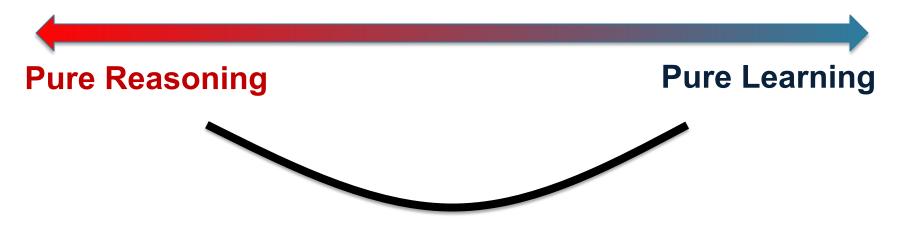


Al can learn from data. But can it learn to reason?

Guy Van den Broeck

Tong Lecture Series at Peking University - Sep 6 2022

The AI Dilemma



Integrate reasoning into modern deep learning algorithms

Outline

- 1. The paradox of learning to reason from data deep learning
- 2. Tractable deep generative models

probabilistic reasoning + deep learning

3. Learning with symbolic knowledge

logical reasoning + deep learning

Outline

- 1. The paradox of learning to reason from data deep learning
- 2. Tractable deep generative models

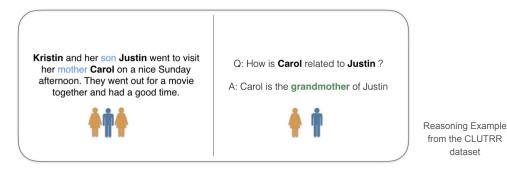
probabilistic reasoning + deep learning

3. Learning with symbolic knowledge

logical reasoning + deep learning

Can Language Models Perform Logical Reasoning?

Language Models achieve high performance on various "reasoning" benchmarks in NLP.



It is unclear whether they solve the tasks following the rules of logical deduction.

Language Models:

input \rightarrow ? \rightarrow Carol is the grandmother of Justin.

Reasoning:

input \rightarrow Justin in Kristin's son; Carol is Kristin's mother; \rightarrow Carol is Justin's mother's mother; if X is Y's mother's mother then X is Y's grandmother \rightarrow Carol is the grandmother of Justin.

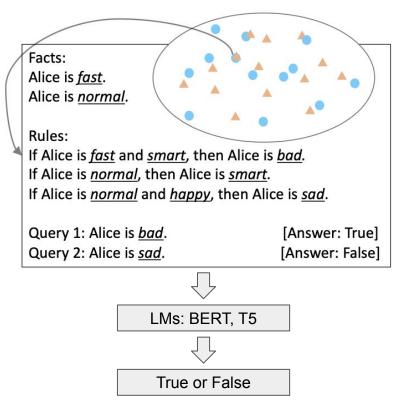
Problem Setting: SimpleLogic

The easiest of reasoning problems:

- 1. Propositional logic fragment
 - a. bounded vocabulary & number of rules
 - b. bounded reasoning depth (≤ 6)
 - c. finite space (≈ 10^360)
- 2. **No language variance**: templated language
- 3. Self-contained

No prior knowledge

- 4. **Purely symbolic** predicates No shortcuts from word meaning
- 5. **Tractable** logic (definite clauses) Can always be solved efficiently



Training a BERT model on SimpleLogic

(1) Randomly sample facts & rules. Facts: B, C Rules: A, B \rightarrow D. B \rightarrow E. B, C \rightarrow F.

D E F A B C Rule-Priority D E F A B C

(1) Randomly assign labels to predicates. True: B, C, E, F. False: A, D. (2) Compute the correct labels for all predicates given the facts and rules.

(2) Set B, C (randomly chosen among B, C, E, F) as facts and sample rules (randomly) consistent with the label assignments.

Test accuracy for different reasoning depths

Test	0	1	2	3	4	5	6
RP	99.9	99.8	99.7	99.3	<u>98.3</u>	97.5	95.5

Test	0	1	2	3	4	5	6
LP	100.0	100.0	99.9	99.9	99.7	99.7	99.0

Has BERT learned to reason from data?

- 1. Easiest of reasoning problems (no variance, self-contained, purely symbolic, tractable)
- 2. RP/LP data covers the whole problem space
- 3. The learned model has almost 100% test accuracy
- 4. There exist BERT parameters that compute the ground-truth reasoning function:

<u>Theorem 1:</u> For a BERT model with n layers and 12 attention heads, by construction, there exists a set of parameters such that the model can correctly solve any reasoning problem in SimpleLogic that requires at most n - 2 steps of reasoning.

Surely, under these conditions, BERT has learned the ground-truth reasoning function!

The Paradox of Learning to Reason from Data

Train	Test	0	1	2	3	4	5	6
RP	RP	99.9	99.8	99.7	99.3	98.3	97.5	95.5
	LP	99.8	99.8	99.3	96.0	90.4	75.0	57.3
LP	RP	97.3	<mark>66.9</mark>	53.0	54.2	<mark>59.5</mark>	<mark>65.6</mark>	<mark>69.2</mark>
	LP	100.0	100.0	99.9	99.9	99.7	99.7	99.0

The BERT model trained on one distribution fails to generalize to the other distribution within the same problem space.

1. If BERT has learned to reason,

it should not exhibit such generalization failure.

2. If BERT has not learned to reason, it is baffling how it achieves near-perfect in-distribution test accuracy.

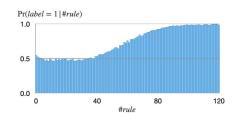
Why? Statistical Features

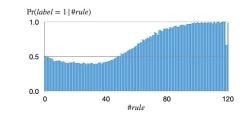
Monotonicity of entailment:

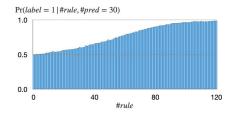
Any rules can be freely added to the hypothesis of any proven fact.

The more rules given, the more likely a predicate will be proved.

Pr(label = True | Rule # = x) should increase (roughly) monotonically with x







(a) Statistics for examples generated by Rule-Priority (RP).

(b) Statistics for examples generated by Label-Priority (LP).

(c) Statistics for examples generated by uniform sampling;

BERT leverages statistical features to make predictions

RP_b downsamples from RP such that Pr(label = True | rule# = x) = 0.5 for all x

Train	Test	0	1	2	3	4	5	6
	RP RP_b	99.9	99.8	99.7	99.3	98.3	97.5	95.5
RP	RP_b	99.0	99.3	98.5	97.5	96.7	93.5	88.3

- Accuracy drop from RP to RP_b indicates that the model is using rule# as a statistical feature to make predictions.
- 2. Though removing one statistical feature from training data can help with model generalization, there are potentially countless statistical features and it is computationally infeasible to jointly remove them.

First Conclusion

Experiments unveil the fundamental difference between

- 1. learning to reason, and
- 2. learning to achieve high performance on benchmarks using statistical features.

Outline

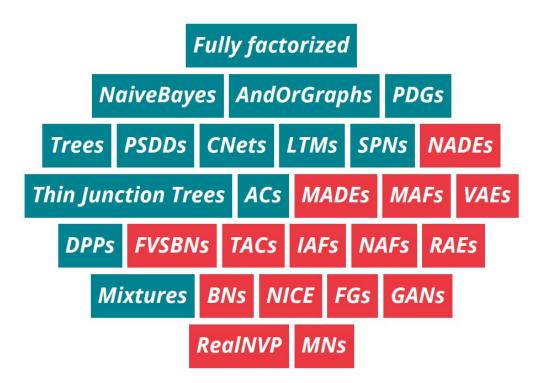
1. The paradox of learning to reason from data deep learning

2. Tractable deep generative models

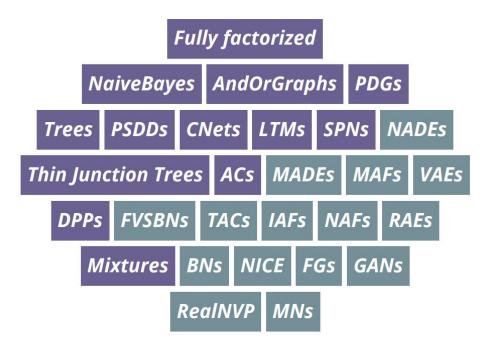
probabilistic reasoning + deep learning

3. Learning with symbolic knowledge

logical reasoning + deep learning

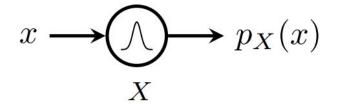


Intractable and tractable models



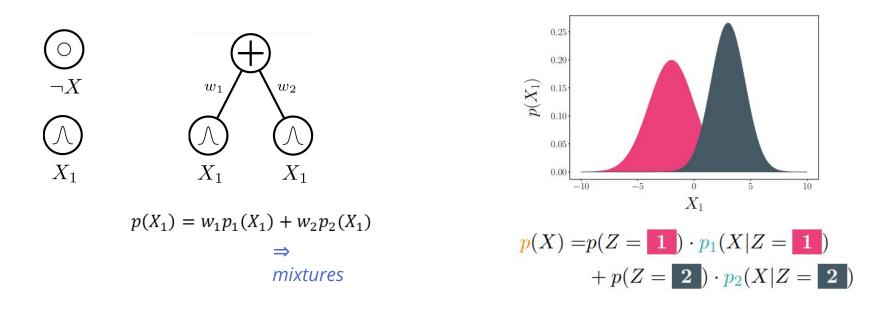
a unifying framework for tractable models

