van den Broeck. <u>Towards Compact Interpretable Models:</u> <u>Shrinking of Learned Probabilistic Sentential Decision Diagrams</u>, In IJCAI 2017 Workshop on Explainable Artificial Intelligence (XAI), 2017.
- Jingyi Xu, Zilu Zhang, Tal Friedman, Yitao Liang and Guy Van den Broeck. <u>A</u> <u>Semantic Loss Function for Deep Learning with Symbolic</u> <u>Knowledge</u>, In Proceedings of the 35th International Conference on Machine Learning (ICML), 2018.
- Tal Friedman and Guy Van den Broeck. <u>Approximate Knowledge Compilation by</u> <u>Online Collapsed Importance Sampling</u>, In Advances in Neural Information Processing Systems 31 (NIPS), 2018.
- Yitao Liang and Guy Van den Broeck. <u>Learning Logistic Circuits</u>, In Proceedings of the 33rd Conference on Artificial Intelligence (AAAI), 2019.