Tractable Computation of Expected Kernels by Circuit Representations

Wenzhe Li*
Tsinghua University

Antonio Vergari

University of California, Los Angeles

Zhe Zeng*

University of California, Los Angeles

Guy Van den Broeck

University of California, Los Angeles

Tractable Computation of Expected Kernels by Circuit Representations

Wenzhe Li*
Tsinghua University

Antonio Vergari

University of California, Los Angeles

Zhe Zeng*

University of California, Los Angeles

Guy Van den Broeck

University of California, Los Angeles

Tractable Computation of Expected Kernels by Circuit Representations

Wenzhe Li*
Tsinghua University

Antonio Vergari

University of California, Los Angeles

Zhe Zeng*

University of California, Los Angeles

Guy Van den Broeck

University of California, Los Angeles

Tractable Computation of Expected Kernels by Circuit Representations

Wenzhe Li*
Tsinghua University

Antonio Vergari

University of California, Los Angeles

Zhe Zeng*

University of California, Los Angeles

Guy Van den Broeck

University of California, Los Angeles

Problem Setup

A Fundamental Task
Given two distributions \mathbf{p} and \mathbf{q}, and a kernel function \mathbf{k},
Goal is to compute the expected kernel tractably

$$
\mathbb{E}_{\mathbf{x} \sim \mathbf{p}, \mathbf{x}^{\prime} \sim \mathbf{q}}\left[\mathbf{k}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)\right]
$$

Problem Setup

A Fundamental Task
Given two distributions \mathbf{p} and \mathbf{q}, and a kernel function \mathbf{k},
Goal is to compute the expected kernel tractably

$$
\mathbb{E}_{\mathbf{x} \sim \mathbf{p}, \mathbf{x}^{\prime} \sim \mathbf{q}}\left[\mathbf{k}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)\right] .
$$

\Rightarrow In kernel-based frameworks, expected kernels are omnipresent!

Problem Setup

A Fundamental Task

Given two distributions \mathbf{p} and \mathbf{q}, and a kernel function \mathbf{k},
Goal is to compute the expected kernel tractably

$$
\mathbb{E}_{\mathbf{x} \sim \mathbf{p}, \mathbf{x}^{\prime} \sim \mathbf{q}}\left[\mathbf{k}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)\right]
$$

\Rightarrow In kernel-based frameworks, expected kernels are omnipresent!
$\mathbb{D}\left(\int_{\mathbf{p}}, \Omega_{\mathbf{q}}\right)$

Problem Setup

A Fundamental Task

Given two distributions \mathbf{p} and \mathbf{q}, and a kernel function \mathbf{k},
Goal is to compute the expected kernel tractably

$$
\mathbb{E}_{\mathbf{x} \sim \mathbf{p}, \mathbf{x}^{\prime} \sim \mathbf{q}}\left[\mathbf{k}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)\right]
$$

\Rightarrow In kernel-based frameworks, expected kernels are omnipresent!
$\mathbb{D}\left(\bigwedge_{\mathbf{p}}, \widehat{\mathbf{q}}^{(}\right) \quad \begin{gathered}\text { squared Maximum Mean Discrepancy (MMD) } \\ \left.\mathbb{E}_{\mathbf{x} \sim \mathbf{p}, \mathbf{x}^{\prime} \sim \mathbf{p}} \mathbf{k}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)\right]+\mathbb{E}_{\mathbf{x} \sim \mathbf{q}, \mathbf{x}^{\prime} \sim \mathbf{q}}\left[\mathbf{k}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)\right]-2 \mathbb{E}_{\mathbf{x} \sim \mathbf{p}, \mathbf{x}^{\prime} \sim \mathbf{q}}\left[\mathbf{k}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)\right]\end{gathered}$

Problem Setup

A Fundamental Task

Given two distributions \mathbf{p} and \mathbf{q}, and a kernel function \mathbf{k},
Goal is to compute the expected kernel tractably

$$
\mathbb{E}_{\mathbf{x} \sim \mathbf{p}, \mathbf{x}^{\prime} \sim \mathbf{q}}\left[\mathbf{k}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)\right]
$$

\Rightarrow In kernel-based frameworks, expected kernels are omnipresent!
$\mathbb{D}()^{\text {(Discrete) Kernelized Stein Discrepancy (KDSD) }}$
$\mathbb{D}\left(\int_{\mathbf{p}}, \mathbf{q}_{\mathbf{q}}\right) \mathbb{E}_{\mathrm{x}, \mathrm{x}^{\prime} \sim \mathbf{q}}\left[\mathrm{k}_{\mathrm{p}}\left(\mathrm{x}, \mathrm{x}^{\prime}\right)\right]$

Problem Setup

A Fundamental Task

Given two distributions \mathbf{p} and \mathbf{q}, and a kernel function \mathbf{k},
Goal is to compute the expected kernel

$$
\mathbb{E}_{\mathbf{x} \sim \mathbf{p}, \mathbf{x}^{\prime} \sim \mathbf{q}}\left[\mathbf{k}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)\right]
$$

\Rightarrow In kernel-based frameworks, expected kernels are omnipresent!
This talk how to compute the expected kernels exactly and tractably, by leveraging recent advances in probabilistic circuit representations.

Outline

- Problem Setup
\square Motivation: SVR with Missingness
Circuit Representation
- Approach: Tractable Expected Kernels

■ Application: Collapsed Black-box Importance Sampling

Motivation

Example: Support vector regression with missing features

Motivation

Example: Support vector regression with missing features
Given training data,

Motivation

Example: Support vector regression with missing features
Given training data, and a learned support vector regression (SVR) model

$$
f(\mathbf{x})=\sum_{i=1}^{m} w_{i} \mathbf{k}\left(\mathbf{x}_{i}, \mathbf{x}\right)+b
$$

Motivation

Example: Support vector regression with missing features

Given training data, and a learned support vector regression (SVR) model

$$
f(\mathbf{x})=\sum_{i=1}^{m} w_{i} \mathbf{k}\left(\mathbf{x}_{i}, \mathbf{x}\right)+b
$$

Task at deployment time, what happen if we only observe partial
 features and some are missing?

