Wenzhe Li* Tsinghua University

Antonio Vergari University of California, Los Angeles *Zhe Zeng*^{*} University of California, Los Angeles

Guy Van den Broeck University of California, Los Angeles

*Wenzhe Li** Tsinghua University

Antonio Vergari University of California, Los Angeles *Zhe Zeng*^{*} University of California, Los Angeles

Guy Van den Broeck University of California, Los Angeles

*Wenzhe Li** Tsinghua University

Antonio Vergari University of California, Los Angeles **Zhe Zeng**^{*} University of California, Los Angeles

Guy Van den Broeck University of California, Los Angeles

*Wenzhe Li** Tsinghua University

Antonio Vergari University of California, Los Angeles *Zhe Zeng*^{*} University of California, Los Angeles

Guy Van den Broeck University of California, Los Angeles

Given two distributions ${f p}$ and ${f q}$, and a kernel function ${f k}$,

Goal is to compute the *expected kernel* tractably

$$\mathbb{E}_{\mathbf{x}\sim\mathbf{p},\mathbf{x}'\sim\mathbf{q}}[\mathbf{k}(\mathbf{x},\mathbf{x}')].$$

Given two distributions \mathbf{p} and \mathbf{q} , and a kernel function \mathbf{k} ,

Goal is to compute the *expected kernel* tractably

$$\mathbb{E}_{\mathbf{x}\sim\mathbf{p},\mathbf{x}'\sim\mathbf{q}}[\mathbf{k}(\mathbf{x},\mathbf{x}')].$$

 \Rightarrow In kernel-based frameworks, expected kernels are omnipresent!

Given two distributions \mathbf{p} and \mathbf{q} , and a kernel function \mathbf{k} ,

Goal is to compute the *expected kernel* tractably

$$\mathbb{E}_{\mathbf{x}\sim\mathbf{p},\mathbf{x}'\sim\mathbf{q}}[\mathbf{k}(\mathbf{x},\mathbf{x}')].$$

 \Rightarrow In kernel-based frameworks, expected kernels are omnipresent!

Given two distributions p and q, and a kernel function k,

Goal is to compute the *expected kernel* tractably

$$\mathbb{E}_{\mathbf{x}\sim\mathbf{p},\mathbf{x}'\sim\mathbf{q}}[\mathbf{k}(\mathbf{x},\mathbf{x}')].$$

 \Rightarrow In kernel-based frameworks, expected kernels are omnipresent!

 $\mathbb{D}(\mathbf{f}_{\mathbf{p}},\mathbf{f}_{\mathbf{q}}) \quad \underset{\mathbb{E}_{\mathbf{x}\sim\mathbf{p},\mathbf{x}'\sim\mathbf{p}}[\mathbf{k}(\mathbf{x},\mathbf{x}')]}{\text{squared Maximum Mean Discrepancy (MMD)}}$

Given two distributions p and q, and a kernel function k,

Goal is to compute the expected kernel tractably

$$\mathbb{E}_{\mathbf{x}\sim\mathbf{p},\mathbf{x}'\sim\mathbf{q}}[\mathbf{k}(\mathbf{x},\mathbf{x}')].$$

 \Rightarrow In kernel-based frameworks, expected kernels are omnipresent!

 $\mathbb{D}(\texttt{fp},\texttt{fq}) \quad \stackrel{\textit{(Discrete) Kernelized Stein Discrepancy (KDSD)}}{\mathbb{E}_{\mathbf{x},\mathbf{x}'\sim q}[\mathbf{k}_{\mathbf{p}}(\mathbf{x},\mathbf{x}')]}$

Given two distributions ${f p}$ and ${f q}$, and a kernel function k,

Goal is to compute the *expected kernel*

$$\mathbb{E}_{\mathbf{x}\sim\mathbf{p},\mathbf{x}'\sim\mathbf{q}}[\mathbf{k}(\mathbf{x},\mathbf{x}')].$$

 \Rightarrow In kernel-based frameworks, expected kernels are omnipresent!

This talk how to compute the expected kernels exactly and tractably, by leveraging recent advances in *probabilistic circuit* representations.

Outline

Problem Setup

| Motivation: SVR with Missingness

- **Circuit Representation**
- Approach: Tractable Expected Kernels
- Application: Collapsed Black-box Importance Sampling

Example: Support vector regression with missing features

Example: Support vector regression with missing features

Given training data,

Example: Support vector regression with missing features

m

Given training data, and a learned support vector regression (SVR) model

$$f(\mathbf{x}) = \sum_{i=1}^{m} w_i \mathbf{k}(\mathbf{x}_i, \mathbf{x}) + b,$$

Example: Support vector regression with missing features

$$f(\mathbf{x}) = \sum_{i=1}^{n} w_i \mathbf{k}(\mathbf{x}_i, \mathbf{x}) + b,$$

Task at deployment time, what happen if we only observe partial features and some are missing?

Example: Support vector regression with missing features

Given training data, and a learned support vector regression (SVR) model m

$$f(\mathbf{x}) = \sum_{i=1}^{n} w_i \mathbf{k}(\mathbf{x}_i, \mathbf{x}) + b,$$

Task at deployment time, what happen if we only observe partial features and some are missing?

