

From Probabilistic Circuits to Probabilistic Programs and Back

Guy Van den Broeck

PROBPROG - Oct 24, 2020

Trying to be provocative

Probabilistic graphical models is how we do probabilistic AI!

Graphical models of variable-level (in)dependence are a broken abstraction.

Trying to be provocative

Probabilistic graphical models is how we do probabilistic AI!

Graphical models of variable-level (in)dependence are a broken abstraction.

3.14 Smokes(x) \land Friends(x,y) \Rightarrow Smokes(y)

Trying to be provocative

Probabilistic graphical models is how we do probabilistic AI!

Graphical models of variable-level (in)dependence are a broken abstraction.

```
Bean Machine

\mu_k \sim \text{Normal}(\alpha, \beta)
\sigma_k \sim \text{Gamma}(\nu, \rho)
\theta_k \sim \text{Dirichlet}(\kappa)
x_i \sim \begin{cases} \text{Categorical}(init) & \text{if } i = 0 \\ \text{Categorical}(\theta_{x_{i-1}}) & \text{if } i > 0 \end{cases}
y_i \sim \text{Normal}(\mu_{x_i}, \sigma_{x_i})
```


Computational Abstractions

Let us think of probability distributions as objects that are computed.

Abstraction = Structure of Computation

Two examples:

2. Probabilistic Programs

Computational Abstractions

Let us think of probability distributions as objects that are computed.

Abstraction = Structure of Computation

Two examples:

- 1. Probabilistic Circuits
- 2. Probabilistic Programs

Probabilistic Circuits

The Alphabet Soup of probabilistic models

Intractable and tractable models

Tractable Probabilistic Models

"Every talk needs a joke and a literature overview slide, not necessarily distinct" - after Ron Graham

a unifying framework for tractable models

Input nodes c are tractable (simple) distributions, e.g., univariate gaussian or indicator $p_c(X=1) = [X=1]$

Product nodes are factorizations $\prod_{c \in in(n)} p_c(\mathbf{x})$

Sum nodes are mixture models $\sum_{c\in \mathsf{in}(n)} \theta_{n,c} \operatorname{p}_c(\mathbf{x})$

Smoothness + decomposability = tractable MAR

If $m{p}(\mathbf{x}) = \sum_i w_i m{p}_i(\mathbf{x})$, (smoothness):

$$\int \mathbf{p}(\mathbf{x}) d\mathbf{x} = \int \sum_{i} w_{i} \mathbf{p}_{i}(\mathbf{x}) d\mathbf{x} =$$
$$= \sum_{i} w_{i} \int \mathbf{p}_{i}(\mathbf{x}) d\mathbf{x}$$

 \Rightarrow integrals are "pushed down" to children

Smoothness + decomposability = tractable MAR

If $p(\mathbf{x}, \mathbf{y}, \mathbf{z}) = p(\mathbf{x})p(\mathbf{y})p(\mathbf{z})$, (decomposability):

$$\int \int \int \mathbf{p}(\mathbf{x}, \mathbf{y}, \mathbf{z}) d\mathbf{x} d\mathbf{y} d\mathbf{z} =$$
$$= \int \int \int \int \mathbf{p}(\mathbf{x}) \mathbf{p}(\mathbf{y}) \mathbf{p}(\mathbf{z}) d\mathbf{x} d\mathbf{y} d\mathbf{z} =$$
$$= \int \mathbf{p}(\mathbf{x}) d\mathbf{x} \int \mathbf{p}(\mathbf{y}) d\mathbf{y} \int \mathbf{p}(\mathbf{z}) d\mathbf{z}$$

 \Rightarrow integrals decompose into easier ones

Smoothness + decomposability = tractable MAR

Forward pass evaluation for MAR

inear in circuit size!