Motivation

Example: Support vector regression with missing features

Given training data, and a learned support vector regression (SVR) model

$$
f(\mathbf{x})=\sum_{i=1}^{m} w_{i} \mathbf{k}\left(\mathbf{x}_{i}, \mathbf{x}\right)+b
$$

Task at deployment time, what happen if we only observe partial fea-
 tures and some are missing?

Expected prediction!

Motivation

Example: Support vector regression with missing features
Given training data, and a learned support vector regression (SVR) model

$$
f(\mathbf{x})=\sum_{i=1}^{m} w_{i} \mathbf{k}\left(\mathbf{x}_{i}, \mathbf{x}\right)+b
$$

With Missing Features . . .

Motivation

Example: Support vector regression with missing features

Given training data, and a learned support vector regression (SVR) model

$$
f(\mathbf{x})=\sum_{i=1}^{m} w_{i} \mathbf{k}\left(\mathbf{x}_{i}, \mathbf{x}\right)+b
$$

With Missing Features . . .

- first learn a generative model for features in Probabilistic Circuit $\mathrm{PC} \mathbf{p}(\mathbf{X})$ from training data;

Motivation

Example: Support vector regression with missing features
Given training data, and a learned support vector regression (SVR) model

$$
f(\mathbf{x})=\sum_{i=1}^{m} w_{i} \mathbf{k}\left(\mathbf{x}_{i}, \mathbf{x}\right)+b
$$

With Missing Features . . .

- first learn a generative model for features in Probabilistic Circuit PC $\mathbf{p}(\mathbf{X})$ from training data;
\square when only features $\mathbf{X}_{o}=\mathbf{x}_{o}$ are observed and features \mathbf{X}_{m} are missing, the expected prediction is

$$
\mathbb{E}_{\mathbf{x}_{m} \sim p\left(\mathbf{X}_{m} \mid \mathbf{x}_{o}\right)}\left[f\left(\mathbf{x}_{o}, \mathbf{x}_{m}\right)\right]
$$

Motivation

Example: Support vector regression with missing features
Given training data, and a learned support vector regression (SVR) model

$$
f(\mathbf{x})=\sum_{i=1}^{m} w_{i} \mathbf{k}\left(\mathbf{x}_{i}, \mathbf{x}\right)+b
$$

With Missing Features . . .

\square first learn a generative model for features in Probabilistic Circuit PC $\mathbf{p}(\mathbf{X})$ from training data;
\square when only features $\mathbf{X}_{o}=\mathbf{x}_{o}$ are observed and features \mathbf{X}_{m} are $p(x)$ missing, the expected prediction is
$\mathbb{E}_{\mathbf{x}_{m} \sim \mathrm{p}\left(\mathbf{X}_{m} \mid \mathbf{x}_{o}\right)}\left[f\left(\mathbf{x}_{o}, \mathbf{x}_{m}\right)\right]=\sum_{i=1}^{m} w_{i} \mathbb{E}_{\mathbf{x}_{m} \sim \mathrm{p}\left(\mathbf{X}_{m} \mid \mathbf{x}_{o}\right)}\left[\mathbf{k}\left(\mathbf{x}_{i},\left(\mathbf{x}_{o}, \mathbf{x}_{m}\right)\right)\right]+b$

Motivation

Example: Support vector regression with missing features

\Rightarrow Expected prediction improves over the baselines

Challenge

Reliability vs. Flexibility

$$
\mathbb{E}_{\mathbf{x} \sim \mathbf{p}, \mathbf{x}^{\prime} \sim \mathbf{q}}\left[\mathbf{k}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)\right]=\int_{\mathbf{x}, \mathbf{x}^{\prime}} \mathbf{p}(\mathbf{x}) \mathbf{q}\left(\mathbf{x}^{\prime}\right) \mathbf{k}\left(\mathbf{x}, \mathbf{x}^{\prime}\right) d \mathbf{x} d \mathbf{x}^{\prime}
$$

Challenge

Reliability vs. Flexibility

$$
\mathbb{E}_{\mathbf{x} \sim \mathbf{p}, \mathbf{x}^{\prime} \sim \mathbf{q}}\left[\mathbf{k}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)\right]=\int_{\mathbf{x}, \mathbf{x}^{\prime}} \mathbf{p}(\mathbf{x}) \mathbf{q}\left(\mathbf{x}^{\prime}\right) \mathbf{k}\left(\mathbf{x}, \mathbf{x}^{\prime}\right) d \mathbf{x} d \mathbf{x}^{\prime}
$$

Tractable if \mathbf{p}, \mathbf{q} fully factorized

Challenge

Reliability vs. Flexibility

$$
\mathbb{E}_{\mathbf{x} \sim \mathbf{p}, \mathbf{x}^{\prime} \sim \mathbf{q}}\left[\mathbf{k}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)\right]=\int_{\mathbf{x}, \mathbf{x}^{\prime}} \mathbf{p}(\mathbf{x}) \mathbf{q}\left(\mathbf{x}^{\prime}\right) \mathbf{k}\left(\mathbf{x}, \mathbf{x}^{\prime}\right) d \mathbf{x} d \mathbf{x}^{\prime}
$$

Tractable if \mathbf{p}, \mathbf{q} fully factorized

PRO. Tractable exact computation
CON. Model being too restrictive

Challenge

Reliability vs. Flexibility

$$
\mathbb{E}_{\mathbf{x} \sim \mathbf{p}, \mathbf{x}^{\prime} \sim \mathbf{q}}\left[\mathbf{k}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)\right]=\int_{\mathbf{x}, \mathbf{x}^{\prime}} \mathbf{p}(\mathbf{x}) \mathbf{q}\left(\mathbf{x}^{\prime}\right) \mathbf{k}\left(\mathbf{x}, \mathbf{x}^{\prime}\right) d \mathbf{x} d \mathbf{x}^{\prime}
$$

Tractable if \mathbf{p}, \mathbf{q} fully factorized

PRO. Tractable exact computation
CON. Model being too restrictive

Hard to compute in general. \Rightarrow approximate with MC or variational inference
PRO. Efficient computation
CON. Slow convergence

Challenge

Reliability vs. Flexibility

$$
\mathbb{E}_{\mathbf{x} \sim \mathbf{p}, \mathbf{x}^{\prime} \sim \mathbf{q}}\left[\mathbf{k}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)\right]=\int_{\mathbf{x}, \mathbf{x}^{\prime}} \mathbf{p}(\mathbf{x}) \mathbf{q}\left(\mathbf{x}^{\prime}\right) \mathbf{k}\left(\mathbf{x}, \mathbf{x}^{\prime}\right) d \mathbf{x} d \mathbf{x}^{\prime}
$$

Tractable if \mathbf{p}, \mathbf{q} fully factorized

PRO. Tractable exact computation
CON. Model being too restrictive
trade-off? Hard to compute in general. \Rightarrow approximate with MC or variational inference
PRO. Efficient computation
CON. Slow convergence

Expressive distribution models
 $+$

Exact computation of expected kernels?