Example: Support vector regression with missing features

Given training data, and a learned support vector regression (SVR) model m

$$f(\mathbf{x}) = \sum_{i=1}^{n} w_i \mathbf{k}(\mathbf{x}_i, \mathbf{x}) + b,$$

With Missing Features . . .

Example: Support vector regression with missing features

Given training data, and a learned support vector regression (SVR) model

$$f(\mathbf{x}) = \sum_{i=1}^{m} w_i \mathbf{k}(\mathbf{x}_i, \mathbf{x}) + b,$$

With Missing Features . . .

first learn a generative model for features in Probabilistic Circuit PC $\mathbf{p}(\mathbf{X})$ from training data;

Example: Support vector regression with missing features

Given training data, and a learned support vector regression (SVR) model m

$$f(\mathbf{x}) = \sum_{i=1}^{m} w_i \mathbf{k}(\mathbf{x}_i, \mathbf{x}) + b,$$

With Missing Features . . .

first learn a generative model for features in Probabilistic Circuit PC $\mathbf{p}(\mathbf{X})$ from training data;

when only features $\mathbf{X}_o = \mathbf{x}_o$ are observed and features \mathbf{X}_m are missing, the *expected prediction* is

$$\mathbb{E}_{\mathbf{x}_m \sim \mathbf{p}(\mathbf{X}_m | \mathbf{x}_o)}[f(\mathbf{x}_o, \mathbf{x}_m)]$$

Example: Support vector regression with missing features

Given training data, and a learned support vector regression (SVR) model m

$$f(\mathbf{x}) = \sum_{i=1}^{m} w_i \mathbf{k}(\mathbf{x}_i, \mathbf{x}) + b,$$

With Missing Features . . .

first learn a generative model for features in Probabilistic Circuit PC $\mathbf{p}(\mathbf{X})$ from training data;

when only features $\mathbf{X}_o = \mathbf{x}_o$ are observed and features \mathbf{X}_m are missing, the *expected prediction* is

$$\mathbb{E}_{\mathbf{x}_m \sim \mathbf{p}(\mathbf{X}_m | \mathbf{x}_o)}[f(\mathbf{x}_o, \mathbf{x}_m)] = \sum_{i=1}^m w_i \mathbb{E}_{\mathbf{x}_m \sim \mathbf{p}(\mathbf{X}_m | \mathbf{x}_o)}[\mathbf{k}(\mathbf{x}_i, (\mathbf{x}_o, \mathbf{x}_m))] + b$$

Example: Support vector regression with missing features

 \Rightarrow Expected prediction improves over the baselines

$$\mathbb{E}_{\mathbf{x}\sim\mathbf{p},\mathbf{x}'\sim\mathbf{q}}[\mathbf{k}(\mathbf{x},\mathbf{x}')] = \int_{\mathbf{x},\mathbf{x}'} \mathbf{p}(\mathbf{x}) \mathbf{q}(\mathbf{x}') \mathbf{k}(\mathbf{x},\mathbf{x}') \, d\mathbf{x} \, d\mathbf{x}'$$

$$\mathbb{E}_{\mathbf{x}\sim\mathbf{p},\mathbf{x}'\sim\mathbf{q}}[\mathbf{k}(\mathbf{x},\mathbf{x}')] = \int_{\mathbf{x},\mathbf{x}'} \mathbf{p}(\mathbf{x})\mathbf{q}(\mathbf{x}')\mathbf{k}(\mathbf{x},\mathbf{x}') \, d\mathbf{x} \, d\mathbf{x}'$$

Tractable if \mathbf{p},\mathbf{q} fully factorized

$$\mathbb{E}_{\mathbf{x}\sim\mathbf{p},\mathbf{x}'\sim\mathbf{q}}[\mathbf{k}(\mathbf{x},\mathbf{x}')] = \int_{\mathbf{x},\mathbf{x}'} \mathbf{p}(\mathbf{x})\mathbf{q}(\mathbf{x}')\mathbf{k}(\mathbf{x},\mathbf{x}') \, d\mathbf{x} \, d\mathbf{x}'$$

Tractable if \mathbf{p},\mathbf{q} fully factorized

PRO. Tractable exact computation **CON.** Model being too restrictive

$$\mathbb{E}_{\mathbf{x}\sim\mathbf{p},\mathbf{x}'\sim\mathbf{q}}[\mathbf{k}(\mathbf{x},\mathbf{x}')] = \int_{\mathbf{x},\mathbf{x}'} \mathbf{p}(\mathbf{x})\mathbf{q}(\mathbf{x}')\mathbf{k}(\mathbf{x},\mathbf{x}') \, d\mathbf{x} \, d\mathbf{x}'$$

Tractable if \mathbf{p}, \mathbf{q} fully factorized

PRO. Tractable exact computation **CON.** Model being too restrictive

 Hard to compute in general.
 approximate with MC or variational inference
 PRO. Efficient computation
 CON. Slow convergence

$$\mathbb{E}_{\mathbf{x}\sim\mathbf{p},\mathbf{x}'\sim\mathbf{q}}[\mathbf{k}(\mathbf{x},\mathbf{x}')] = \int_{\mathbf{x},\mathbf{x}'} \mathbf{p}(\mathbf{x})\mathbf{q}(\mathbf{x}')\mathbf{k}(\mathbf{x},\mathbf{x}') \, d\mathbf{x} \, d\mathbf{x}'$$

Tractable if \mathbf{p}, \mathbf{q} fully factorized

PRO. Tractable exact computation **CON.** Model being too restrictive

trade-off? Hard to compute in general.
 ⇒ approximate with MC or variational inference
 PRO. Efficient computation
 CON. Slow convergence

Expressive distribution models + Exact computation of expected kernels?