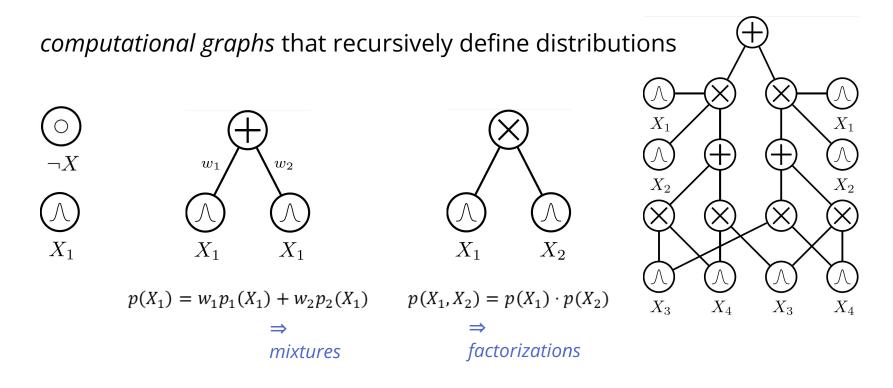
computational graphs that recursively define distributions



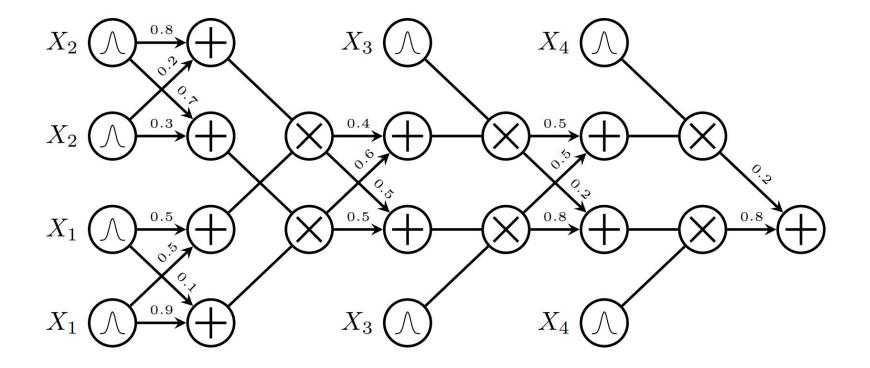
Simple distributions are tractable "black boxes" for: EVI: output $p(\mathbf{x})$ (density or mass) MAR: output 1 (normalized) or Z (unnormalized) MAP: output the mode

computational graphs that recursively define distributions

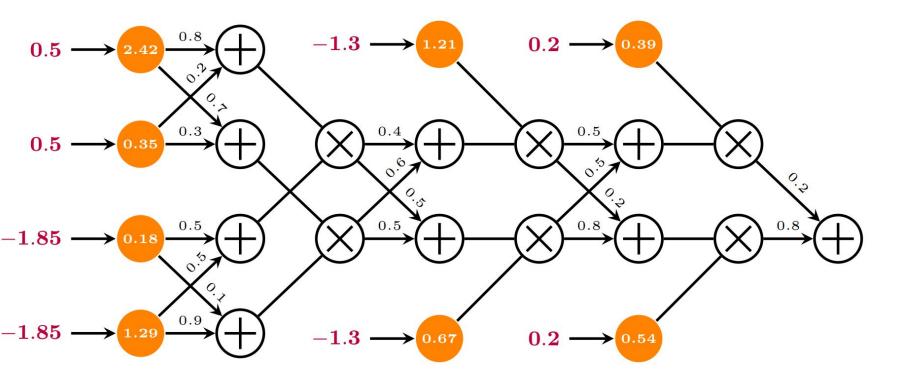




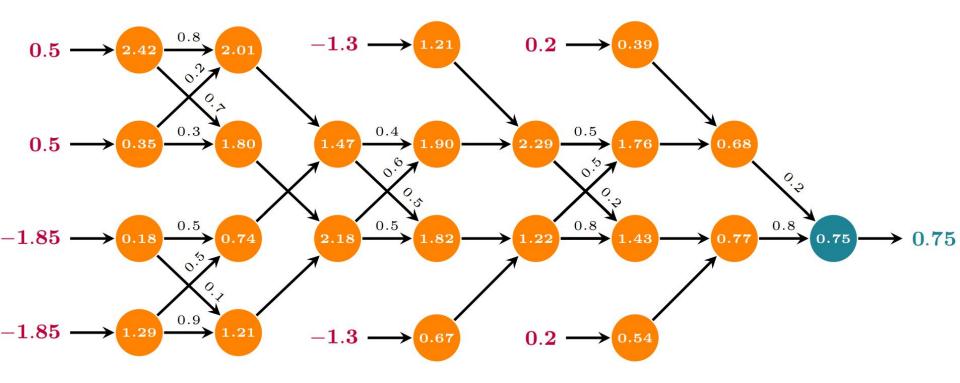
Likelihood
$$p(X_1 = -1.85, X_2 = 0.5, X_3 = -1.3, X_4 = 0.2)$$



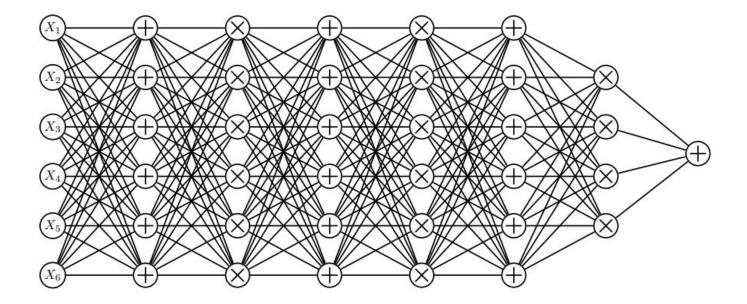
Likelihood $p(X_1 = -1.85, X_2 = 0.5, X_3 = -1.3, X_4 = 0.2)$



Likelihood
$$p(X_1 = -1.85, X_2 = 0.5, X_3 = -1.3, X_4 = 0.2)$$

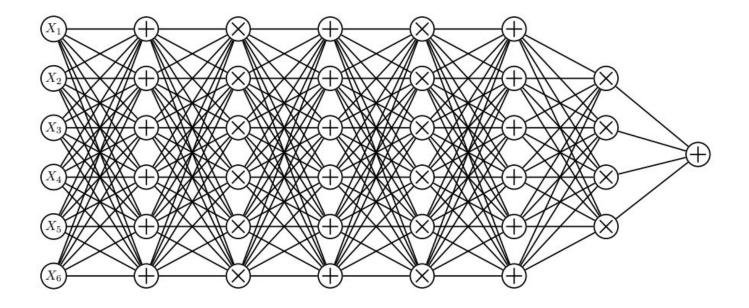


Just sum, products and distributions?



just arbitrarily compose them like a neural network!

Just sum, products and distributions?



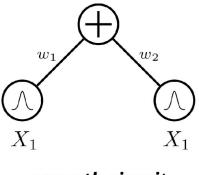
just arbitrarily compose them like a neural network!

 \Rightarrow structural constraints needed for tractability

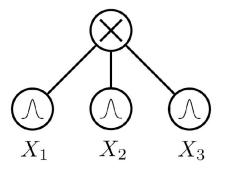
Tractable marginals

A sum node is *smooth* if its children depend on the same set of variables.

A product node is *decomposable* if its children depend on disjoint sets of variables.



smooth circuit

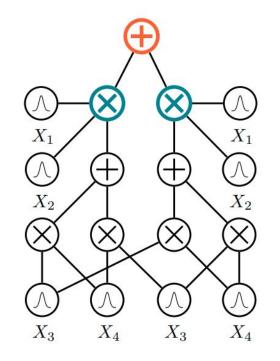


decomposable circuit

If $m{p}(\mathbf{x}) = \sum_i w_i m{p}_i(\mathbf{x})$, (smoothness):

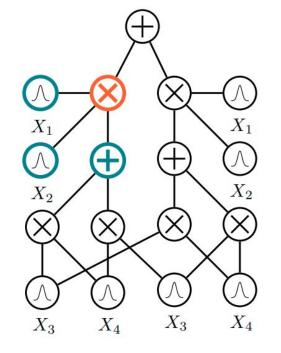
$$\int \mathbf{p}(\mathbf{x}) d\mathbf{x} = \int \sum_{i} w_{i} \mathbf{p}_{i}(\mathbf{x}) d\mathbf{x} =$$
$$= \sum_{i} w_{i} \int \mathbf{p}_{i}(\mathbf{x}) d\mathbf{x}$$

 \Rightarrow integrals are "pushed down" to children



If $p(\mathbf{x}, \mathbf{y}, \mathbf{z}) = p(\mathbf{x})p(\mathbf{y})p(\mathbf{z})$, (decomposability):

$$\int \int \int \mathbf{p}(\mathbf{x}, \mathbf{y}, \mathbf{z}) d\mathbf{x} d\mathbf{y} d\mathbf{z} =$$
$$= \int \int \int \int \mathbf{p}(\mathbf{x}) \mathbf{p}(\mathbf{y}) \mathbf{p}(\mathbf{z}) d\mathbf{x} d\mathbf{y} d\mathbf{z} =$$
$$= \int \mathbf{p}(\mathbf{x}) d\mathbf{x} \int \mathbf{p}(\mathbf{y}) d\mathbf{y} \int \mathbf{p}(\mathbf{z}) d\mathbf{z}$$

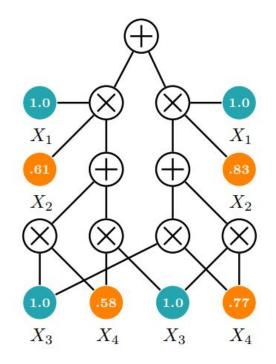


 \Rightarrow integrals decompose into easier ones

Forward pass evaluation for MAR

 \Rightarrow linear in circuit size!

E.g. to compute $p(x_2, x_4)$: leafs over X_1 and X_3 output $\mathbf{Z}_i = \int p(x_i) dx_i$ \Rightarrow for normalized leaf distributions: 1.0 leafs over X_2 and X_4 output **EV** feedforward evaluation (bottom-up)



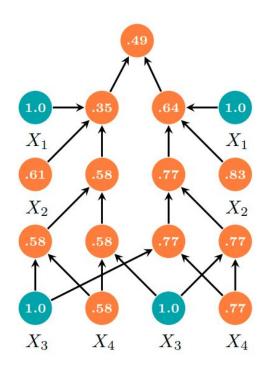
Forward pass evaluation for MAR

inear in circuit size!