Expressive distribution models
 $+$

Exact computation of expectated kernels =
Circuits!

Outline

\square Problem Setup

- Motivation: SVR with Missingness
\square Circuit Representation
- Approach: Tractable Expected Kernels
\square Application: Collapsed Black-box Importance Sampling

Circuit Representation

Probabilistic Circuits

deep generative models + guarantees

Circuit Representation

Probabilistic Circuits

deep generative models + guarantees

Kernel Circuits

express kernels as circuits

Probabilistic Circuits (PCs)

Tractable computational graphs

I. A simple tractable distribution is a PC

\Rightarrow e.g., a multivariate Gaussian

Probabilistic Circuits (PCs)

Tractable computational graphs
I. A simple tractable distribution is a PC
II. A convex combination of PCs is a PC \Rightarrow e.g., a mixture model

Probabilistic Circuits (PCs)

Tractable computational graphs
I. A simple tractable distribution is a PC
II. A convex combination of PCs is a PC
III. A product of PCs is a PC

Probabilistic Circuits (PCs)

Tractable computational graphs

Probabilistic Circuits (PCs)

Tractable computational graphs

Probabilistic queries $=$ feedforward evaluation

$$
p\left(X_{1}=-1.85, X_{2}=0.5, X_{3}=-1.3, X_{4}=0.2\right)
$$

Probabilistic queries $=$ feedforward evaluation

$$
p\left(X_{1}=-1.85, X_{2}=0.5, X_{3}=-1.3, X_{4}=0.2\right)
$$

Probabilistic queries $=$ feedforward evaluation

$$
p\left(X_{1}=-1.85, X_{2}=0.5, X_{3}=-1.3, X_{4}=0.2\right)=0.75
$$

PCs = deep learning

PCs are computational graphs

PCs = deep /earning

PCs are computational graphs encoding deep mixture models
\Rightarrow stacking (categorical) latent variables

PCs = deep learning

PCs are computational graphs encoding deep mixture models
\Rightarrow stacking (categorical) latent variables

PCs are expressive deep generative models!

\Rightarrow we can learn PCs with millions of parameters in minutes on the GPU [Peharz
et al. 2020]

On par with intractable models!

How expressive are PCs?

Dataset	PCs	IDF	Hierarchical VAE	PixelVAE
MNIST	$\mathbf{1 . 2 0}$	1.90	1.27	1.39
FashionMNIST	3.34	3.47	$\mathbf{3 . 2 8}$	3.66
EMNIST (Letter split)	$\mathbf{1 . 8 0}$	1.95	1.84	2.26
EMNIST (ByClass split)	$\mathbf{1 . 8 5}$	1.98	1.87	2.23

Model	CIFAR10	ImageNet32	ImageNet64
RealNVP	3.49	4.28	3.98
Glow	3.35	4.09	3.81
IDF	3.32	4.15	3.90
IDF++	$\mathbf{3 . 2 4}$	4.10	3.81
PCs+IDF	3.28	$\mathbf{3 . 9 9}$	$\mathbf{3 . 7 1}$

PCs = deep learning + deep guarantees

PCs are expressive deep generative models!
\&
Certifying tractability for a class of queries
via
Verifying structural properties of the graph

Which structural constraints ensure tractability?

decomposable PCs

A PC is decomposable if all inputs of product units depend on disjoint sets of variables

decomposable circuit

decomposable PCs = ...

Choi et al., "Probabilistic Circuits: A Unifying Framework for Tractable Probabilistic Modeling",

decomposable $\mathbf{P C s}=. .$.

MAR sufficient and necessary conditions for computing any marginal

$$
\begin{aligned}
p(\mathbf{y}) & =\int p(\mathbf{z}, \mathbf{y}) d \mathbf{z} \\
& \Rightarrow \text { by a single feedforward evaluation }
\end{aligned}
$$

Choi et al., "Probabilistic Circuits: A Unifying Framework for Tractable Probabilistic Modeling",

decomposable $\mathbf{P C s}=. .$.

MAR sufficient and necessary conditions for computing any marginal $\int p(\mathbf{z}, \mathbf{y}) d \mathbf{z}$
CON sufficient and necessary conditions for any conditional distribution

$$
\begin{aligned}
p(\mathbf{y} \mid \mathbf{z})= & \frac{p(\mathbf{y}, \mathbf{z})}{\int p(\mathbf{y}, \mathbf{z}) d \mathbf{z}} \\
& \Rightarrow \text { by two feedforward evaluations }
\end{aligned}
$$

Choi et al., "Probabilistic Circuits: A Unifying Framework for Tractable Probabilistic Modeling",

decomposable $\mathbf{P C s}=. .$.

MAR sufficient and necessary conditions for computing any marginal $\int p(\mathbf{z}, \mathbf{y}) d \mathbf{z}$
CON sufficient and necessary conditions for any conditional $\frac{p(\mathbf{y}, \mathbf{z})}{\int p(\mathbf{y}, \mathbf{z}) d \mathbf{z}}$

Can we represent kernels as circuits to characterize tractability of its queries?

Kernel Circuits (KCs)

Exa. Radial basis function (RBF) kernel $\mathbf{k}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\exp \left(-\sum_{i=1}^{4}\left|X_{i}-X_{i}^{\prime}\right|^{2}\right)$

Kernel Circuits (KCs)

Exa. Radial basis function (RBF) kernel $\mathbf{k}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\exp \left(-\sum_{i=1}^{4}\left|X_{i}-X_{i}^{\prime}\right|^{2}\right)$

decomposable if all inputs of product units depend on disjoint sets of variables

Kernel Circuits (KCs)

Common kernels can be compactly represented as decomposable KCs:

RBF, (exponentiated) Hamming, polynomial ...