Expressive distribution models + Exact computation of expectated kernels = Circuits!

Outline

Problem Setup

Motivation: SVR with Missingness

Circuit Representation

- Approach: Tractable Expected Kernels
- Application: Collapsed Black-box Importance Sampling

Circuit Representation

Probabilistic Circuits

deep generative models + guarantees

Circuit Representation

Probabilistic Circuits

deep generative models + guarantees

Kernel Circuits

express kernels as circuits

Tractable computational graphs

I. A simple tractable distribution is a PC

e.g., a multivariate Gaussian

 X_1

Tractable computational graphs

I. A simple tractable distribution is a PC

II. A convex combination of PCs is a PC

e.g., a mixture model

Tractable computational graphs

I. A simple tractable distribution is a PC
II. A convex combination of PCs is a PC
III. A product of PCs is a PC

Tractable computational graphs

Tractable computational graphs

Probabilistic queries = **feedforward** evaluation

$$p(X_1 = -1.85, X_2 = 0.5, X_3 = -1.3, X_4 = 0.2)$$

Probabilistic queries = **feedforward** evaluation

$$p(X_1 = -1.85, X_2 = 0.5, X_3 = -1.3, X_4 = 0.2)$$

Probabilistic queries = **feedforward** evaluation

$$p(X_1 = -1.85, X_2 = 0.5, X_3 = -1.3, X_4 = 0.2) = 0.75$$

PCs are computational graphs

PCs are computational graphs encoding *deep mixture models*

 \Rightarrow stacking (categorical) latent variables

PCs are computational graphs encoding *deep mixture models*

 \Rightarrow stacking (categorical) latent variables

PCs are expressive *deep generative models*!

⇒ we can learn PCs with millions of parameters in minutes on the GPU [Peharz et al. 2020]

On par with intractable models!

How expressive are PCs?

Dataset	PCs	IDF	Hierarchical VAE	PixelVAE
MNIST	1.20	1.90	1.27	1.39
FashionMNIST	3.34	3.47	3.28	3.66
EMNIST (Letter split)	1.80	1.95	1.84	2.26
EMNIST (ByClass split)	1.85	1.98	1.87	2.23

Model	CIFAR10	ImageNet32	ImageNet64
RealNVP	3.49	4.28	3.98
Glow	3.35	4.09	3.81
IDF	3.32	4.15	3.90
IDF++	3.24	4.10	3.81
PCs+IDF	3.28	3.99	3.71

PCs are expressive deep generative models!

&

Certifying tractability for a class of queries via Verifying structural properties of the graph

Which structural constraints ensure tractability?

A PC is *decomposable* if all inputs of product units depend on disjoint sets of variables

decomposable circuit

Darwiche and Marquis, "A knowledge compilation map", 2002

Choi et al., "Probabilistic Circuits: A Unifying Framework for Tractable Probabilistic Modeling", 2020

decomposable PCs = ...

MAR sufficient and necessary conditions for computing any marginal

$$p(\mathbf{y}) = \int p(\mathbf{z}, \mathbf{y}) \, d\mathbf{z}$$
 \implies by a single feedforward evaluation

Choi et al., "Probabilistic Circuits: A Unifying Framework for Tractable Probabilistic Modeling", 2020

decomposable PCs = ...

sufficient and *necessary* conditions for computing any marginal $\int p(\mathbf{z},\mathbf{y}) \, d\mathbf{z}$

sufficient and necessary conditions for any conditional distribution

$$p(\mathbf{y} \mid \mathbf{z}) = \frac{p(\mathbf{y}, \mathbf{z})}{\int p(\mathbf{y}, \mathbf{z}) \, d\mathbf{z}}$$

$$\implies by \, \mathbf{two} \, feed forward \, evaluations$$

Choi et al., "Probabilistic Circuits: A Unifying Framework for Tractable Probabilistic Modeling", 2020

decomposable PCs = ...

CON sufficient and necessary conditions for any conditional $\frac{p(\mathbf{y}, \mathbf{z})}{\int p(\mathbf{y}, \mathbf{z}) d\mathbf{z}}$

Choi et al., "Probabilistic Circuits: A Unifying Framework for Tractable Probabilistic Modeling", 2020

Can we represent kernels as circuits to characterize tractability of its queries?