E.g. to compute $p(x_2, x_4)$: leafs over X_1 and X_3 output $\mathbf{Z}_i = \int p(x_i) dx_i$ for normalized leaf distributions: 1.0

leafs over X_2 and X_4 output **EVI**

feedforward evaluation (bottom-up)

tractability is a spectrum

smooth	dec.	det.	str.dec.	
V	V	V	×	
V	V	×	×	
V	~	V	×	
V	V	V	~	
~	V	V	V	
~	V	V	V	
V	V	V	V	
	smooth	smooth dec.	smooth dec. det.	smoothdec.det.str.dec. </td

Expressive models without compromises

How expressive are probabilistic circuits?

density estimation benchmarks

dataset	best circuit	BN	MADE	VAE	dataset	best circuit	BN	MADE	VAE
nltcs	-5.99	-6.02	-6.04	-5.99	dna	-79.88	-80.65	-82.77	-94.56
msnbc	-6.04	-6.04	-6.06	-6.09	kosarek	-10.52	-10.83	-	-10.64
kdd	-2.12	-2.19	-2.07	-2.12	msweb	-9.62	-9.70	-9.59	-9.73
plants	-11.84	-12.65	-12.32	-12.34	book	-33.82	-36.41	-33.95	-33.19
audio	-39.39	-40.50	-38.95	-38.67	movie	-50.34	-54.37	-48.7	-47.43
jester	-51.29	-51.07	-52.23	-51.54	webkb	-149.20	-157.43	-149.59	-146.9
netflix	-55.71	-57.02	-55.16	-54.73	cr52	-81.87	-87.56	-82.80	-81.33
accidents	-26.89	-26.32	-26.42	-29.11	c20ng	-151.02	-158.95	-153.18	-146.9
retail	-10.72	-10.87	-10.81	-10.83	bbc	-229.21	-257.86	-242.40	-240.94
pumbs*	-22.15	-21.72	-22.3	-25.16	ad	-14.00	-18.35	-13.65	-18.81

Want to learn more?

Tutorial (3h)

Inference

Learning

Theory

Representations

Probabilistic Circuits

Antonio Vergari University of California, Los Angeles

Robert Peharz TU Eindhoven YooJung Choi University of California, Los Angeles

Guy Van den Broeck University of California, Los Angeles

September 14th, 2020 - Ghent, Belgium - ECML-PKDD 2020

▶ ▶| ◄) 0:00 / 3:02:46

https://youtu.be/2RAG5-L9R70

Overview Paper (80p)

	A U	Probabilistic Circuits: Inifying Framework for Tractable Probabilistic Models	*
Yo	oJu	ng Choi	
Ar	ntoni	o Vergari	
Gu Co Un Los	1y V mpute iversi s Ang	an den Broeck er Science Department ty of California eles, CA, USA	
Co	onte	ats	
1	Intr	oduction	3
2	Pro	babilistic Inference: Models, Queries, and Tractability	4
	2.1	Probabilistic Models	5
	2.2	Probabilistic Queries	6
	2.3 2.4	Properties of Tractable Probabilistic Models	9

http://starai.cs.ucla.edu/papers/ProbCirc20.pdf

Training PCs in Julia with Juice.jl

Training maximum likelihood parameters of probabilistic circuits

julia> using ProbabilisticCircuits; julia> data, structure = load(...); julia> num_examples(data) 17,412 julia> num_edges(structure) 270,448 julia> @btime estimate_parameters(structure , data); 63 ms

Juice-jl / Probabi	listicCircuits.jl	Unwatch + 5	Unstar 21 V Fork 4	
> Code ① Issues	12 11 Pull requests () Actions	Projects	Wiki	
⁹ master +	Go to file Add file	• 🛓 Code •	About \$	
khosravipasha som	e docs 🚃 🗙 2	3 days ago 🕚 452	Probabilistic Circuits from the Juice library	
.github/workflows	Install TagBot as a GitHub Action	7 months ago	probabilistic-circuits	
docs	some doos	23 days ago	probabilistic-reasoning	
src	Add utility function for save_as_dot (#13)	3 months ago	tractable-models	
test 1	Add required test dependencies (#8)	3 months ago	D Readme	
.gitignore	docs auto build	6 months ago	Apache-2.0 License	
travis.yml	fix notifications travis	6 months ago		
Artifacts.toml	fix density estimation hash	8 months ago	Releases 2 v0.1.1 (Latest) on May 25	
LICENSE	Initial commit	14 months ago		
Project.toml	version bump	2 months ago		
README.md	add stable badge	3 months ago	+ 1 release	
README_DEV.md	add release instructions	3 months ago		
			Packages	

Custom SIMD and CUDA kernels to parallelize over layers and training examples.

https://github.com/Juice-jl/

Probabilistic circuits seem awfully general.