Outline

- Problem Setup
- Motivation: SVR with Missingness
- Circuit Representation
\square Approach: Tractable Expected Kernels
- Application: Collapsed Black-box Importance Sampling

Expected Kernel

tractable computation via circuit operations
Main result.

Expected Kernel

tractable computation via circuit operations
Main result. If PCs \mathbf{p} and \mathbf{q}, and $\mathrm{KC} \mathbf{k}$ decompose in the same way,

Expected Kernel

tractable computation via circuit operations
Main result. If PCs \mathbf{p} and \mathbf{q}, and $\mathrm{KC} \mathbf{k}$ decompose in the same way,

$\left\{X_{1}, X_{2}, X_{3}\right\}\left\{X_{4}\right\}$

$\left\{X_{1}^{\prime}, X_{2}^{\prime}, X_{3}^{\prime}\right\}\left\{X_{4}^{\prime}\right\}$

$\left\{\left(X_{1}, X_{1}^{\prime}\right),\left(X_{2}, X_{2}^{\prime}\right),\left(X_{3}, X_{3}^{\prime}\right)\right\}\left\{\left(X_{4}, X_{4}^{\prime}\right)\right\}$

Expected Kernel

tractable computation via circuit operations
Main result. If PCs \mathbf{p} and \mathbf{q}, and $\mathrm{KC} \mathbf{k}$ decompose in the same way, then computing expected kernels can be done tractably by one forward pass
\Rightarrow product of the sizes of each circuit!

decomposable + compatible $=$ tractable F[k]

[Sum Nodes] $\mathrm{p}(\mathbf{X})=\sum_{i} w_{i} \mathrm{p}_{i}(\mathbf{X}), \mathrm{q}\left(\mathbf{X}^{\prime}\right)=\sum_{j} w_{j}^{\prime} \mathrm{q}_{j}\left(\mathbf{X}^{\prime}\right)$, and kernel $\mathrm{k}\left(\mathbf{X}, \mathbf{X}^{\prime}\right)=\sum_{l} w_{l}{ }^{\prime \prime} \mathrm{k}_{l}\left(\mathbf{X}, \mathbf{X}^{\prime}\right)$:

decomposable + compatible $=$ tractable F[k]

[Sum Nodes] $\mathrm{p}(\mathbf{X})=\sum_{i} w_{i} \mathrm{p}_{i}(\mathbf{X}), \mathrm{q}\left(\mathbf{X}^{\prime}\right)=\sum_{j} w_{j}^{\prime} \mathrm{q}_{j}\left(\mathbf{X}^{\prime}\right)$, and kernel $\mathrm{k}\left(\mathbf{X}, \mathbf{X}^{\prime}\right)=\sum_{l} w_{l}{ }^{\prime \prime} \mathrm{k}_{l}\left(\mathbf{X}, \mathbf{X}^{\prime}\right)$:

$$
\begin{aligned}
& \sum_{\mathbf{x}, \mathbf{x}^{\prime}} \mathrm{p}(\mathbf{x}) \mathrm{q}\left(\mathbf{x}^{\prime}\right) \mathrm{k}\left(\mathbf{x}, \mathbf{x}^{\prime}\right) \\
\mathrm{q}= & \sum_{i, j, l} w_{i} w_{j}^{\prime} w_{l}^{\prime \prime} \mathrm{p}_{i}(\mathbf{x}) \mathrm{q}_{j}\left(\mathbf{x}^{\prime}\right) \mathrm{k}_{l}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)
\end{aligned}
$$

decomposable + compatible $=$ tractable F[k]

[Sum Nodes] $\mathrm{p}(\mathbf{X})=\sum_{i} w_{i} \mathrm{p}_{i}(\mathbf{X}), \mathrm{q}\left(\mathbf{X}^{\prime}\right)=\sum_{j} w_{j}^{\prime} \mathrm{q}_{j}\left(\mathbf{X}^{\prime}\right)$, and kernel $\mathrm{k}\left(\mathbf{X}, \mathbf{X}^{\prime}\right)=\sum_{l} w_{l}{ }^{\prime \prime} \mathrm{k}_{l}\left(\mathbf{X}, \mathbf{X}^{\prime}\right)$:

$\mathbb{E}_{\mathrm{p}, \mathrm{q}}\left[\mathrm{k}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)\right]=\sum_{i, j, l} w_{i} w_{j}^{\prime} w_{l}^{\prime \prime} \mathbb{E}_{\mathrm{p}_{i}, \mathrm{q}_{j}}\left[\mathrm{k}_{l}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)\right]$
\Rightarrow expectation is "pushed down" to children

decomposable + compatible $=$ tractable $\mathbf{F}[\mathrm{k}]$

[Product Nodes] $\mathrm{p}_{\times}(\mathbf{X})=\prod_{i} \mathrm{p}_{i}\left(\mathbf{X}_{i}\right), \mathrm{q}_{\times}\left(\mathbf{X}^{\prime}\right)=\prod_{i} \mathrm{q}_{j}\left(\mathbf{X}_{i}^{\prime}\right)$, and kernel $\mathrm{k}_{\times}\left(\mathbf{X}, \mathbf{X}^{\prime}\right)=\prod_{i} \mathrm{k}_{i}\left(\mathbf{X}_{i}, \mathbf{X}_{i}^{\prime}\right)$:

decomposable + compatible $=$ tractable $\mathbf{F}[\mathbf{k}]$

[Product Nodes] $\mathrm{p}_{\times}(\mathbf{X})=\prod_{i} \mathrm{p}_{i}\left(\mathbf{X}_{i}\right), \mathrm{q}_{\times}\left(\mathbf{X}^{\prime}\right)=\prod_{i} \mathrm{q}_{j}\left(\mathbf{X}_{i}^{\prime}\right)$, and kernel $\mathrm{k}_{\times}\left(\mathbf{X}, \mathbf{X}^{\prime}\right)=\prod_{i} \mathrm{k}_{i}\left(\mathbf{X}_{i}, \mathbf{X}_{i}^{\prime}\right)$:

$$
\begin{aligned}
& \sum_{\mathbf{x}, \mathbf{x}^{\prime}} \mathrm{p}_{\times}(\mathbf{x}) \mathrm{q}_{\times}\left(\mathbf{x}^{\prime}\right) \mathrm{k}_{\times}\left(\mathbf{x}, \mathbf{x}^{\prime}\right) \\
= & \sum_{\mathbf{x}, \mathbf{x}^{\prime}} \prod_{i} \mathrm{p}\left(\mathbf{x}_{i}\right) \mathrm{q}\left(\mathbf{x}_{i}\right) \mathrm{k}_{i}\left(\mathbf{x}_{i}, \mathbf{x}_{i}^{\prime}\right) \\
= & \prod_{i}\left(\sum_{\mathbf{x}_{i}, \mathbf{x}_{i}^{\prime}} \mathrm{p}\left(\mathbf{x}_{i}\right) \mathrm{q}\left(\mathbf{x}_{i}\right) \mathrm{k}_{i}\left(\mathbf{x}_{i}, \mathbf{x}_{i}^{\prime}\right)\right)
\end{aligned}
$$

decomposable + compatible $=$ tractable $\mathbf{F}[\mathbf{k}]$

[Product Nodes] $\mathrm{p}_{\times}(\mathbf{X})=\prod_{i} \mathrm{p}_{i}\left(\mathbf{X}_{i}\right), \mathrm{q}_{\times}\left(\mathbf{X}^{\prime}\right)=\prod_{i} \mathrm{q}_{j}\left(\mathbf{X}_{i}^{\prime}\right)$, and kernel $\mathrm{k}_{\times}\left(\mathbf{X}, \mathbf{X}^{\prime}\right)=\prod_{i} \mathrm{k}_{i}\left(\mathbf{X}_{i}, \mathbf{X}_{i}^{\prime}\right)$:

$\mathbb{E}_{\mathrm{p}_{\times}, \mathrm{q}_{\mathrm{x}}}\left[\mathrm{k}_{\times}\left(\mathbf{x}, \mathrm{x}^{\prime}\right)\right]=\prod_{i} \mathbb{E}_{\mathrm{p}, \mathrm{q}}\left[\mathrm{k}\left(\mathrm{x}_{i}, \mathrm{x}_{i}^{\prime}\right)\right]$
\Rightarrow expectation decomposes into easier ones

decomposable + compatible $=$ tractable E[k]

```
Algorithm \(1 \mathbb{E}_{\mathbf{p}_{n}, \mathbf{q}_{m}}\left[\mathbf{k}_{l}\right]\) - Computing the expected kernel
Input: Two compatible PCs \(\mathbf{p}_{n}\) and \(\mathbf{q}_{m}\), and a KC \(\mathbf{k}_{l}\) that is
kernel-compatible with the PC pair \(\mathbf{p}_{n}\) and \(\mathbf{q}_{m}\).
    1: if \(m, n, l\) are input nodes then
    2: return \(\mathbb{E}_{\mathbf{p}_{n}, \mathbf{q}_{m}}\left[\mathbf{k}_{l}\right]\)
    3: else if \(m, n, l\) are sum nodes then
4: return \(\sum_{i \in \operatorname{in}(n), j \in \operatorname{in}(m), c \in \operatorname{in}(l)} w_{i} w_{j}^{\prime} w_{c}^{\prime \prime} \mathbb{E}_{\mathbf{p}_{i}, \mathbf{q}_{j}}\left[\mathbf{k}_{c}\right]\)
5: else if \(m, n, l\) are product nodes then
6: return \(\mathbb{E}_{\mathbf{p}_{n_{\mathrm{L}}}, \mathbf{q}_{m_{\mathrm{L}}}}\left[\mathbf{k}_{\mathrm{L}}\right] \cdot \mathbb{E}_{\mathbf{p}_{n_{\mathrm{R}}}, \mathbf{q}_{m_{\mathrm{R}}}}\left[\mathbf{k}_{\mathrm{R}}\right]\)
```


Computation can be done in one forward pass!

decomposable + compatible $=$ tractable E[k]

```
Algorithm \(2 \mathbb{E}_{\mathbf{p}_{n}, \mathbf{q}_{m}}\left[\mathbf{k}_{l}\right]\) - Computing the expected kernel
Input: Two compatible PCs \(\mathbf{p}_{n}\) and \(\mathbf{q}_{m}\), and a KC \(\mathbf{k}_{l}\) that is
kernel-compatible with the PC pair \(\mathbf{p}_{n}\) and \(\mathbf{q}_{m}\).
    1: if \(m, n, l\) are input nodes then
    : return \(\mathbb{E}_{\mathbf{p}_{n}, \mathbf{q}_{m}}\left[\mathbf{k}_{l}\right]\)
    3: else if \(m, n, l\) are sum nodes then
    4: return \(\sum_{i \in \operatorname{in}(n), j \in \operatorname{in}(m), c \in \operatorname{in}(l)} w_{i} w_{j}^{\prime} w_{c}^{\prime \prime} \mathbb{E}_{\mathbf{p}_{i}, \mathbf{q}_{j}}\left[\mathbf{k}_{c}\right]\)
    5: else if \(m, n, l\) are product nodes then
    6: return \(\mathbb{E}_{\mathbf{p}_{n_{\mathrm{L}}}, \mathbf{q}_{m_{\mathrm{L}}}}\left[\mathbf{k}_{\mathrm{L}}\right] \cdot \mathbb{E}_{\mathbf{p}_{n_{\mathrm{R}}}, \mathbf{q}_{m_{\mathrm{R}}}}\left[\mathbf{k}_{\mathrm{R}}\right]\)
```

 \(\Rightarrow\) squared maximum mean discrepancy \(M M D[\mathbf{p}, \mathbf{q}]\) [Gretton et al. 2012]
 \(\Rightarrow+\) determinism, kernelized discrete Stein discrepancy (KDSD) [Yang et al. 2018]

Outline

- Problem Setup
- Motivation: SVR with Missingness

Circuit Representation

- Approach: Tractable Expected Kernels
- Application: Collapsed Black-box Importance Sampling

Recap Black-box Importance Sampling [Liu et al. 2016]

Given a target distribution \mathbf{p}, and samples $\left\{\mathbf{x}^{(i)}\right\}_{i=1}^{n}$,

Recap Black-box Importance Sampling [Liu et al. 2016]

Given a target distribution \mathbf{p}, and samples $\left\{\mathbf{x}^{(i)}\right\}_{i=1}^{n}$,
Task is how to obtain weights \boldsymbol{w} such that $\left\{w^{(i)}, \mathbf{x}^{(i)}\right\}$ approximates \mathbf{p} ?

