Tractable Learning in Structured Probability Spaces

Guy Van den Broeck

Southern California Machine Learning Symposium Nov 18, 2016

Structured probability spaces?

Running Example

Courses:

- Logic (L)
- Knowledge Representation (K)
- Probability (P)
- Artificial Intelligence (A)

Constraints

- Must take at least one of Probability or Logic.
- Probability is a prerequisite for AI.
- The prerequisites for KR is either AI or Logic.

Data

${ m L}$	K	Р	A	Students
0	0	1	0	6
0	0	1	1	54
0	1	1	1	10
1	0	0	0	5
1	0	1	0	1
1	0	1	1	0
1	1	0	0	17
1	1	1	0	4
1	1	1	1	3

Probability Space

unstructured

L	K	P	A
0	0	0	0
0	0	0	1
0	0	1	0
0	0	1	1
0	1	0	0
0	1	0	1
0	1	1	0
0	1	1	1
1	0	0	0
1	0	0	1
1	0	1	0
1	0	1	1
1	1	0	0
1	1	0	1
1	1	1	0
1	1	1	1

Structured Probability Space

unstructured

L	K	P	A
0	0	0	0
0	0	0	1
0	0	1	0
0	0	1	1
0	1	0	0
0	1	0	1
0	1	1	0
0	1	1	1
1	0	0	0
1	0	0	1
1	0	1	0
1	0	1	1
1	1	0	0
1	1	0	1
1	1	1	0
1	1	1	1

- Must take at least one of Probability or Logic.
- Probability is a prerequisite for AI.
- The prerequisites for KR is either AI or Logic.

7 out of 16 instantiations are impossible

structured

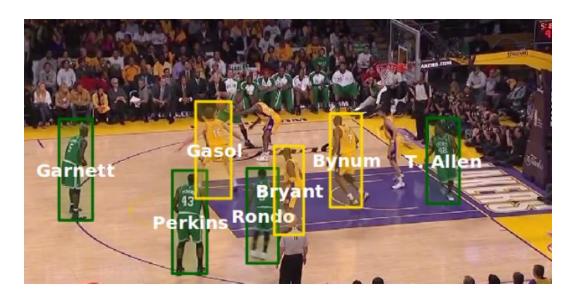
L	K	P	A
0	0	0	0
0	0	0	1
0	0	1	0
0	0	1	1
	1	0	0
0	1	0	1
		1	0
0	1	1	1
1	0	0	0
1	0	0	1
1	0	1	0
1	0	1	1
1	1	0	0
1	1	0	1
1	1	1	0
1	1	1	1

Learning with Constraints

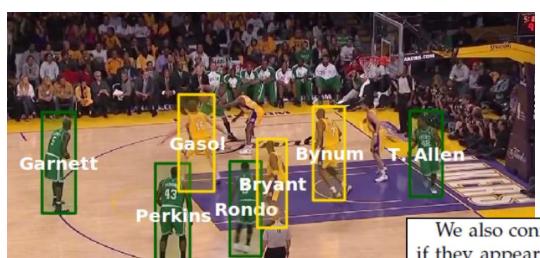
Learn a statistical model that assigns zero probability

to instantiations that violate the constraints.

Example: Video



Example: Video



We also connect all pairs of identity nodes $y_{t,i}$ and $y_{t,j}$ if they appear in the same time t. We then introduce an edge potential that enforces mutual exclusion:

$$\psi_{\text{mutex}}(y_{t,i}, y_{t,j}) = \begin{cases} 1 & \text{if } y_{t,i} \neq y_{t,j} \\ 0 & \text{otherwise} \end{cases}$$
 (5)

This potential specifies the constraint that a player can be appear only *once* in a frame. For example, if the i-th detection $y_{t,i}$ has been assign to Bryant, $y_{t,j}$ cannot have the same identity because Bryant is impossible to appear twice in a frame.