Kernel Circuits (KCs)

Exa. Radial basis function (RBF) kernel $\mathbf{k}(\mathbf{x}, \mathbf{x}') = \exp\left(-\sum_{i=1}^{4} |X_i - X'_i|^2\right)$

Kernel Circuits (KCs)

Exa. Radial basis function (RBF) kernel $\mathbf{k}(\mathbf{x}, \mathbf{x}') = \exp\left(-\sum_{i=1}^{4} |X_i - X'_i|^2\right)$

decomposable if all inputs of product units depend on disjoint sets of variables

Common kernels can be compactly represented as decomposable KCs:

RBF, (exponentiated) Hamming, polynomial ...

Outline

Problem Setup

Motivation: SVR with Missingness

Circuit Representation

Approach: Tractable Expected Kernels

Application: Collapsed Black-box Importance Sampling

tractable computation via circuit operations

Main result.

tractable computation via circuit operations

Main result. If PCs \mathbf{p} and \mathbf{q} , and KC \mathbf{k} decompose in the same way,

Expected Kernel

tractable computation via circuit operations

Main result. If PCs p and q, and KC k decompose in the same way,

 ${X_1, X_2, X_3}{X_4}$

 $\{X_1',X_2',X_3'\}\{X_4'\}$

tractable computation via circuit operations

Main result. If PCs p and q, and KC k decompose in the same way,

then computing expected kernels can be done *tractably* by one forward pass

 \Rightarrow product of the sizes of each circuit!

[Sum Nodes] $\overline{\mathbf{p}(\mathbf{X}) = \sum_{i} w_{i} \mathbf{p}_{i}(\mathbf{X}), \mathbf{q}(\mathbf{X}') = \sum_{j} w'_{j} \mathbf{q}_{j}(\mathbf{X}')}$, and kernel $\mathbf{k}(\mathbf{X}, \mathbf{X}') = \sum_{l} w''_{l} \mathbf{k}_{l}(\mathbf{X}, \mathbf{X}')$:

[Sum Nodes] $\mathbf{p}(\mathbf{X}) = \sum_{i} w_i \mathbf{p}_i(\mathbf{X}), \mathbf{q}(\mathbf{X}') = \sum_{j} w'_j \mathbf{q}_j(\mathbf{X}'), \text{ and kernel } \mathbf{k}(\mathbf{X}, \mathbf{X}') = \sum_{l} w''_l \mathbf{k}_l(\mathbf{X}, \mathbf{X}')$:

[Sum Nodes] $\mathbf{p}(\mathbf{X}) = \sum_{i} w_i \mathbf{p}_i(\mathbf{X}), \mathbf{q}(\mathbf{X}') = \sum_{j} w'_j \mathbf{q}_j(\mathbf{X}'), \text{ and kernel } \mathbf{k}(\mathbf{X}, \mathbf{X}') = \sum_{l} w''_l \mathbf{k}_l(\mathbf{X}, \mathbf{X}')$:

$$\mathbb{E}_{\mathbf{p},\mathbf{q}}[\mathbf{k}(\mathbf{x},\mathbf{x}')] = \sum_{i,j,l} w_i w'_j w''_l \mathbb{E}_{\mathbf{p}_i,\mathbf{q}_j}[\mathbf{k}_l(\mathbf{x},\mathbf{x}')]$$

expectation is "pushed down" to children

decomposable + compatible = tractable E[k] [Product Nodes] $\mathbf{p}_{\times}(\mathbf{X}) = \prod_{i} \mathbf{p}_{i}(\mathbf{X}_{i}), \mathbf{q}_{\times}(\mathbf{X}') = \prod_{i} \mathbf{q}_{i}(\mathbf{X}'_{i}), \text{ and kernel } \mathbf{k}_{\times}(\mathbf{X}, \mathbf{X}') = \prod_{i} \mathbf{k}_{i}(\mathbf{X}_{i}, \mathbf{X}'_{i}):$

decomposable + compatible = tractable E[k] [Product Nodes] $\mathbf{p}_{\times}(\mathbf{X}) = \prod_{i} \mathbf{p}_{i}(\mathbf{X}_{i}), \mathbf{q}_{\times}(\mathbf{X}') = \prod_{i} \mathbf{q}_{i}(\mathbf{X}'_{i}), \text{ and kernel } \mathbf{k}_{\times}(\mathbf{X}, \mathbf{X}') = \prod_{i} \mathbf{k}_{i}(\mathbf{X}_{i}, \mathbf{X}'_{i}):$

decomposable + compatible = tractable E[k] [Product Nodes] $\mathbf{p}_{\times}(\mathbf{X}) = \prod_{i} \mathbf{p}_{i}(\mathbf{X}_{i}), \mathbf{q}_{\times}(\mathbf{X}') = \prod_{i} \mathbf{q}_{i}(\mathbf{X}'_{i}), \text{ and kernel } \mathbf{k}_{\times}(\mathbf{X}, \mathbf{X}') = \prod_{i} \mathbf{k}_{i}(\mathbf{X}_{i}, \mathbf{X}'_{i}):$

 $\mathbb{E}_{\mathbf{p}_{ imes},\mathbf{q}_{ imes}}[\mathbf{k}_{ imes}(\mathbf{x},\mathbf{x}')] = \prod_{i} \mathbb{E}_{\mathbf{p},\mathbf{q}}[\mathbf{k}(\mathbf{x}_{i},\mathbf{x}'_{i})]$

expectation decomposes into easier ones

Algorithm 1 $\mathbb{E}_{\mathbf{p}_n,\mathbf{q}_m}[\mathbf{k}_l]$ — Computing the expected kernel **Input:** Two compatible PCs \mathbf{p}_n and \mathbf{q}_m , and a KC \mathbf{k}_l that is kernel-compatible with the PC pair \mathbf{p}_n and \mathbf{q}_m .