Recap Black-box Importance Sampling [Liu et al. 2016]

Given a target distribution \mathbf{p}, and samples $\left\{\mathbf{x}^{(i)}\right\}_{i=1}^{n}$,
Task is how to obtain weights \boldsymbol{w} such that $\left\{w^{(i)}, \mathbf{x}^{(i)}\right\}$ approximates \mathbf{p} ?

The black-box importance sampling obtains weights by minimizing empirical KDSD:

Recap Black-box Importance Sampling [Liu et al. 2016]

Given a target distribution \mathbf{p}, and samples $\left\{\mathbf{x}^{(i)}\right\}_{i=1}^{n}$,
Task is how to obtain weights \boldsymbol{w} such that $\left\{w^{(i)}, \mathbf{x}^{(i)}\right\}$ approximates \mathbf{p} ?

The black-box importance sampling obtains weights by minimizing empirical KDSD:
\square empirical KDSD $\mathbb{S}(\underset{\text { weights }}{\boldsymbol{w}^{(i)}}, \underbrace{\mathbf{X}^{(i)}}_{\text {samples }}\}_{i=1}^{n} \| \mathbf{p})=\boldsymbol{w}^{\top} \boldsymbol{K}_{\boldsymbol{p}} \boldsymbol{w}$, with $\left[\boldsymbol{K}_{p}\right]_{i j}=k_{p}\left(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}\right)$
solving optimization problem $w^{*}=\operatorname{argmin}_{w}\left\{w^{\top} \boldsymbol{K}_{p} w \mid \sum_{i=1}^{n} w_{i}=1, w_{i} \geq 0\right\}$

Recap Black-box Importance Sampling [Liu et al. 2016]

Given a target distribution \mathbf{p}, and samples $\left\{\mathbf{x}^{(i)}\right\}_{i=1}^{n}$,
Task is how to obtain weights \boldsymbol{w} such that $\left\{w^{(i)}, \mathbf{x}^{(i)}\right\}$ approximates \mathbf{p} ?

The black-box importance sampling obtains weights by minimizing empirical KDSD:
\square empirical KDSD $\mathbb{S}(\underbrace{w^{(i)}}_{\text {weights }}, \underbrace{\mathbf{x}^{(i)}}_{\text {samples }}\}_{i=1}^{n} \| \mathbf{p})=\boldsymbol{w}^{\top} \boldsymbol{K}_{\boldsymbol{p}} \boldsymbol{w}$, with $\left[\boldsymbol{K}_{p}\right]_{i j}=k_{p}\left(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}\right)$
\square solving optimization problem $\boldsymbol{w}^{*}=\operatorname{argmin}_{\boldsymbol{w}}\left\{\boldsymbol{w}^{\top} \boldsymbol{K}_{\boldsymbol{p}} \boldsymbol{w} \mid \sum_{i=1}^{n} w_{i}=1, w_{i} \geq 0\right\}$

Recap Black-box Importance Sampling [Liu et al. 2016]

Given a target distribution \mathbf{p}, and samples $\left\{\mathbf{x}^{(i)}\right\}_{i=1}^{n}$,
Task is how to obtain weights \boldsymbol{w} such that $\left\{w^{(i)}, \mathbf{x}^{(i)}\right\}$ approximates \mathbf{p} ?

The black-box importance sampling obtains weights by minimizing empirical KDSD:

\square solving optimization problem $\boldsymbol{w}^{*}=\operatorname{argmin}_{\boldsymbol{w}}\left\{\boldsymbol{w}^{\top} \boldsymbol{K}_{\boldsymbol{p}} \boldsymbol{w} \mid \sum_{i=1}^{n} w_{i}=1, w_{i} \geq 0\right\}$

Complexity quadratic in the number of samples $\mathcal{O}\left(N^{2}\right)$!

Recap Black-box Importance Sampling [Liu et al. 2016]

Given a target distribution \mathbf{p}, and samples $\left\{\mathbf{x}^{(i)}\right\}_{i=1}^{n}$,
Task is how to obtain weights \boldsymbol{w} such that $\left\{w^{(i)}, \mathbf{x}^{(i)}\right\}$ approximates \mathbf{p} ?

The black-box importance sampling obtains weights by minimizing empirical KDSD:
\square empirical KDSD $\left.\mathbb{S}\left(\underset{\text { weights }}{\boldsymbol{w}^{(i)}},{\underset{\text { samples }}{(i)}}_{\mathbf{x}^{(i)}}^{i=1}\right\}_{i=1}^{n} \| \mathbf{p}\right)=\boldsymbol{w}^{\top} \boldsymbol{K}_{\boldsymbol{p}} \boldsymbol{w}$, with $\left[\boldsymbol{K}_{p}\right]_{i j}=k_{p}\left(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}\right)$
\square solving optimization problem $\boldsymbol{w}^{*}=\operatorname{argmin}_{\boldsymbol{w}}\left\{\boldsymbol{w}^{\top} \boldsymbol{K}_{\boldsymbol{p}} \boldsymbol{w} \mid \sum_{i=1}^{n} w_{i}=1, w_{i} \geq 0\right\}$

Complexity quadratic in the number of samples $\mathcal{O}\left(N^{2}\right)$!
Can we use less samples but maintain the same or even better performance?

Recap Black-box Importance Sampling [Liu et al. 2016]

Given a target distribution \mathbf{p}, and samples $\left\{\mathbf{x}^{(i)}\right\}_{i=1}^{n}$,
Task is how to obtain weights \boldsymbol{w} such that $\left\{w^{(i)}, \mathbf{x}^{(i)}\right\}$ approximates \mathbf{p} ?