E.g. to compute $p(x_2, x_4)$: leafs over X_1 and X_3 output $\mathbf{Z}_i = \int p(x_i) dx_i$ for normalized leaf distributions: 1.0

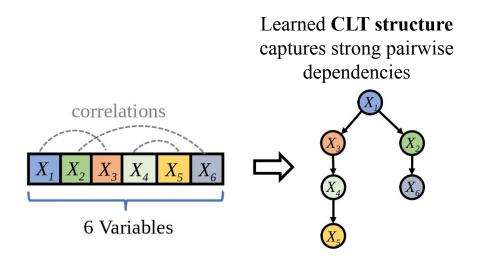
leafs over X_2 and X_4 output **EVI**

feedforward evaluation (bottom-up)



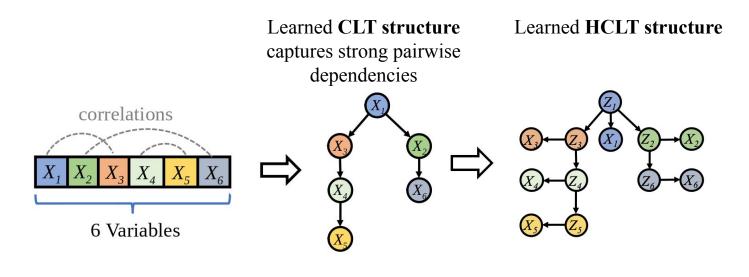
Learning Expressive Probabilistic Circuits

Hidden Chow-Liu Trees



Learning Expressive Probabilistic Circuits

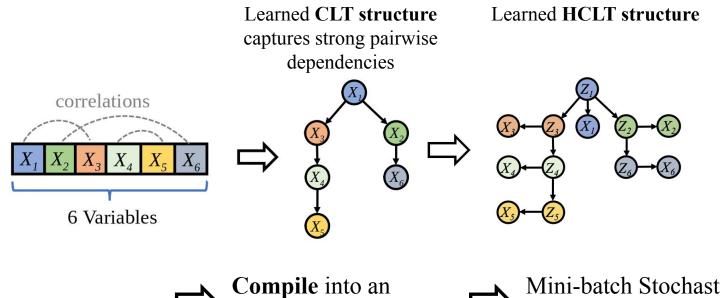
Hidden Chow-Liu Trees

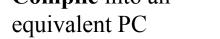




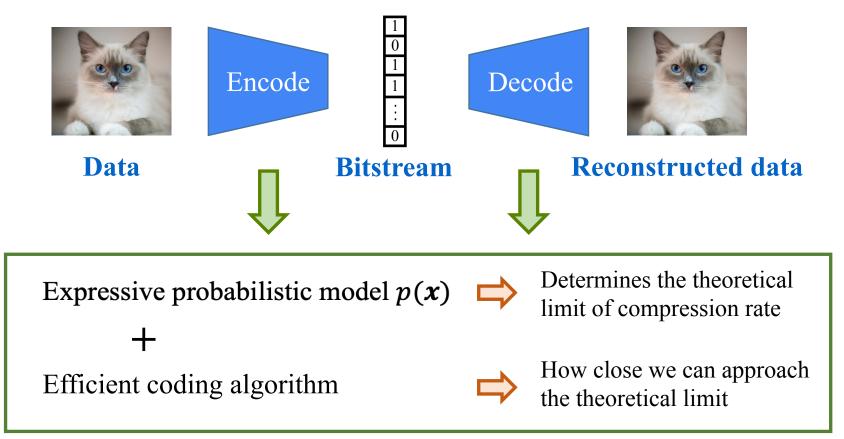
Learning Expressive Probabilistic Circuits

Hidden Chow-Liu Trees



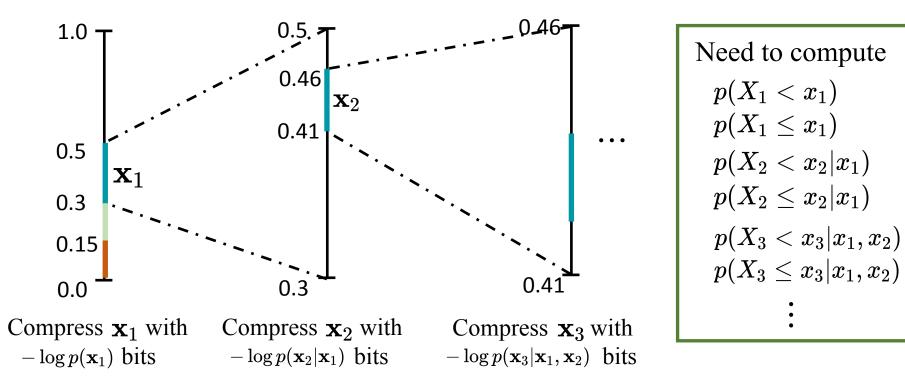


Lossless Data Compression

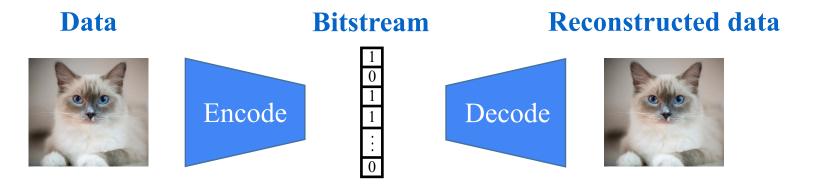


A Typical Streaming Code – Arithmetic Coding

We want to compress a set of variables (e.g., pixels, letters) $\{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_k\}$



Lossless Neural Compression with Probabilistic Circuits



Probabilistic Circuits

- Expressive \rightarrow SoTA likelihood on MNIST.
- Fast

- \rightarrow Time complexity of en/decoding is O(|p| log(D)), where D is the # variables and |p| is the size of the PC.

```
Arithmetic Coding:
  p(X_1 < x_1)
  p(X_1 \leq x_1)
  p(X_2 < x_2 | x_1)
  p(X_2 \leq x_2 | x_1)
  p(X_3 < x_3 | x_1, x_2)
  p(X_3 \leq x_3 | x_1, x_2)
```

Lossless Neural Compression with Probabilistic Circuits

SoTA compression rates

Dataset	HCLT (ours)	IDF	BitSwap	BB-ANS	JPEG2000	WebP	McBits
MNIST	1.24 (1.20)	1.96 (1.90)	1.31 (1.27)	1.42 (1.39)	3.37	2.09	(1.98)
FashionMNIST	3.37 (3.34)	3.50 (3.47)	3.35 (3.28)	3.69 (3.66)	3.93	4.62	(3.72)
EMNIST (Letter)	1.84 (1.80)	2.02 (1.95)	1.90 (1.84)	2.29 (2.26)	3.62	3.31	(3.12)
EMNIST (ByClass)	1.89 (1.85)	2.04 (1.98)	1.91 (1.87)	2.24 (2.23)	3.61	3.34	(3.14)

Compress and decompress 5-40x faster than NN methods with similar bitrates

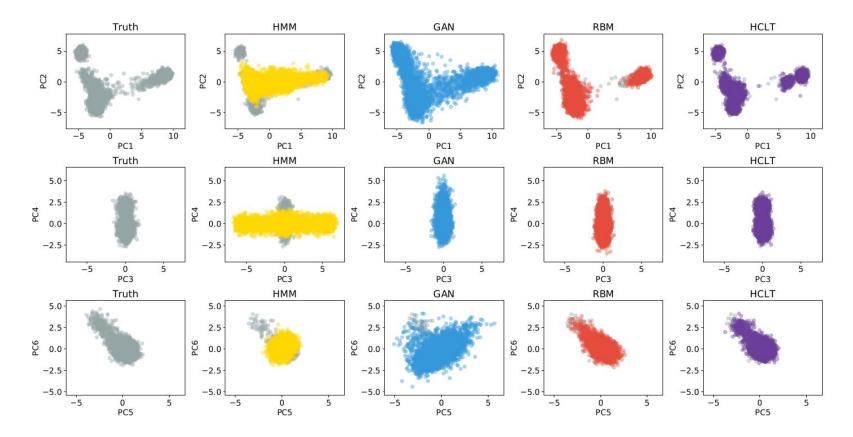
Method	# parameters	Theoretical bpd	Codeword bpd	Comp. time (s)	Decomp. time (s)
PC (HCLT, $M = 16$)	3.3M	1.26	1.30	9	44
PC (HCLT, $M = 24$)	5.1M	1.22	1.26	15	86
PC (HCLT, $M = 32$)	7.0M	1.20	1.24	26	142
IDF	24.1M	1.90	1.96	288	592
BitSwap	2.8M	1.27	1.31	578	326

Lossless Neural Compression with Probabilistic Circuits

Can be effectively combined with Flow models to achieve better generative performance

Model	CIFAR10	ImageNet32	ImageNet64
RealNVP	3.49	4.28	3.98
Glow	3.35	4.09	3.81
IDF	3.32	4.15	3.90
IDF++	3.24	4.10	3.81
PC+IDF	3.28	3.99	3.71

Tractable and expressive generative models of genetic variation data

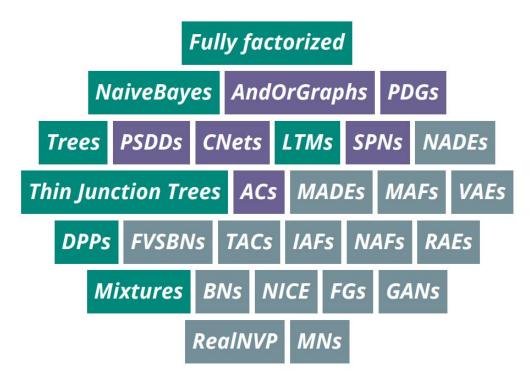


PC Learners keep getting better! ... stay tuned ...