- 1: if m, n, l are *input* nodes then 2: return $\mathbb{E}_{\mathbf{p}_n, \mathbf{q}_m}[\mathbf{k}_l]$
- 3: else if m, n, l are *sum* nodes then
- 4: return $\sum_{i \in in(n), j \in in(m), c \in in(l)} w_i w'_j w''_c \mathbb{E}_{\mathbf{p}_i, \mathbf{q}_j}[\mathbf{k}_c]$
- 5: else if m, n, l are **product** nodes then
- 6: return $\mathbb{E}_{\mathbf{p}_{n_{\mathsf{L}}},\mathbf{q}_{m_{\mathsf{L}}}}[\mathbf{k}_{\mathsf{L}}] \cdot \mathbb{E}_{\mathbf{p}_{n_{\mathsf{R}}},\mathbf{q}_{m_{\mathsf{R}}}}[\mathbf{k}_{\mathsf{R}}]$

Computation can be done in one forward pass!

 Algorithm 2 $\mathbb{E}_{\mathbf{p}_n,\mathbf{q}_m}[\mathbf{k}_l]$ — Computing the expected kernel

 Input: Two compatible PCs \mathbf{p}_n and \mathbf{q}_m , and a KC \mathbf{k}_l that is kernel-compatible with the PC pair \mathbf{p}_n and \mathbf{q}_m .

 1: if m, n, l are input nodes then

 2: return $\mathbb{E}_{\mathbf{p}_n,\mathbf{q}_m}[\mathbf{k}_l]$

 3: else if m, n, l are sum nodes then

 4: return $\sum_{i \in in(n), j \in in(m), c \in in(l)} w_i w'_j w''_c \mathbb{E}_{\mathbf{p}_i, \mathbf{q}_j}[\mathbf{k}_c]$

 5: else if m, n, l are product nodes then

 6: return $\mathbb{E}_{\mathbf{p}_n, \mathbf{q}_m}[\mathbf{k}_L] \cdot \mathbb{E}_{\mathbf{p}_n, \mathbf{q}_m}[\mathbf{k}_R]$

Computation can be done in one forward pass!

 \Rightarrow squared maximum mean discrepancy $MMD[\mathbf{p}, \mathbf{q}]$ [Gretton et al. 2012] + determinism, kernelized discrete Stein discrepancy (KDSD) [Yang et al. 2018]

Outline

Problem Setup

Motivation: SVR with Missingness

Circuit Representation

Approach: Tractable Expected Kernels

Application: Collapsed Black-box Importance Sampling

Given a target distribution \mathbf{p} , and samples $\{\mathbf{x}^{(i)}\}_{i=1}^n$,

Given a target distribution \mathbf{p} , and samples $\{\mathbf{x}^{(i)}\}_{i=1}^{n}$,

Task is how to obtain weights $m{w}$ such that $\{w^{(i)}, \mathbf{x}^{(i)}\}$ approximates \mathbf{p} ?

Given a target distribution \mathbf{p} , and samples $\{\mathbf{x}^{(i)}\}_{i=1}^{n}$,

Task is how to obtain weights $m{w}$ such that $\{w^{(i)}, \mathbf{x}^{(i)}\}$ approximates \mathbf{p} ?

The black-box importance sampling obtains weights by minimizing empirical KDSD:

Given a target distribution **p**, and samples $\{\mathbf{x}^{(i)}\}_{i=1}^{n}$, **Task** is how to obtain weights \boldsymbol{w} such that $\{w^{(i)}, \mathbf{x}^{(i)}\}$ approximates **p**?

The black-box importance sampling obtains weights by minimizing empirical KDSD:

$$\text{empirical KDSD } \mathbb{S}(\{\underbrace{w^{(i)}}_{\text{weights}}, \underbrace{\mathbf{x}^{(i)}}_{\text{samples}}\}_{i=1}^n \parallel \mathbf{p}) = \boldsymbol{w}^\top \boldsymbol{K_p} \boldsymbol{w}, \text{ with } [\boldsymbol{K_p}]_{ij} = k_p(\mathbf{x}^{(i)}, \mathbf{x}^{(j)})$$

solving optimization problem $w^* = \operatorname{argmin}_{w} \left\{ w^\top K_p w \, \middle| \, \sum_{i=1}^n w_i = 1, \, w_i \ge 0 \right\}$
Given a target distribution **p**, and samples $\{\mathbf{x}^{(i)}\}_{i=1}^{n}$, Task is how to obtain weights \boldsymbol{w} such that $\{w^{(i)}, \mathbf{x}^{(i)}\}$ approximates **p**?