The black-box importance sampling obtains weights by minimizing empirical KDSD:
\square empirical KDSD $\mathbb{S}(\{\underbrace{w^{(i)}}_{\text {weights }}, \underbrace{\mathbf{x}^{(i)}}_{\text {samples }}\}_{i=1}^{n} \| \mathbf{p})=\boldsymbol{w}^{\top} \boldsymbol{K}_{\boldsymbol{p}} \boldsymbol{w}$, with $\left[\boldsymbol{K}_{p}\right]_{i j}=k_{p}\left(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}\right)$
\square solving optimization problem $\boldsymbol{w}^{*}=\operatorname{argmin}_{\boldsymbol{w}}\left\{\boldsymbol{w}^{\top} \boldsymbol{K}_{\boldsymbol{p}} \boldsymbol{w} \mid \sum_{i=1}^{n} w_{i}=1, w_{i} \geq 0\right\}$

Complexity quadratic in the number of samples $\mathcal{O}\left(N^{2}\right)$!
Can we use less samples but maintain the same or even better performance?

Collapsed Black-box Importance Sampling

- Represent the conditional distributions $\mathrm{p}\left(\mathrm{X}_{\mathrm{c}} \mid \mathrm{x}_{\mathrm{s}}{ }^{(i)}\right)$ as $\mathrm{PCs} \mathrm{p}_{i}$ by knowledge compilation [Shen et al. 2016]Compile the kernel function $\mathbf{k}\left(\mathbf{X}_{\mathrm{C}}, \mathbf{X}_{\mathrm{C}}{ }^{\prime}\right)$ as KC kEmpirical KDSD between collapsed samples and the target distribution p

$$
\mathbb{S}_{\mathbf{s}}^{2}\left(\left\{\mathbf{x}_{\mathbf{s}}{ }^{(i)}, w_{i}\right\} \| p\right)=\boldsymbol{w}^{\top} \boldsymbol{K}_{p, \mathbf{s}} \boldsymbol{w}
$$

with $\left[\boldsymbol{K}_{p, \mathbf{s}}\right]_{i j}=\mathbb{E}_{\mathbf{x}_{\mathbf{c}} \sim p_{i}, \mathbf{x}_{\mathbf{c}}^{\prime} \sim p_{j}}\left[\mathbf{k}_{p}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)\right]$
Finally, obtain the importance weights \boldsymbol{w} by solving

$$
\boldsymbol{w}^{*}=\underset{\boldsymbol{w}}{\operatorname{argmin}}\left\{\boldsymbol{w}^{\top} \boldsymbol{K}_{p, \mathbf{s}} \boldsymbol{w} \mid \sum_{i=1}^{n} w_{i}=1, w_{i} \geq 0\right\}
$$

Collapsed Black-box Importance Sampling

Given partial samples $\left\{\mathbf{x}_{\mathbf{s}}{ }^{(i)}\right\}_{i=1}^{n}$, with $\left(\mathbf{X}_{\mathbf{s}}, \mathbf{X}_{\mathbf{c}}\right)$ a partition of \mathbf{X},
Represent the conditional distributions $\mathrm{p}\left(\mathbf{X}_{\mathrm{c}}\right.$ $\mathrm{x}_{\mathrm{s}}{ }^{(i)}$ as PCs p_{i} by knowledge compilation [Shen et al. 2016]Compile the kernel function $\mathbf{k}\left(\mathbf{X}_{\mathrm{C}}, \mathbf{X}_{\mathrm{C}}{ }^{\prime}\right)$ as KC kEmpirical KDSD between collapsed samples and the target distribution p

$$
\mathbb{S}_{\mathbf{s}}^{2}\left(\left\{\mathbf{x}_{\mathbf{s}}{ }^{(i)}, w_{i}\right\} \| p\right)=\boldsymbol{w}^{\top} \boldsymbol{K}_{p, \mathbf{s}} \boldsymbol{w}
$$

with $\left[\boldsymbol{K}_{p, \mathrm{~s}}\right]_{i j}=\mathbb{E}_{\mathbf{x}_{\mathrm{c}} \sim p_{i}, \mathbf{x}_{\mathbf{c}}^{\prime} \sim p_{j}}\left[\mathrm{k}_{p}\left(\mathbf{x}, \mathrm{x}^{\prime}\right)\right]$
Finally, obtain the importance weights \boldsymbol{w} by solving

Collapsed Black-box Importance Sampling

Given partial samples $\left\{\mathbf{x}_{\mathbf{s}}{ }^{(i)}\right\}_{i=1}^{n}$, with $\left(\mathbf{X}_{\mathbf{s}}, \mathbf{X}_{\mathbf{c}}\right)$ a partition of \mathbf{X},
\square Represent the conditional distributions $\mathbf{p}\left(\mathbf{X}_{\mathbf{c}} \mid \mathbf{x}_{\mathbf{s}}{ }^{(i)}\right)$ as PCs p_{i} by knowledge compilation [Shen et al. 2016]

- Compile the kernel function $\mathrm{k}\left(\mathbf{X}_{\mathrm{c}}, \mathbf{X}_{\mathrm{c}}{ }^{\prime}\right)$ as KC k

Empirical KDSD between collapsed samples and the target distribution \mathbf{p}

with $\left[\boldsymbol{K}_{p, \mathrm{~s}}\right]_{i j}=\mathbb{E}_{\mathbf{x}_{\mathrm{c}} \sim \mathrm{p}_{i}, \mathbf{x}_{\mathrm{c}}^{\prime} \sim \mathrm{p}_{j}}\left[\mathrm{k}_{p}\left(\mathbf{x}, \mathrm{x}^{\prime}\right)\right]$
\square Finally, obtain the importance weights \boldsymbol{w} by solving

Collapsed Black-box Importance Sampling

Given partial samples $\left\{\mathbf{x}_{\mathbf{s}}{ }^{(i)}\right\}_{i=1}^{n}$, with $\left(\mathbf{X}_{\mathbf{s}}, \mathbf{X}_{\mathbf{c}}\right)$ a partition of \mathbf{X},
\square Represent the conditional distributions $\mathbf{p}\left(\mathbf{X}_{\mathbf{c}} \mid \mathbf{x}_{\mathbf{s}}{ }^{(i)}\right)$ as PCs p_{i} by knowledge compilation [Shen et al. 2016]
\square Compile the kernel function $\mathbf{k}\left(\mathbf{X}_{\mathbf{c}}, \mathbf{X}_{\mathbf{c}}{ }^{\prime}\right)$ as $\mathrm{KC} \mathbf{k}$

- Empirical KDSD between collapsed samples and the target distribution p

$$
\mathbb{S}_{\mathbf{s}}^{2}\left(\left\{\mathbf{x}_{\mathbf{s}}{ }^{(i)}, w_{i}\right\} \| p\right)=\boldsymbol{w}^{\top} \boldsymbol{K}_{p, \mathbf{s}} \boldsymbol{w}
$$