Dataset	Sparse PC (ours)	HCLT	RatSPN	IDF	BitSwap	BB-ANS	McBits
MNIST	1.14	1.20	1.67	1.90	1.27	1.39	1.98
EMNIST(MNIST)	1.52	1.77	2.56	2.07	1.88	2.04	2.19
EMNIST(Letters)	1.58	1.80	2.73	1.95	1.84	2.26	3.12
EMNIST(Balanced)	1.60	1.82	2.78	2.15	1.96	2.23	2.88
EMNIST(ByClass)	1.54	1.85	2.72	1.98	1.87	2.23	3.14
FashionMNIST	3.27	3.34	4.29	3.47	3.28	3.66	3.72

Table 1: Density estimation performance on MNIST-family datasets in test set bpd.

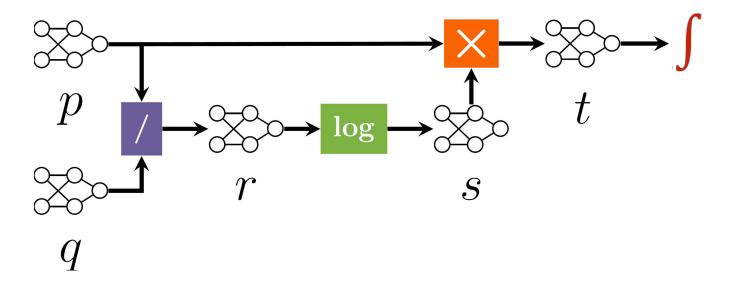
Dataset	\mathbf{PC}	Bipartite flow	AF/SCF	IAF/SCF		
Penn Treebank	1.23	1.38	1.46	1.63		



Expressive models without compromises

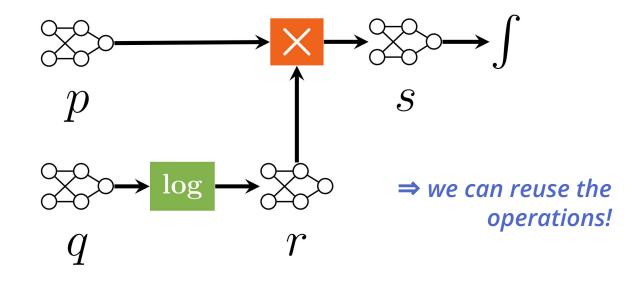
Queries as pipelines: KLD

 $\mathbb{KLD}(p \parallel q) = \int p(\mathbf{x}) \times \log((p(\mathbf{x})/q(\mathbf{x}))d\mathbf{X})$



Queries as pipelines: Cross Entropy

 $H(p,q) = \int p(\boldsymbol{x}) \times \log(q(\boldsymbol{x})) d\boldsymbol{X}$



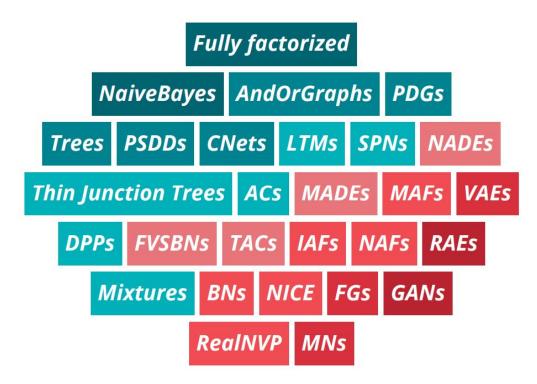
Tractable circuit operations

Operation						
Opera		Input properties	Output properties	Hardness		
SUM	$\theta_1 p + \theta_2 q$	(+Cmp)	(+SD)	NP-hard for Det output		
PRODUCT	$p\cdot q$	Cmp (+Det, +SD)	Dec (+Det, +SD)	#P-hard w/o Cmp		
POWER	$p^n, n \in \mathbb{N}$	SD (+Det)	SD (+Det)	#P-hard w/o SD		
POWER	$p^{\alpha}, \alpha \in \mathbb{R}$	Sm, Dec, Det (+SD)	Sm, Dec, Det (+SD)	#P-hard w/o Det		
QUOTIENT	p/q	Cmp; q Det (+ p Det,+SD)	Dec (+Det,+SD)	#P-hard w/o Det		
LOG	$\log(p)$	Sm, Dec, Det	Sm, Dec	#P-hard w/o Det		
Exp	$\exp(p)$	linear	SD	#P-hard		

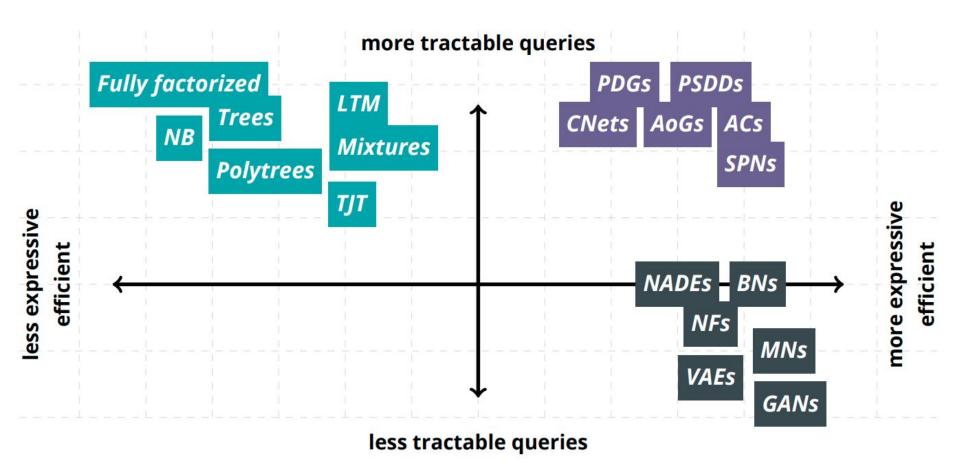
Inference by tractable operations

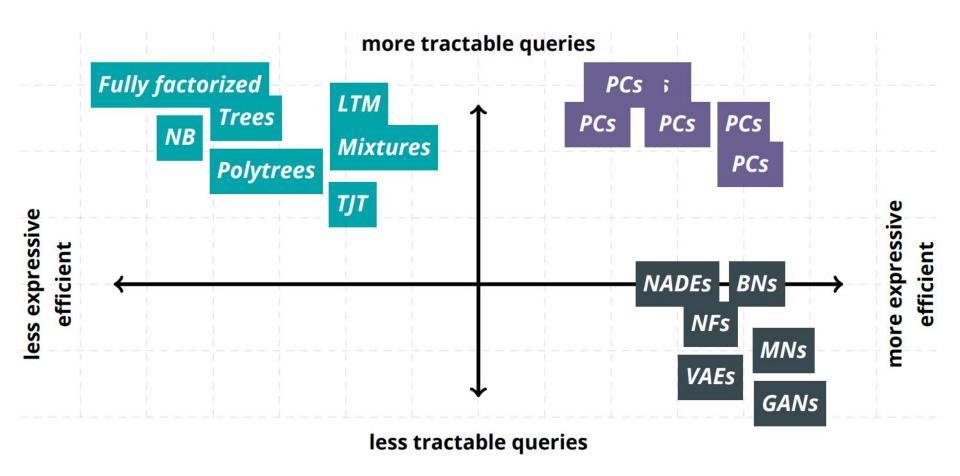
systematically derive tractable inference algorithm of complex queries

	Query	Tract. Conditions	Hardness
CROSS ENTROPY	$-\int p(oldsymbol{x}) \log q(oldsymbol{x}) \mathrm{d} \mathbf{X}$	Cmp, q Det	#P-hard w/o Det
SHANNON ENTROPY	$-\sum p(oldsymbol{x})\log p(oldsymbol{x})$	Sm, Dec, Det	coNP-hard w/o Det
Rényi Entropy	$(1-lpha)^{-1}\log\int p^{lpha}(oldsymbol{x})d\mathbf{X}, lpha\in\mathbb{N}$	SD	#P-hard w/o SD
KENTI ENTROPT	$(1-lpha)^{-1}\log \int p^lpha(oldsymbol{x}) d\mathbf{X}, lpha\in\mathbb{R}_+$	Sm, Dec, Det	#P-hard w/o Det
MUTUAL INFORMATION	$\int p(oldsymbol{x},oldsymbol{y}) \log(p(oldsymbol{x},oldsymbol{y})/(p(oldsymbol{x})p(oldsymbol{y})))$	Sm, SD, Det*	coNP-hard w/o SD
KULLBACK-LEIBLER DIV.	$\int p(oldsymbol{x}) \log(p(oldsymbol{x})/q(oldsymbol{x})) d \mathbf{X}$	Cmp, Det	#P-hard w/o Det
Rényi's Alpha Div.	$(1-lpha)^{-1}\log\int p^{lpha}(oldsymbol{x})q^{1-lpha}(oldsymbol{x})\;d\mathbf{X},lpha\in\mathbb{N}$	Cmp, q Det	#P-hard w/o Det
KENTI S ALPHA DIV.	$(1-\alpha)^{-1}\log \int p^{\alpha}(\boldsymbol{x})q^{1-\alpha}(\boldsymbol{x}) d\mathbf{X}, \alpha \in \mathbb{R}$	Cmp, Det	#P-hard w/o Det
ITAKURA-SAITO DIV.	$\int [p(oldsymbol{x})/q(oldsymbol{x}) - \log(p(oldsymbol{x})/q(oldsymbol{x})) - 1] d \mathbf{X}$	Cmp, Det	#P-hard w/o Det
CAUCHY-SCHWARZ DIV.	$-\lograc{\int p(oldsymbol{x})q(oldsymbol{x})doldsymbol{X}}{\sqrt{\int p^2(oldsymbol{x})doldsymbol{X}\int q^2(oldsymbol{x})doldsymbol{X}}}$	Cmp	#P-hard w/o Cmp
SQUARED LOSS	$\int (p(oldsymbol{x}) - q(oldsymbol{x}))^2 d \mathbf{X}$	Cmp	#P-hard w/o Cmp



tractability is a spectrum





Learn more about probabilistic circuits?