The black-box importance sampling obtains weights by minimizing empirical KDSD:

empirical KDSD
$$\mathbb{S}(\{\underbrace{w^{(i)}}_{\text{weights}}, \underbrace{\mathbf{x}^{(i)}}_{\text{samples}}\}_{i=1}^n \parallel \mathbf{p}) = \boldsymbol{w}^\top \boldsymbol{K_p} \boldsymbol{w}, \text{ with } [\boldsymbol{K_p}]_{ij} = k_p(\mathbf{x}^{(i)}, \mathbf{x}^{(j)})$$

solving optimization problem $m{w}^* = \operatorname{argmin}_{m{w}} \left\{ m{w}^\top m{K}_{m{p}} m{w} \, \big| \sum_{i=1}^n w_i = 1, \; w_i \geq 0 \right\}$

Given a target distribution \mathbf{p} , and samples $\{\mathbf{x}^{(i)}\}_{i=1}^{n}$, Task is how to obtain weights \boldsymbol{w} such that $\{w^{(i)}, \mathbf{x}^{(i)}\}$ approximates \mathbf{p} ?

The black-box importance sampling obtains weights by minimizing empirical KDSD:

empirical KDSD
$$\mathbb{S}(\{\underbrace{w^{(i)}}_{\text{weights}}, \underbrace{\mathbf{x}^{(i)}}_{\text{samples}}\}_{i=1}^n \parallel \mathbf{p}) = \boldsymbol{w}^\top \boldsymbol{K_p} \boldsymbol{w}, \text{ with } [\boldsymbol{K_p}]_{ij} = k_p(\mathbf{x}^{(i)}, \mathbf{x}^{(j)})$$

solving optimization problem $m{w}^* = \operatorname{argmin}_{m{w}} \left\{ m{w}^{ op} m{K}_{m{p}} m{w} \, \big| \sum_{i=1}^n w_i = 1, \; w_i \geq 0
ight\}$

Complexity quadratic in the number of samples $\mathcal{O}(N^2)$!

Given a target distribution **p**, and samples $\{\mathbf{x}^{(i)}\}_{i=1}^{n}$, Task is how to obtain weights \boldsymbol{w} such that $\{w^{(i)}, \mathbf{x}^{(i)}\}$ approximates **p**?

The black-box importance sampling obtains weights by minimizing empirical KDSD:

$$\text{| empirical KDSD } \mathbb{S}(\{\underbrace{w^{(i)}}_{\text{weights}}, \underbrace{\mathbf{x}^{(i)}}_{\text{samples}}\}_{i=1}^n \parallel \mathbf{p}) = \boldsymbol{w}^\top \boldsymbol{K_p} \boldsymbol{w}, \text{ with } [\boldsymbol{K_p}]_{ij} = k_p(\mathbf{x}^{(i)}, \mathbf{x}^{(j)})$$

solving optimization problem $m{w}^* = \operatorname{argmin}_{m{w}} \left\{ m{w}^{ op} m{K}_{m{p}} m{w} \, \big| \, \sum_{i=1}^n w_i = 1, \; w_i \geq 0
ight\}$

Complexity quadratic in the number of samples $\mathcal{O}(N^2)$!

Can we use less samples but maintain the same or even better performance?

Given a target distribution **p**, and samples $\{\mathbf{x}^{(i)}\}_{i=1}^{n}$, Task is how to obtain weights \boldsymbol{w} such that $\{w^{(i)}, \mathbf{x}^{(i)}\}$ approximates **p**?

The black-box importance sampling obtains weights by minimizing empirical KDSD:

$$\text{| empirical KDSD } \mathbb{S}(\{\underbrace{w^{(i)}}_{\text{weights}}, \underbrace{\mathbf{x}^{(i)}}_{\text{samples}}\}_{i=1}^n \parallel \mathbf{p}) = \boldsymbol{w}^\top \boldsymbol{K_p} \boldsymbol{w}, \text{ with } [\boldsymbol{K_p}]_{ij} = k_p(\mathbf{x}^{(i)}, \mathbf{x}^{(j)})$$

solving optimization problem $m{w}^* = \operatorname{argmin}_{m{w}} \left\{ m{w}^{ op} m{K}_{m{p}} m{w} \, \big| \sum_{i=1}^n w_i = 1, \; w_i \geq 0
ight\}$

Complexity quadratic in the number of samples $\mathcal{O}(N^2)$! Can we use less samples but maintain the same or even better performance? \implies Collapsed samples!