\square Finally, obtain the importance weights \boldsymbol{w} by solving

Collapsed Black-box Importance Sampling

Given partial samples $\left\{\mathbf{x}_{\mathbf{s}}{ }^{(i)}\right\}_{i=1}^{n}$, with $\left(\mathbf{X}_{\mathbf{s}}, \mathbf{X}_{\mathbf{c}}\right)$ a partition of \mathbf{X},
\square Represent the conditional distributions $\mathbf{p}\left(\mathbf{X}_{\mathbf{c}} \mid \mathbf{x}_{\mathbf{s}}{ }^{(i)}\right)$ as PCs p_{i} by knowledge compilation [Shen et al. 2016]
\square Compile the kernel function $\mathbf{k}\left(\mathbf{X}_{\mathbf{c}}, \mathbf{X}_{\mathbf{c}}{ }^{\prime}\right)$ as KC \mathbf{k}
\square Empirical KDSD between collapsed samples and the target distribution \mathbf{p}

$$
\mathbb{S}_{\mathbf{s}}^{2}\left(\left\{\mathbf{x}_{\mathbf{s}}{ }^{(i)}, w_{i}\right\} \| p\right)=\boldsymbol{w}^{\top} \boldsymbol{K}_{p, \mathbf{s}} \boldsymbol{w}
$$

with $\left[\boldsymbol{K}_{p, \mathbf{s}}\right]_{i j}=\mathbb{E}_{\mathbf{x}_{\mathbf{c}} \sim p_{i}, \mathbf{x}_{\mathbf{c}}^{\prime} \sim p_{j}}\left[\mathbf{k}_{p}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)\right]$
Finally, obtain the importance weights w by solving

Collapsed Black-box Importance Sampling

Given partial samples $\left\{\mathbf{x}_{\mathbf{s}}{ }^{(i)}\right\}_{i=1}^{n}$, with $\left(\mathbf{X}_{\mathbf{s}}, \mathbf{X}_{\mathbf{c}}\right)$ a partition of \mathbf{X},
\square Represent the conditional distributions $\mathbf{p}\left(\mathbf{X}_{\mathbf{c}} \mid \mathbf{x}_{\mathbf{s}}{ }^{(i)}\right)$ as PCs p_{i} by knowledge compilation [Shen et al. 2016]
\square Compile the kernel function $\mathbf{k}\left(\mathbf{X}_{\mathbf{c}}, \mathbf{X}_{\mathbf{c}}{ }^{\prime}\right)$ as KC \mathbf{k}
\square Empirical KDSD between collapsed samples and the target distribution \mathbf{p}

$$
\mathbb{S}_{\mathbf{s}}^{2}\left(\left\{\mathbf{x}_{\mathbf{s}}{ }^{(i)}, w_{i}\right\} \| p\right)=\boldsymbol{w}^{\top} \boldsymbol{K}_{p, \mathbf{s}} \boldsymbol{w}
$$

with $\left[\boldsymbol{K}_{p, \mathbf{s}}\right]_{i j}=\mathbb{E}_{\mathbf{x}_{\mathbf{c}} \sim \mathbf{p}_{i}, \mathbf{x}_{\mathbf{c}}^{\prime} \sim p_{j}}\left[\mathbf{k}_{p}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)\right]$
\square Finally, obtain the importance weights \boldsymbol{w} by solving

$$
\boldsymbol{w}^{*}=\underset{\boldsymbol{w}}{\operatorname{argmin}}\left\{\boldsymbol{w}^{\top} \boldsymbol{K}_{p, \mathbf{s}} \boldsymbol{w} \mid \sum_{i=1}^{n} w_{i}=1, w_{i} \geq 0\right\}
$$

Collapsed Black-box Importance Sampling

\Rightarrow methods with collapsed samples all outperform their non-collapsed counterparts \Rightarrow CBBIS performs equally well or better than other baselines

[^0]
Conclusion

Takeaways

\#1: You can be both tractable and expressive
\#2: Circuits are a foundation for tractable inference over kernels

What else?

What other applications would benefit from the tractable computation of the expected kernels?

More on circulits ...

Probabilistic Circuits: A Unifying Framework for Tractable Probabilistic Models starai.cs.ucla.edu/papers/ProbCirc20.pdf

Probabilistic Circuits: Representations, Inference, Learning and Theory youtube.com/watch?v=2RAG5-L9R70

Probabilistic Circuits

arranger1044.github.io/probabilistic-circuits/

Foundations of Sum-Product Networks for probabilistic modeling tinyurl.com/w65po5d

Questions?

References I

$\oplus \quad$ Darwiche, Adnan and Pierre Marquis (2002). "A knowledge compilation map". In: Journal of Artificial Intelligence Research 17, pp. 229-264
\oplus Liu, Qiang and Jason D Lee (2016). "Black-box importance sampling". In: arXiv preprint arXiv:1610.05247.
\oplus Friedman, Tal and Guy Van den Broeck (Dec. 2018). "Approximate Knowledge Compilation by Online Collapsed Importance Sampling". In: Advances in Neural Information Processing Systems 31 (NeurIPS). URL: http://starai.cs.ucla.edu/papers/FriedmanNeurIPS18.pdf.
\oplus Choi, YooJung, Antonio Vergari, and Guy Van den Broeck (2020). "Probabilistic Circuits: A Unifying Framework for Tractable Probabilistic Modeling". In:
\oplus Peharz, Robert, Steven Lang, Antonio Vergari, Karl Stelzner, Alejandro Molina, Martin Trapp, Guy Van den Broeck, Kristian Kersting, and Zoubin Ghahramani (2020). "Einsum Networks: Fast and Scalable Learning of Tractable Probabilistic Circuits". In: International Conference of Machine Learning.
\oplus Liu, Anji, Stephan Mandt, and Guy Van den Broeck (2021). "Lossless Compression with Probabilistic Circuits". In: arXiv preprint arXiv:2111.11632.

[^0]: Friedman and Van den Broeck, "Approximate Knowledge Compilation by Online Collapsed Importance Sampling", 2018
 Liu and Lee, "Black-box importance sampling", 2016