Are all tractable probabilistic models probabilistic circuits?

Determinantal Point Processes (DPPs)

DPPs are models where probabilities are specified by (sub)determinants

$$L = \begin{bmatrix} 1 & 0.9 & 0.8 & 0 \\ 0.9 & 0.97 & 0.96 & 0 \\ 0.8 & 0.96 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\Pr_L(X_1 = 1, X_2 = 0, X_3 = 1, X_4 = 0) = \frac{1}{\det(L+I)} \det(L_{\{1,2\}})$$

Computing marginal probabilities is *tractable*.

We cannot tractably represent DPPs with classes of PCs ... yet

[Zhang et al. UAI20; Martens & Medabalimi Arxiv15]

The AI Dilemma

Pure Logic

Pure Learning

The AI Dilemma

Pure Logic

- Slow thinking: deliberative, cognitive, model-based, extrapolation
- Amazing achievements until this day
- "Pure logic is brittle" noise, uncertainty, incomplete knowledge, ...

Pure Learning

The AI Dilemma

Pure Logic

- Fast thinking: instinctive, perceptive, model-free, interpolation
- Amazing achievements recently
- "Pure learning is brittle"

bias, algorithmic fairness, interpretability, explainability, adversarial attacks, unknown unknowns, calibration, verification, missing features, missing labels, data efficiency, shift in distribution, general robustness and safety fails to incorporate a sensible model of the world

Pure Learning

Pure Logic Probabilistic World Models Pure Learning A New Synthesis of Learning and Reasoning

• "Pure learning is brittle"

bias, **algorithmic fairness**, interpretability, **explainability**, adversarial attacks, unknown unknowns, calibration, verification, **missing features**, missing labels, data efficiency, shift in distribution, general robustness and safety

fails to incorporate a sensible model of the world

Prediction with Missing Features

Test with missing features

Expected Predictions

Consider **all possible complete inputs** and **reason** about the *expected* behavior of the classifier

$$\mathbb{E}_{\mathbf{X}^m \sim p(\mathbf{x}^m | \mathbf{x}^o)} \begin{bmatrix} f(\mathbf{x}^m \mathbf{x}^o) \end{bmatrix} \qquad \begin{array}{l} \mathbf{x}^o = \text{observed features} \\ \mathbf{x}^m = \text{missing features} \end{array}$$

Experiment:

• f(x) = logistic regres.

p(x) =
 naive Bayes

[Khosravi et al. IJCAI19, NeurIPS20, Artemiss20]

What about complex feature distributions?

- feature distribution is a probabilistic circuits
- classifier is a compatible regression circuit

Recursion that "breaks down" the computation.

Expectation of function m w.r.t. dist. n?

Solve subproblems: (1,3), (1,4), (2,3), (2,4)

Probabilistic Circuits for Missing Data

[Khosravi et al. IJCAI19, NeurIPS20, Artemiss20]

ADV inference in Julia with Juice.jl

using ProbabilisticCircuits

- pc = load_prob_circuit(zoo_psdd_file("insurance.psdd"));
- rc = load_logistic_circuit(zoo_lc_file("insurance.circuit"), 1);

Is the predictive model biased by gender?

```
groups = make_observations([["male"], ["female"]])
exps, _ = Expectation(pc, rc, groups);
println("Female : \$ $(exps[2])");
println("Male : \$ $(exps[1])");
println("Diff : \$ $(exps[2] - exps[1])");
Female : $ 14170.125469335406
Male : $ 13196.548926381849
Diff : $ 973.5765429535568
```

Model-Based Algorithmic Fairness: FairPC

Learn classifier given

- features S and X
- training labels/decisions D

Group fairness by demographic parity:

Fair decision D_f should be independent of the sensitive attribute S

Discover the latent fair decision D_f by learning a PC.

[Choi et al. Arxiv20]

Probabilistic Sufficient Explanations

<u>Goal</u>: explain an instance of classification (a specific prediction)

Explanation is a subset of features, s.t.

 The explanation is "probabilistically sufficient"

> Under the feature distribution, given the explanation, the classifier is likely to make the observed prediction.