Tutorial (3h)

Inference

Learning

Theory

Representations

Probabilistic Circuits

Antonio Vergari University of California, Los Angeles

Robert Peharz TU Eindhoven YooJung Choi University of California, Los Angeles

Guy Van den Broeck University of California, Los Angeles

September 14th, 2020 - Ghent, Belgium - ECML-PKDD 2020

▶ ▶| ➡) 0:00 / 3:02:44

•••

https://youtu.be/2RAG5-L9R70

Overview Paper (80p)

Probabilistic Circuits: A Unifying Framework for Tractable Probabilistic Models	*
YooJung Choi	
Antonio Vergari	
Guy Van den Broeck Computer Science Department University of California Los Angeles, CA, USA	
1 Introduction 2 Probabilistic Inference: Models, Queries, and Tractability 2.1 Probabilistic Models 2.2 Probabilistic Queries 2.3 Tractable Probabilistic Inference 2.4 Properties of Tractable Probabilistic Models	3 4 5 6 8 9

http://starai.cs.ucla.edu/papers/ProbCirc20.pdf

Training SotA likelihood full MNIST probabilistic circuit model in ~7 minutes on GPU: https://github.com/Juice-jl/ProbabilisticCircuits.jl/blob/master/examples/train_mnist_hclt.ipynb

Juice-jl /	Prob	abi	listic	Cir	cuits.jl	\$	ζ Unpin	⊙١	Jnwatch 7 👻	양 Fo	rk 8	🔶 s	tarred	72	•
<> Code	⊙ Iss	ues	10	17	, Pull requests	ç	入 Discuss	sions	 Actions 	⊞	Projects	s 🛱	Wiki		
₽ master -	Pro	obab	oilistic	Circ	cuits.jl / exan	nples	/ train_m	nist_	hclt.ipynb			Go	to file		
🕕 liuanji (update c	lemo	notebo	ook	~				Latest	commit c	9e062e 2	2 days ag	• ©) Hist	ory
A 1 contribu	itor														
609 lines (609 slo	c)	26.5	КВ					<>	D	Raw	Blame	C	Ø	Û
					Dataset		PC (ours)	IDF	Hierarchical VAE	E PixelV/	Æ				*
					MNIST		1.20	2.90	1.27	1.39					
					FashionMNIST		3.34	3.47	3.28	3.66					
					EMNIST (Letter	split)	1.80	1.95	1.84	2.26					
					EMNIST (ByClas	ss split)	1.85	1.98	1.87	2.23					
	* Note:	all re	ported	num	bers are bits-pe	er-dime	ension (bpc	d). The	e results are extr	acted fro	m [1].				
					ndt and Guy Va e on Learning F				s Compression v , 2022.	vith Prob	abilistic (Circuits, I	n		
	We sta	rt by i	importii	ng Pi	robabilisticCircu	uits.jl a	nd other re	quirec	l packages:						- 1
In [1]:		g MLI	Datase		icCircuits										
	We first	t load	I the MI	NIST	dataset from N	ILData	sets.jl and	move	them to GPU:						

Outline

- 1. The paradox of learning to reason from data deep learning
- 2. Tractable deep generative models

probabilistic reasoning + deep learning

3. Learning with symbolic knowledge

logical reasoning + deep learning

The AI Dilemma

- Slow thinking: deliberative, cognitive, model-based, extrapolation
- Amazing achievements until this day
- "Pure logic is brittle" noise, uncertainty, incomplete knowledge, ...

Pure Learning

The AI Dilemma

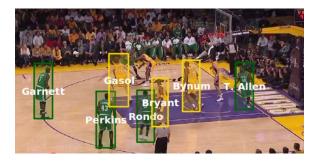
Pure (Logic) Reasoning

- Fast thinking: instinctive, perceptive, model-free, interpolation
- Amazing achievements recently
- "Pure learning is brittle"

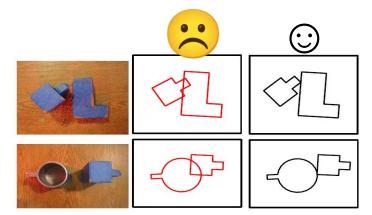
bias, algorithmic fairness, interpretability, explainability, adversarial attacks, unknown unknowns, calibration, verification, missing features, missing labels, data efficiency, shift in distribution, general robustness and safety fails to incorporate a sensible model of the world

Pure Learning

Knowledge in Vision, Robotics, NLP, Activity Recognition



People appear at most once in a frame



Rigid objects don't overlap

At least one verb in each sentence. If X and Y are married, then they are people.

Cut the orange before squeezing the orange

[Lu, W. L., Ting, J. A., Little, J. J., & Murphy, K. P. (2013). Learning to track and identify players from broadcast sports videos.], [Wong, L. L., Kaelbling, L. P., & Lozano-Perez, T., Collision-free state estimation. ICRA 2012], [Chang, M., Ratinov, L., & Roth, D. (2008). Constraints as prior knowledge], [Ganchev, K., Gillenwater, J., & Taskar, B. (2010). Posterior regularization for structured latent variable models]... and many more!

Motivation: Deep Learning

New Scientist

HOME NEWS TECHNOLOGY SPACE PHYSICS HEALTH EARTH HUMANS LIFE TOPICS EVENTS JOBS

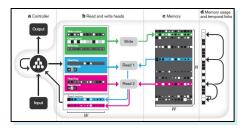
Meet The People Shaping The Future Of Energy: Reinventing Energy Summit - 25 November in London

Advertisemen

Home | News | Technology

DAILY NEWS 12 October 2016

DeepMind's AI has learned to navigate the Tube using memory



[Graves, A., Wayne, G., Reynolds, M., Harley, T., Danihelka, I., Grabska-Barwińska, A., et al.. (2016). Hybrid computing using a neural network with dynamic external memory. *Nature*, *538*(7626), 471-476.]

Motivation: Deep Learning

DeepMind's latest technique uses external memory to solve tasks that require logic and reasoning — a step toward more human-like Al.

... but ...

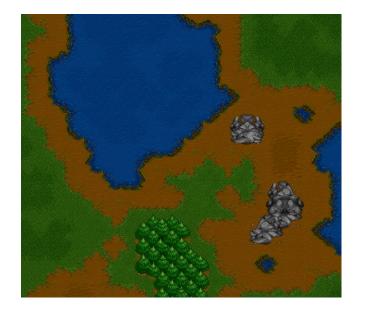
optimal planner recalculating a shortest path to the end node. To ensure that the network always moved to a valid node, the output distribution was renormalized over the set of possible triples outgoing from the current node. The performance

it also received input triples during the answer phase, indicating the actions chosen on the previous time-step. This makes the problem a 'structured prediction'

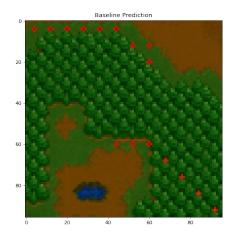
[Graves, A., Wayne, G., Reynolds, M., Harley, T., Danihelka, I., Grabska-Barwińska, A., et al.. (2016). Hybrid computing using a neural network with dynamic external memory. *Nature*, *538*(7626), 471-476.]

Warcraft Shortest Path

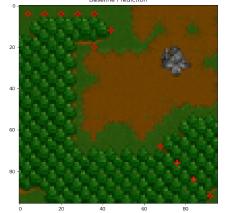
Predicting the minimum-cost path



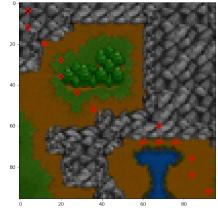
[Differentiation of Blackbox Combinatorial Solvers, Marin Vlastelica, Anselm Paulus, Vít Musil, Georg Martius, Michal Rolínek, 2019]



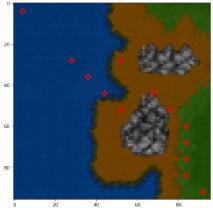
Baseline Prediction



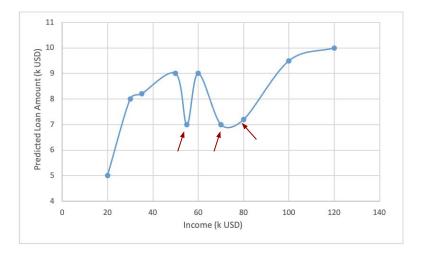
Baseline Prediction



Baseline Prediction



Predict Loan Amount



Neural Network Model: Increasing income can decrease the approved loan amount

Monotonicity (Prior Knowledge):

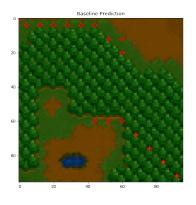
Increasing income should increase the approved loan amount

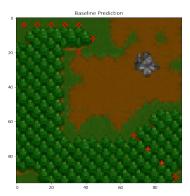
Knowledge vs. Data

- Where did the world knowledge go?
 - Python scripts
 - Decode/encode/search cleverly
 - Fix inconsistent beliefs
 - Rule-based decision systems
 - Dataset design
 - "a big hack" (with author's permission)
- In some sense we went backwards

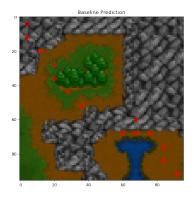
Less principled, scientific, and intellectually satisfying ways of incorporating knowledge

without constraint

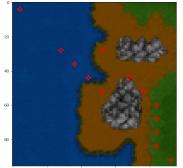




without constraint

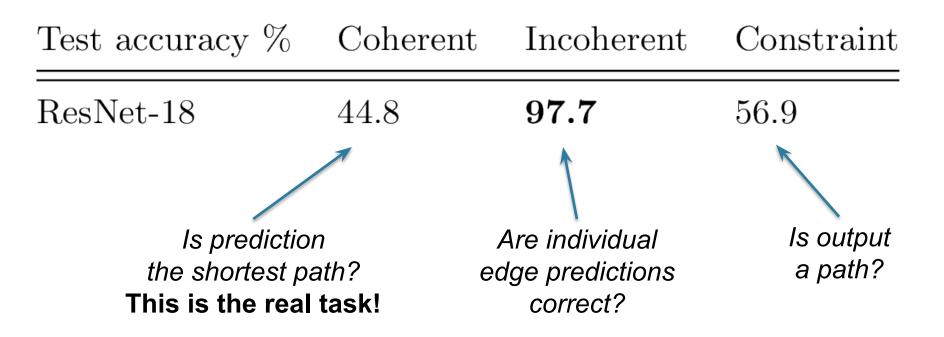


Baseline Prediction



0 20 40 60 80

Warcraft min-cost simple-path prediction results

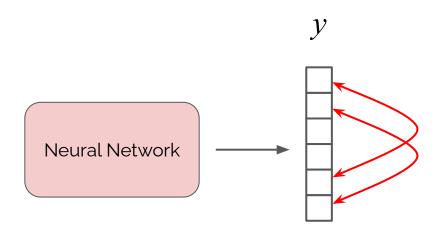


A PyTorch Framework for Learning with Constraints

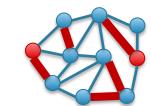
Kareem Ahmed Tao Li Thy Ton Quan Guo, Kai-Wei Chang Parisa Kordjamshidi Vivek Srikumar Guy Van den Broeck Sameer Singh

http://pylon-lib.github.io

Declarative Knowledge of the Output



How is the output structured? Are all possible outputs valid?