- Represent the conditional distributions $\mathbf{p}(\mathbf{X_c} \mid \mathbf{x_s}^{(i)})$ as PCs \mathbf{p}_i by knowledge compilation [Shen et al. 2016]
 - Compile the kernel function $k(\mathbf{X_c}, \mathbf{X_c}')$ as KC k

Empirical KDSD between collapsed samples and the target distribution ${f p}$

$$\mathbb{S}^2_{\mathbf{s}}(\{\mathbf{x_s}^{(i)}, w_i\} \parallel p) = \boldsymbol{w}^{ op} \boldsymbol{K}_{p, \mathbf{s}} \boldsymbol{w}$$

with $[\boldsymbol{K}_{p,\mathbf{s}}]_{ij} = \mathbb{E}_{\mathbf{x_c} \sim \mathbf{p}_i, \mathbf{x}'_{\mathbf{c}} \sim \mathbf{p}_j} [\mathbf{k}_p(\mathbf{x}, \mathbf{x}')]$

$$\boldsymbol{w}^* = \operatorname*{argmin}_{\boldsymbol{w}} \left\{ \boldsymbol{w}^\top \boldsymbol{K}_{p,\mathbf{s}} \boldsymbol{w} \ \middle| \ \sum_{i=1}^n w_i = 1, \ w_i \ge 0
ight\}$$

Given partial samples $\{\mathbf{x_s}^{(i)}\}_{i=1}^n$, with $(\mathbf{X_s}, \mathbf{X_c})$ a partition of \mathbf{X} ,

Represent the conditional distributions $\mathbf{p}(\mathbf{X}_{c} \mid \mathbf{x}_{s}^{(i)})$ as PCs \mathbf{p}_{i} by knowledge compilation [Shen et al. 2016]

Compile the kernel function $k(\mathbf{X_c}, \mathbf{X_c}')$ as KC k

Empirical KDSD between collapsed samples and the target distribution ${f p}$

$$\mathbb{S}^2_{\mathbf{s}}({\{\mathbf{x}_{\mathbf{s}}^{(i)}, w_i\}} \parallel p) = \boldsymbol{w}^\top \boldsymbol{K}_{p,\mathbf{s}} \boldsymbol{w}_i$$

with $[\mathbf{K}_{p,\mathbf{s}}]_{ij} = \mathbb{E}_{\mathbf{x_c} \sim \mathbf{p}_i, \mathbf{x'_c} \sim \mathbf{p}_j} [\mathbf{k}_p(\mathbf{x}, \mathbf{x'})]$

$$oldsymbol{w}^* = \operatorname*{argmin}_{oldsymbol{w}} \left\{ oldsymbol{w}^{ op} oldsymbol{K}_{p,\mathbf{s}} oldsymbol{w} \ \left| \ \sum_{i=1}^n w_i = 1, \ w_i \ge 0
ight\}
ight.$$

Given partial samples $\{\mathbf{x_s}^{(i)}\}_{i=1}^n$, with $(\mathbf{X_s}, \mathbf{X_c})$ a partition of \mathbf{X} ,

Represent the conditional distributions $p(X_c \mid x_s^{(i)})$ as PCs p_i by knowledge compilation [Shen et al. 2016]

Compile the kernel function ${f k}({f X_c},{f X_c}')$ as KC ${f k}$

Empirical KDSD between collapsed samples and the target distribution ${f p}$

$$\mathbb{S}^2_{\mathbf{s}}(\{\mathbf{x_s}^{(i)}, w_i\} \parallel p) = \boldsymbol{w}^\top \boldsymbol{K}_{p, \mathbf{s}} \boldsymbol{w}_i$$

with $[\mathbf{K}_{p,\mathbf{s}}]_{ij} = \mathbb{E}_{\mathbf{x_c} \sim \mathbf{p}_i, \mathbf{x'_c} \sim \mathbf{p}_j} [\mathbf{k}_p(\mathbf{x}, \mathbf{x'})]$

$$oldsymbol{w}^* = \operatorname*{argmin}_{oldsymbol{w}} \left\{ oldsymbol{w}^{ op} oldsymbol{K}_{p,\mathbf{s}} oldsymbol{w} \ \left| \ \sum_{i=1}^n w_i = 1, \ w_i \ge 0
ight\}
ight.$$

Given partial samples $\{\mathbf{x_s}^{(i)}\}_{i=1}^n$, with $(\mathbf{X_s}, \mathbf{X_c})$ a partition of \mathbf{X} ,

- Represent the conditional distributions $p(X_c \mid x_s^{(i)})$ as PCs p_i by knowledge compilation [Shen et al. 2016]
 - Compile the kernel function $k(\mathbf{X_c}, \mathbf{X_c}')$ as KC k

Empirical KDSD between collapsed samples and the target distribution ${f p}$

$$\mathbb{S}^2_{\mathbf{s}}({\{\mathbf{x}_{\mathbf{s}}^{(i)}, w_i\}} \parallel p) = \boldsymbol{w}^\top \boldsymbol{K}_{p,\mathbf{s}} \boldsymbol{w}$$

with $[\mathbf{K}_{p,\mathbf{s}}]_{ij} = \mathbb{E}_{\mathbf{x_c} \sim \mathbf{p}_i, \mathbf{x'_c} \sim \mathbf{p}_j} [\mathbf{k}_p(\mathbf{x}, \mathbf{x'})]$

$$oldsymbol{w}^* = \operatorname*{argmin}_{oldsymbol{w}} \left\{ oldsymbol{w}^ op oldsymbol{K}_{p, ext{s}} oldsymbol{w} \ \left| \ \sum_{i=1}^n w_i = 1, \ w_i \geq 0
ight\}
ight.$$