2. It is minimal and "simple"

Pure Logic Probabilistic World Models Pure Learning A New Synthesis of Learning and Reasoning

"Pure learning is brittle"

bias, **algorithmic fairness**, interpretability, **explainability**, adversarial attacks, unknown unknowns, calibration, verification, **missing features**, missing labels, data efficiency, shift in distribution, general robustness and safety

We need to incorporate a sensible probabilistic model of the world

Probabilistic Programs

Dice probabilistic programming language

Talk in 25min

http://dicelang.cs.ucla.edu/

A.	Dice The dice probabilistic programming lar	nguage	About	GitHub
dice	is a probabilistic programming languag	e focused on fast exact i	nference for	r discrete
prob	abilistic programs. For more information	on dice, see the about	page.	
Belo	w is an online dice code demo. To run t	the example code, press	the "Run" b	utton.
				Run
1	<pre>fun sendChar(key: int(2), observation: int(2)) {</pre>			L'estance.
2	let gen = discrete(0.5, 0.25, 0.125, 0.125) in	// sample a FooLang character		
3	let enc = key + gen in	<pre>// encrypt the character</pre>		
4	observe observation == enc			
6	3			
7	<pre>// sample a uniform random key: A=0, B=1, C=2, D=3</pre>			
8				
9	let key = discrete(0.25, 0.25, 0.25, 0.25) in			
10	// absorve the sighestart SSSS			
12	let tmp = sendChar(kev int(2 2)) in			
	let two - send(bar(key, int(2, 2)) in			
13	cec crip = senacidi (key, cillit, ci) ci			
13 14	let tmp = sendChar(key, int(2, 2)) in			
13 14 15	<pre>let tmp = sendChar(key, int(2, 2)) in let tmp = sendChar(key, int(2, 2)) in</pre>			
13 14 15 16	<pre>let tmp = sendChar(key, int(2, 2)) in let tmp = sendChar(key, int(2, 2)) in let tmp = sendChar(key, int(2, 2)) in</pre>			

https://github.com/SHoltzen/dice

S	Search or jump to	🦳 Pulls Issues Ma	rketplace Explore	4 + • 🍵	
SHo	oltzen / dice	C	Unwatch - 3	Unstar 15 & Fork 6	
<> Co	de 🕛 Issue	s 8 11 Pull requests 🕞 Actions	Projects	Wiki 🕕 Security 😶	
ያ ma	ister 👻	Go to file Add file	• • Code •	About	
tt s	Holtzen printing	revamp 🗸	7 days ago 🕤 217	Exact inference for discrete probabilistic	
be	ench	Revert "speed up function calls"	12 days ago	code, more documentatio	
be	enchmarks	eager eval is insane	2 months ago	and ergonomics to come)	
💼 bi	in	printing revamp	7 days ago	🛱 Readme	
iit	b	Revert "speed up function calls"	12 days ago	বার Apache-2.0 License	
i re	esources	test iff	2 months ago		
💼 te	est	fix right shift bug	18 days ago	Releases	
C .g	jitignore	Resolve merge conflicts	2 months ago	🛇 2 tags	
n. 🗅	nerlin	error upgrade	3 months ago	Packages	
D	ockerfile	clean dockerfile	2 months ago		
C LI	ICENSE	Resolve merge conflicts	2 months ago	No packages published	
🗅 R	EADME.md	Fixed documentation: double typing in arg	last month		
🗅 di	ice.opam	clean dockerfile	2 months ago	Contributors 4	
🗅 du	une	fixed benchmarks	3 months ago	tt SHoltzen SHoltzen	
🗅 du	une-project	switch to dune	3 months ago	ellieyhcheng ellieyhc	

[Holtzen et al. OOPSLA20]

Symbolic Compilation to Probabilistic Circuits

Talk in

25min

State of the art for discrete probabilistic program inference!

Conclusions

- Are we already in the age of computational abstractions?
- Probabilistic circuits for
 learning deep <u>tractable</u> probabilistic models
- **Probabilistic programs** as the new probabilistic knowledge representation language
- Two computational abstractions go hand in hand

Thanks

My students/postdoc who did the real work are graduating.

There are some awesome people on the academic job market!