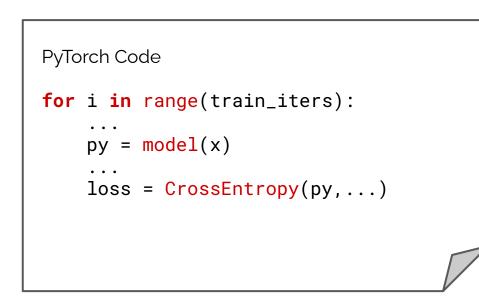
How are the outputs related to each other?

Learning this from data is inefficient Much easier to express this declaratively

VS.

Library that extends PyTorch to allow injection of declarative knowledge

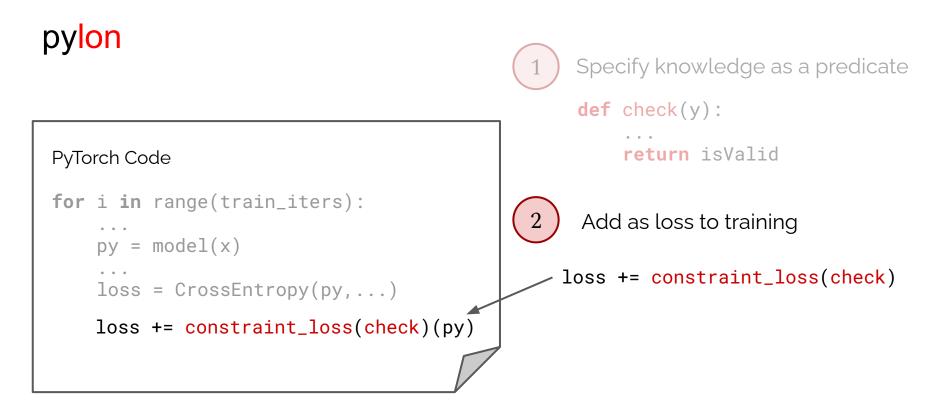
- Easy to Express Knowledge: users write arbitrary constraints on the output
- Integrates with PyTorch: minimal change to existing code
- Efficient Training: compiles into loss that can be efficiently optimized
 - Exact semantic loss (see later)
 - Monte-carlo estimate of loss
 - T-norm approximation
 - your solver?

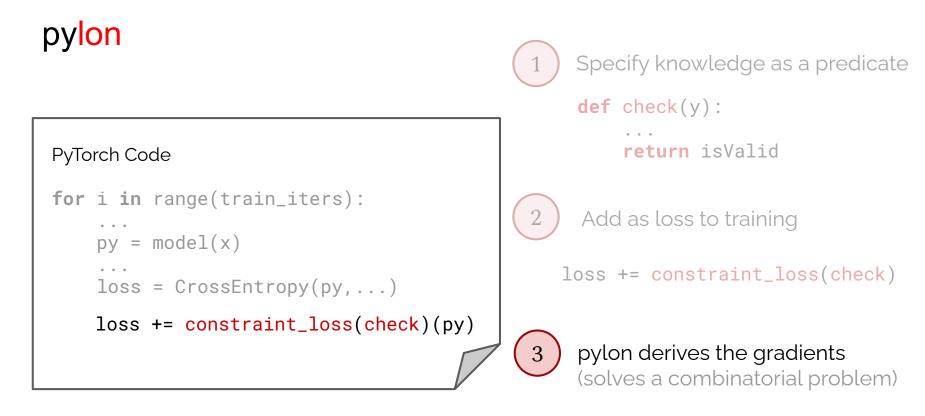



```
def check(y):
```

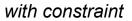
... return isValid

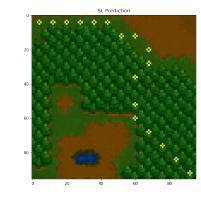
pylon





without constraint





Baseline Prediction

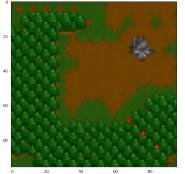
60

80

40

ò

20

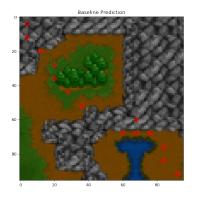


SL Prediction

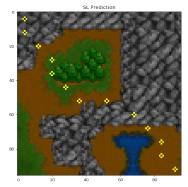
20 40 60 80

Ó.

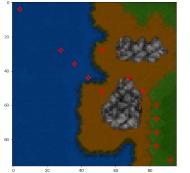
without constraint



with constraint



Baseline Prediction



SL Prediction

0 20 40 60 80

Warcraft min-cost simple-path prediction results

Test accuracy $\%$	Coherent	Incoherent	Constraint		
ResNet-18	44.8	97.7	56.9		
+ Semantic loss	50.9	97.7	67.4		

Semantic Loss

- <u>Q</u>: How close is output **p** to satisfying constraint α ?
- <u>A</u>: Semantic loss function $L(\alpha, \mathbf{p})$
- Axioms, for example:
 - If α constrains to one label, L(α ,**p**) is cross-entropy
 - If α implies β then $L(\alpha, \mathbf{p}) \ge L(\beta, \mathbf{p})$ (α more strict)
- Implied Properties:
 - If α is equivalent to β then $L(\alpha, \mathbf{p}) = L(\beta, \mathbf{p})$ Loss!

SEMANTIC

– If **p** is Boolean and satisfies α then L(α ,**p**) = 0

Axioms imply unique semantic loss:

$$\mathrm{L}^{\mathrm{s}}(\alpha, \mathsf{p}) \propto -\log \sum_{\mathbf{x} \models \alpha} \prod_{i: \mathbf{x} \models X_{i}} \mathsf{p}_{i} \prod_{i: \mathbf{x} \models \neg X_{i}} (1 - \mathsf{p}_{i})$$

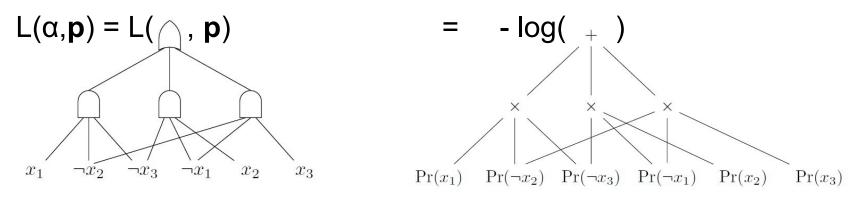
Probability of satisfying constraint α after sampling from neural net output layer **p**

In general: #P-hard 🙁

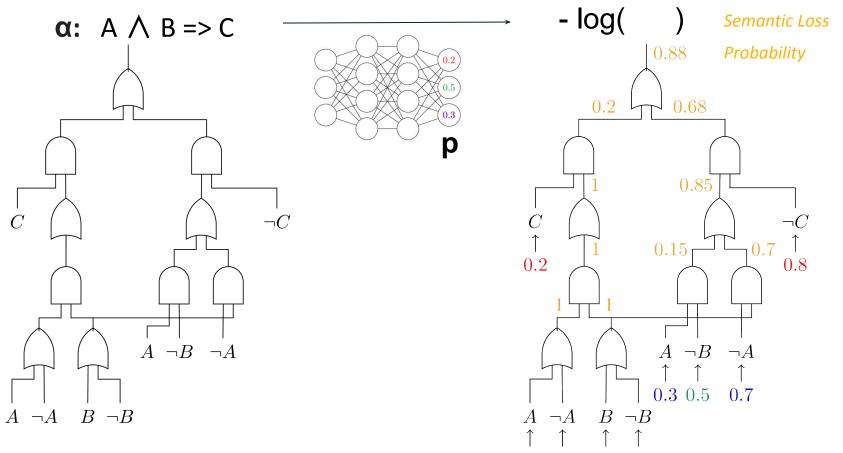
Do this probabilistic-logical reasoning during learning in a computation graph

Circuits = Computation Graphs

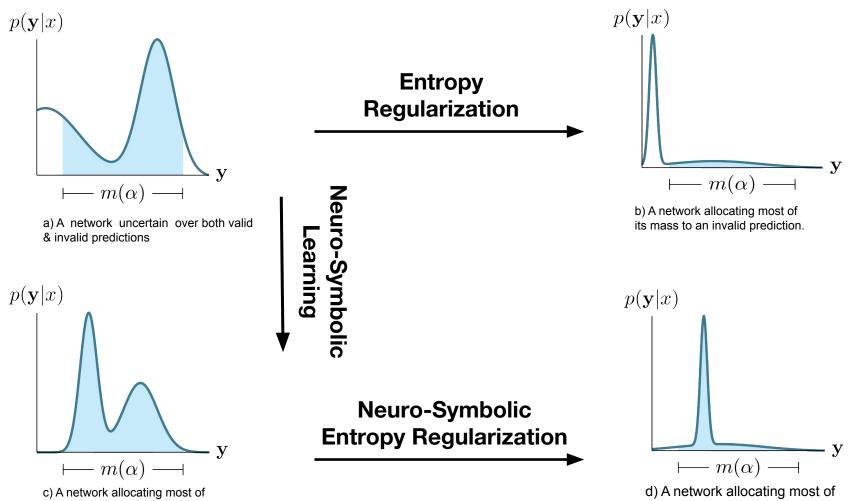
 Logical circuits that can count solutions (#SAT) also compute semantic loss efficiently in size of circuit



- Compilation into circuit by SAT solvers (once)
- Add circuit to neural network output in pytorch/tensorflow/...