Given partial samples $\{\mathbf{x_s}^{(i)}\}_{i=1}^n$, with $(\mathbf{X_s}, \mathbf{X_c})$ a partition of \mathbf{X} ,

- Represent the conditional distributions $p(X_c | x_s^{(i)})$ as PCs p_i by knowledge compilation [Shen et al. 2016]
 - Compile the kernel function $k(\mathbf{X_c}, \mathbf{X_c}')$ as KC k

Empirical KDSD between collapsed samples and the target distribution ${f p}$

$$\mathbb{S}^2_{\mathbf{s}}({\{\mathbf{x_s}^{(i)}, w_i\}} \parallel p) = \boldsymbol{w}^\top \boldsymbol{K}_{p,\mathbf{s}} \boldsymbol{w}$$

with $[\mathbf{K}_{p,\mathbf{s}}]_{ij} = \mathbb{E}_{\mathbf{x_c} \sim \mathbf{p}_i, \mathbf{x'_c} \sim \mathbf{p}_j} [\mathbf{k}_p(\mathbf{x}, \mathbf{x'})]$

$$oldsymbol{w}^* = \operatorname*{argmin}_{oldsymbol{w}} \left\{ oldsymbol{w}^ op oldsymbol{K}_{p,\mathbf{s}} oldsymbol{w} \ \left| \ \sum_{i=1}^n w_i = 1, \ w_i \geq 0
ight\}$$

Given partial samples $\{\mathbf{x_s}^{(i)}\}_{i=1}^n$, with $(\mathbf{X_s}, \mathbf{X_c})$ a partition of \mathbf{X} ,

- Represent the conditional distributions $p(X_c | x_s^{(i)})$ as PCs p_i by knowledge compilation [Shen et al. 2016]
 - Compile the kernel function $k(\mathbf{X_c}, \mathbf{X_c}')$ as KC k

Empirical KDSD between collapsed samples and the target distribution ${f p}$

$$\mathbb{S}^2_{\mathbf{s}}(\{\mathbf{x_s}^{(i)}, w_i\} \parallel p) = \boldsymbol{w}^\top \boldsymbol{K}_{p, \mathbf{s}} \boldsymbol{w}_{i}$$

with $[\mathbf{K}_{p,\mathbf{s}}]_{ij} = \mathbb{E}_{\mathbf{x_c} \sim \mathbf{p}_i, \mathbf{x'_c} \sim \mathbf{p}_j} [\mathbf{k}_p(\mathbf{x}, \mathbf{x'})]$

$$oldsymbol{w}^* = \operatorname*{argmin}_{oldsymbol{w}} \left\{ oldsymbol{w}^ op oldsymbol{K}_{p,\mathbf{s}} oldsymbol{w} \, \left| \, \sum_{i=1}^n w_i = 1, \; w_i \geq 0
ight\}$$

methods with collapsed samples all outperform their non-collapsed counterparts
 CBBIS performs equally well or better than other baselines

Friedman and Van den Broeck, "Approximate Knowledge Compilation by Online Collapsed Importance Sampling", 2018 Liu and Lee, "Black-box importance sampling", 2016

Takeaways

#1: You can be both tractable and expressive#2: Circuits are a foundation for tractable inference over kernels

What other applications would benefit from the tractable computation of the expected kernels?

More on circuits ...

Probabilistic Circuits: A Unifying Framework for Tractable Probabilistic Models
starai.cs.ucla.edu/papers/ProbCirc20.pdf

Probabilistic Circuits: Representations, Inference, Learning and Theory
youtube.com/watch?v=2RAG5-L9R70

Probabilistic Circuits
arranger1044.github.io/probabilistic-circuits/

Foundations of Sum-Product Networks for probabilistic modeling tinyurl.com/w65po5d

Questions?

References I

Darwiche, Adnan and Pierre Marquis (2002). "A knowledge compilation map". In: Journal of Artificial Intelligence Research 17, pp. 229–264.

- Liu, Qiang and Jason D Lee (2016). "Black-box importance sampling". In: arXiv preprint arXiv:1610.05247.
- Friedman, Tal and Guy Van den Broeck (Dec. 2018). "Approximate Knowledge Compilation by Online Collapsed Importance Sampling". In: Advances in Neural Information Processing Systems 31 (NeurIP5). URL: http://starai.cs.ucla.edu/papers/FriedmanNeurIPS18.pdf.
- 🕀 🛛 Choi, YooJung, Antonio Vergari, and Guy Van den Broeck (2020). "Probabilistic Circuits: A Unifying Framework for Tractable Probabilistic Modeling". In:
- Peharz, Robert, Steven Lang, Antonio Vergari, Karl Stelzner, Alejandro Molina, Martin Trapp, Guy Van den Broeck, Kristian Kersting, and Zoubin Ghahramani (2020). "Einsum Networks: Fast and Scalable Learning of Tractable Probabilistic Circuits". In: International Conference of Machine Learning.
- 🕀 Liu, Anji, Stephan Mandt, and Guy Van den Broeck (2021). "Lossless Compression with Probabilistic Circuits". In: arXiv preprint arXiv:2111.11632.