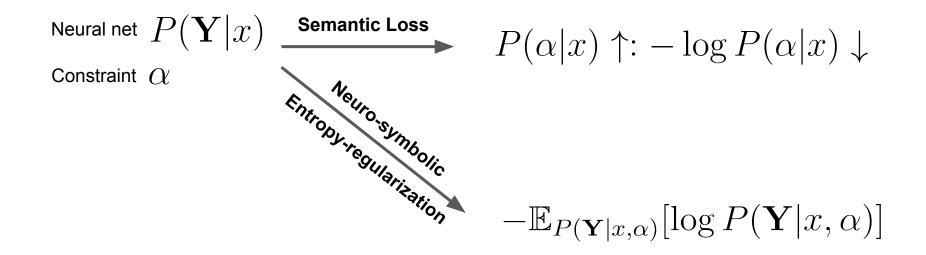
 $0.3 \ 0.7 \ 0.5 \ 0.5$



its mass to models of constraint

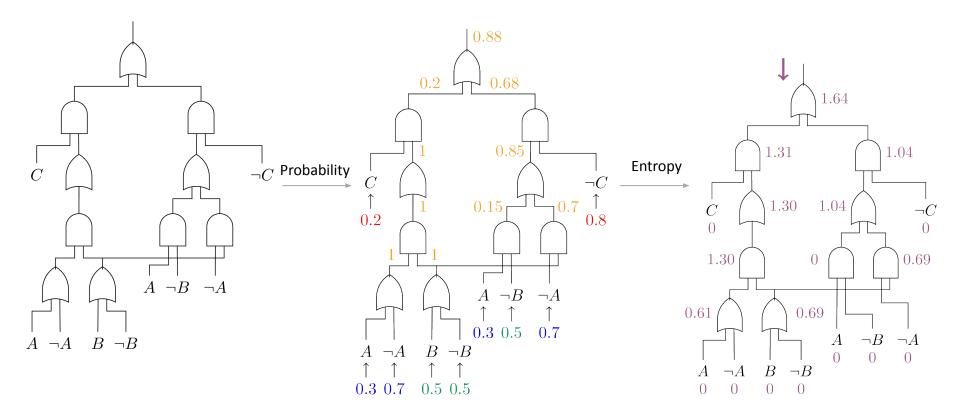
mass to one model of formula

Two complementary neuro-symbolic losses



Warcraft min-cost simple-path prediction results

Test accuracy %	Coherent	Incoherent	Constraint
ResNet-18	44.8	97.7	56.9
Semantic loss	50.9	97.7	67.4
+ Full Entropy	51.5	97.6	67.7
+ NeSy Entropy	55.0	97.9	69.8

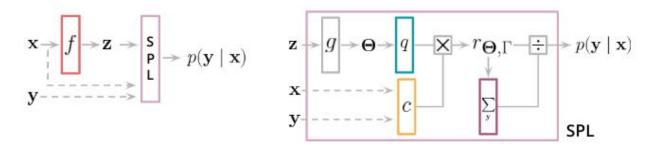


Joint entity-relation extraction in natural language processing

#		3	5	10	15	25	50	75
ACE05	Baseline Self-training Product t-norm	$\begin{array}{c} 4.92 \pm 1.12 \\ 7.72 \pm 1.21 \\ 8.89 \pm 5.09 \end{array}$	$\begin{array}{c} 7.24 \pm 1.75 \\ 12.83 \pm 2.97 \\ 14.52 \pm 2.13 \end{array}$	$\begin{array}{c} 13.66 \pm 0.18 \\ 16.22 \pm 3.08 \\ 19.22 \pm 5.81 \end{array}$	$\begin{array}{c} 15.07 \pm 1.79 \\ 17.55 \pm 1.41 \\ 21.80 \pm 7.67 \end{array}$	$\begin{array}{c} 21.65 \pm 3.41 \\ 27.00 \pm 3.66 \\ 30.15 \pm 1.01 \end{array}$	$\begin{array}{c} 28.96 \pm 0.98 \\ 32.90 \pm 1.71 \\ 34.12 \pm 2.75 \end{array}$	$\begin{array}{c} 33.02 \pm 1.17 \\ 37.15 \pm 1.42 \\ 37.35 \pm 2.53 \end{array}$
	Semantic Loss + Full Entropy + NeSy Entropy	$\begin{array}{c} 12.00 \pm 3.81 \\ \textbf{14.80} \pm 3.70 \\ 14.72 \pm 1.57 \end{array}$	$\begin{array}{c} 14.92 \pm 3.14 \\ 15.78 \pm 1.90 \\ \textbf{18.38} \pm 2.50 \end{array}$	$\begin{array}{c} 22.23 \pm 3.64 \\ 23.34 \pm 4.07 \\ \textbf{26.41} \pm 0.49 \end{array}$	$\begin{array}{c} 27.35 \pm 3.10 \\ 28.09 \pm 1.46 \\ \textbf{31.17} \pm 1.68 \end{array}$	$\begin{array}{c} 30.78 \pm 0.68 \\ 31.13 \pm 2.26 \\ \textbf{35.85} \pm 0.75 \end{array}$	$\begin{array}{c} 36.76 \pm 1.40 \\ 36.05 \pm 1.00 \\ \textbf{37.62} \pm 2.17 \end{array}$	$\begin{array}{c} 38.49 \pm 1.74 \\ 39.39 \pm 1.21 \\ \textbf{41.28} \pm 0.46 \end{array}$
SciERC	Baseline Self-training Product t-norm	$\begin{array}{c} 2.71 \pm 1.10 \\ 3.56 \pm 1.40 \\ \textbf{6.50} \pm 2.00 \end{array}$	$\begin{array}{c} 2.94 \pm 1.00 \\ 3.04 \pm 0.90 \\ 8.86 \pm 1.20 \end{array}$	3.49 ± 1.80 4.14 ± 2.60 10.92 ± 1.60	$\begin{array}{c} 3.56 \pm 1.10 \\ 3.73 \pm 1.10 \\ 13.38 \pm 0.70 \end{array}$	8.83 ± 1.00 9.44 ± 3.80 13.83 ± 2.90	$\begin{array}{c} 12.32 \pm 3.00 \\ 14.82 \pm 1.20 \\ 19.20 \pm 1.70 \end{array}$	$\begin{array}{c} 12.49 \pm 2.60 \\ 13.79 \pm 3.90 \\ 19.54 \pm 1.70 \end{array}$
	Semantic Loss + Full Entropy + NeSy Entropy	$\begin{array}{c} 6.47 \pm 1.02 \\ 6.26 \pm 1.21 \\ 6.19 \pm 2.40 \end{array}$	$\begin{array}{c} {\bf 9.31} \pm 0.76 \\ 8.49 \pm 0.85 \\ 8.11 \pm 3.66 \end{array}$	$\begin{array}{c} 11.50\pm1.53\\ 11.12\pm1.22\\ \textbf{13.17}\pm1.08 \end{array}$	$\begin{array}{c} 12.97 \pm 2.86 \\ 14.10 \pm 2.79 \\ \textbf{15.47} \pm 2.19 \end{array}$	$\begin{array}{c} 14.07 \pm 2.33 \\ 17.25 \pm 2.75 \\ \textbf{17.45} \pm 1.52 \end{array}$	$\begin{array}{c} 20.47 \pm 2.50 \\ \textbf{22.42} \pm 0.43 \\ 22.14 \pm 1.46 \end{array}$	$\begin{array}{c} 23.72 \pm 0.38 \\ 24.37 \pm 1.62 \\ \textbf{25.11} \pm 1.03 \end{array}$

Semantic Probabilistic Layers

- How to give a 100% guarantee that Boolean constraints will be satisfied?
- Bake the constraint into the neural network as a special layer



• Secret sauce is again tractable circuits – computation graphs for reasoning

Kareem Ahmed, Stefano Teso, Kai-Wei Chang, Guy Van den Broeck and Antonio Vergari. Semantic Probabilistic Layers for Neuro-Symbolic Learning, 2022.

Warcraft Shortest Path

GROUND TRUTH

RESNET-18

SEMANTIC LOSS

SPL (ours)

Hierarchical Multi-Label Classification

"if the image is classified as a dog, it must also be classified as an animal"

"if the image is classified as an animal, it must be classified as either cat or dog"

DATASET	EXACT MATCH					
	HMCNN	MLP+SPL				
CELLCYCLE	3.05 ± 0.11	$\textbf{3.79} \pm \textbf{0.18}$				
DERISI	1.39 ± 0.47	2.28 ± 0.23				
EISEN	5.40 ± 0.15	6.18 ± 0.33				
EXPR	4.20 ± 0.21	5.54 ± 0.36				
GASCH1	3.48 ± 0.96	4.65 ± 0.30				
GASCH2	3.11 ± 0.08	3.95 ± 0.28				
SEQ	5.24 ± 0.27	7.98 ± 0.28				
SPO	1.97 ± 0.06	1.92 ± 0.11				
DIATOMS	48.21 ± 0.57	58.71 ± 0.68				
ENRON	5.97 ± 0.56	8.18 ± 0.68				
IMCLEF07A	79.75 ± 0.38	86.08 ± 0.45				
IMCLEF07D	76.47 ± 0.35	81.06 ± 0.68				

Neuro-Symbolic Learning Settings

Learn

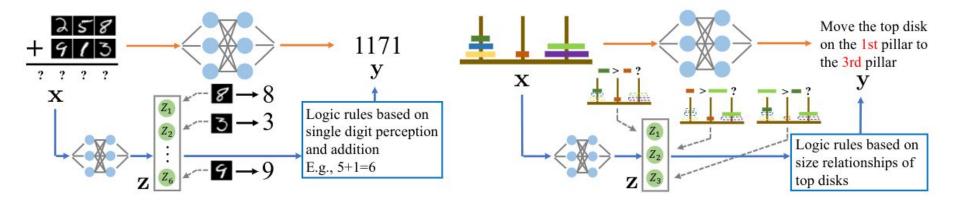
1. neural network given symbols and constraints and data

2. neural network and constraints given symbols and data

3. neural network and constraints and symbols given data

Everyone is working on 1. Ongoing work on 2.

Neuro-Symbolic Joint Training



Learn invariant features using neural networks. Learn logic to tie it all together.

Ask Yitao Liang, Anji Liu

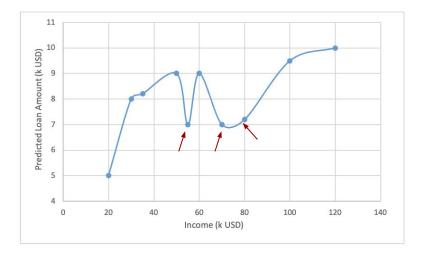
Neuro-Symbolic Joint Training

Model	Multi-digit addition [test seq length + train/test img]						Tower of Hanoi		
model	5 w/ test	10 w/ test	20 w/ test	5 w/ train	10 w/ train	20 w/ train	Task #1	Task #2	Task #3
DeepProbLog [†]	88.30	77.46	timeout	94.92	89.74	timeout	89.28	97.96	89.33
LSTM	81.40	56.97	39.05	88.92	77.40	63.23	78.26	98.32	74.36
DNC	81.49	59.64	33.83	81.88	59.96	37.85	76.20	97.87	73.87
NToC(ours)	89.82	77.97	63.55	89.97	86.07	71.96	85.16	97.94	85.49

Learn invariant features using neural networks. Learn logic to tie it all together.

Ask Yitao Liang, Anji Liu

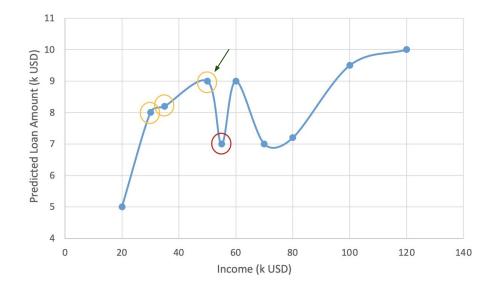
Predict Loan Amount



Neural Network Model: Increasing income can decrease the approved loan amount

Monotonicity (Prior Knowledge): Increasing income should increase the approved loan amount

Counterexamples



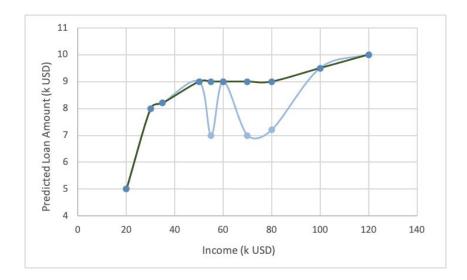
$$\exists x,y \; x \leq y \implies f(x) > f(y)$$

Computed using SMT(LRA) logical reasoning solver

Maximal counterexamples (largest violation) using OMT

Aishwarya Sivaraman, Golnoosh Farnadi, Todd Millstein and Guy Van den Broeck. Counterexample-Guided Learning of Monotonic Neural Networks, NeurIPS, 2020.

Counterexample-Guided Predictions



Monotonic Envelope:

- Replace each prediction by its maximal counterexample
- Envelope construction is online (during prediction)
- Guarantees monotonic predictions for any ReLU neural net
- Works for high-dimensional input
- Works for multiple monotonic features

Monotonic Envelope: Performance

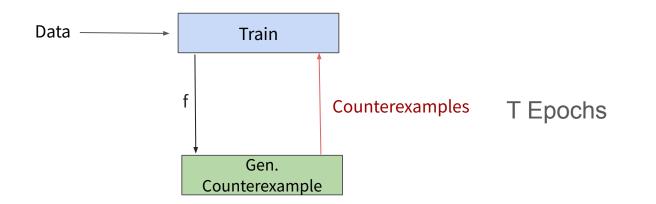
Dataset	Feature	NN _b	Envelope	Da	ataset	Feature	NN _b	Envelope
Auto-MPG	Weight Displ. W,D W,D,HP	9.33 ± 3.22 9.33 ± 3.22 9.33 ± 3.22 9.33 ± 3.22	9.19±3.41 9.63±2.61 9.63±2.61 9.63±2.61	н	leart	Trestbps Chol. T,C	0.85 ± 0.04 0.85 ± 0.04 0.85 ± 0.04	$0.85 \pm 0.04 \\ 0.85 \pm 0.05 \\ 0.85 \pm 0.05$
Boston	Rooms Crime	14.37±2.4 14.37±2.4	$\begin{array}{c} 14.19{\pm}2.28 \\ 14.02{\pm}2.17 \end{array}$	A	dult	Cap. Gain Hours	0.84 0.84	0.84 0.84

Guaranteed monotonicity at little to no cost

Aishwarya Sivaraman, Golnoosh Farnadi, Todd Millstein and Guy Van den Broeck. Counterexample-Guided Learning of Monotonic Neural Networks, NeurIPS, 2020.

Counterexample-Guided Learning

How to use monotonicity to improve model quality? "Monotonicity as inductive bias"



Counterexample-Guided Learning: Performance

Dataset	Feature	NN _b	CGL	Dataset	Feature	NNb	CGL
Auto-MPG	Weight Displ. W,D W.D,HP	9.33 ± 3.22 9.33 ± 3.22 9.33 ± 3.22 9.33 ± 3.22	$9.04{\pm}2.76$ $9.08{\pm}2.87$ $8.86{\pm}2.67$ $8.63{\pm}2.21$	Heart	Trestbps Chol. T,C	0.85 ± 0.04 0.85 ± 0.04 0.85 ± 0.04	$\begin{array}{c} 0.86{\pm}0.02\\ 0.85{\pm}0.05\\ 0.86{\pm}0.06\end{array}$
Boston	Rooms Crime	14.37±2.4 14.37±2.4	$\begin{array}{r} 12.24{\pm}2.87\\ 11.66{\pm}2.89\end{array}$	Adult	Cap. Gain Hours	0.84 0.84	0.84 0.84

Monotonicity is a *great* inductive bias for learning

Aishwarya Sivaraman, Golnoosh Farnadi, Todd Millstein and Guy Van den Broeck. Counterexample-Guided Learning of Monotonic Neural Networks, NeurIPS, 2020.

COMET: Counterexample-Guided Monotonicity Enforced Training

Table 4: Monotonicity is an effective inductive bias. COMET outperforms Min-Max networks on all datasets. COMET outperforms DLN in regression datasets and achieves similar results in classification datasets.

Dataset	Features	Min-Max	DLN	Сомет	Dataset	Features	Min-Max	DLN	Сомет
Auto- MPG	Weight Displ. W,D W,D,HP	9.91 ± 1.20 11.78 ± 2.20 11.60 ± 0.54 10.14 ± 1.54	16.77 ± 2.57 16.67 ± 2.25 16.56 ± 2.27 13.34 ± 2.42	8.92±2.93 9.11±2.25 8.89±2.29 8.81±1.81	Heart	Trestbps Chol. T,C	0.75 ± 0.04 0.75 ± 0.04 0.75 ± 0.04	$\begin{array}{c} 0.85{\pm}0.02\\ 0.85{\pm}0.04\\ \textbf{0.86{\pm}0.02}\end{array}$	0.86±0.03 0.87±0.03 0.86±0.03
Boston	Rooms Crime	30.88±13.78 25.89±2.47	15.93 ± 1.40 12.06 ± 1.44	11.54±2.55 11.07±2.99	Adult	Cap. Gain Hours	0.77 0.73	0.84 0.85	0.84 0.84

COMET = Provable Guarantees + SotA Results

Aishwarya Sivaraman, Golnoosh Farnadi, Todd Millstein and Guy Van den Broeck. Counterexample-Guided Learning of Monotonic Neural Networks, NeurIPS, 2020.

The AI Dilemma

- Knowledge is (hidden) everywhere in ML
- A little bit of reasoning goes a long way!

Deep learning with structured output constraints Learning monotonic neural networks

Outline

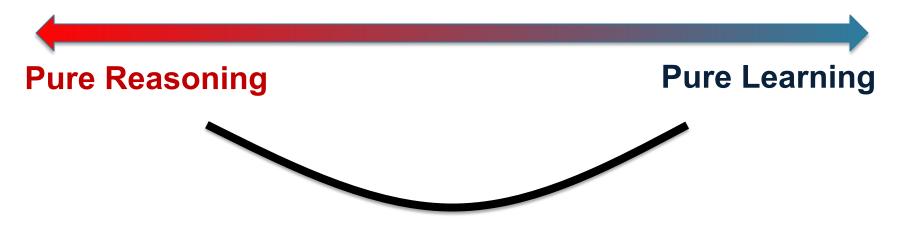
- 1. The paradox of learning to reason from data deep learning
- 2. Tractable deep generative models

probabilistic reasoning + deep learning

3. Learning with symbolic knowledge

logical reasoning + deep learning

The AI Dilemma



Integrate reasoning into modern deep learning algorithms

Thanks

This was the work of many wonderful students/postdocs/collaborators!

References: http://starai.cs.ucla.edu/publications/