Non-local dependencies:

At least one verb in each sentence

- Non-local dependencies:
 At least one verb in each sentence
- Sentence compression

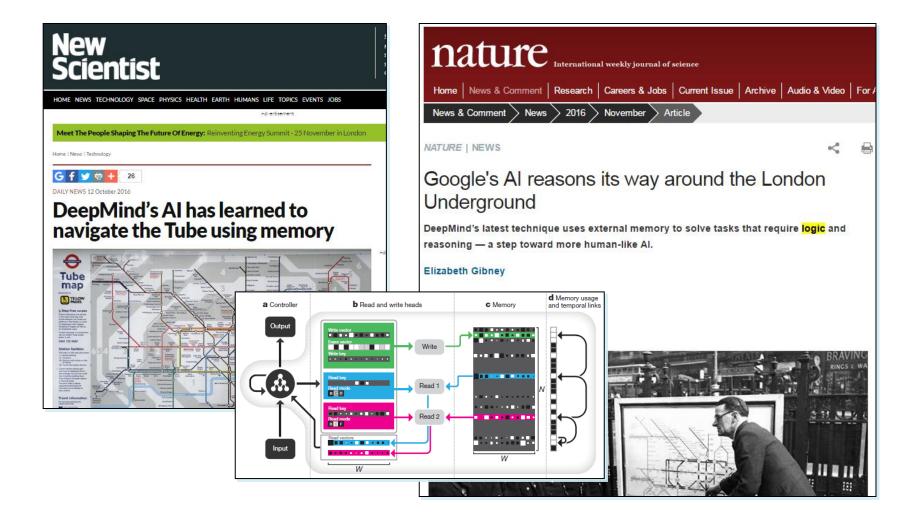
 If a modifier is kept, its subject is also kept

- Non-local dependencies:
 - At least one verb in each sentence
- Sentence compression
 If a modifier is kept, its subject is also kept
- Information extraction

	Citations		
Start	The citation must start with author		
	or editor.		
AppearsOnce	Each field must be a consecutive list		
	of words, and can appear at most		
	once in a citation.		
Punctuation	State transitions must occur on		
	punctuation marks.		
BookJournal	The words proc, journal, proceed-		
	ings, ACM		
	are $JOURNAL$ or $BOOKTITLE$.		
TechReport The words tech, technical a			
	$TECH_REPORT.$		
Title	Quotations can appear only in titles.		
Location The words CA, Australia, NY			
	LOCATION.		

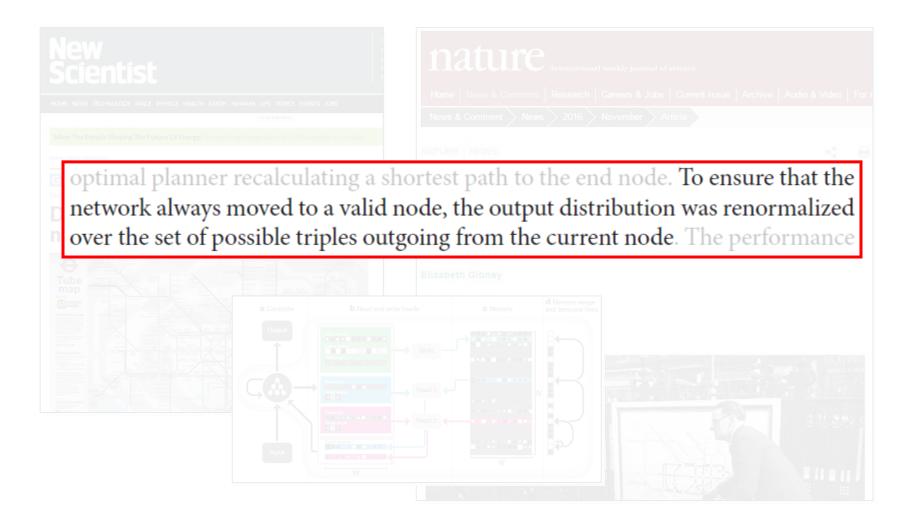
- Non-local dependencies:
 At least one verb in each sentence
- Sentence compression
 If a modifier is kept, its subject is also kept
- Information extraction
 Semantic role labeling
- ... and many more!

	Citations		
Start The citation must start with author			
	or editor.		
AppearsOnce	Each field must be a consecutive list		
	of words, and can appear at most		
	once in a citation.		
Punctuation	State transitions must occur on		
	punctuation marks.		
BookJournal	The words proc, journal, proceed-		
	$ings,\ ACM$		
	are $JOURNAL$ or $BOOKTITLE$.		
TechReport	The words tech, technical are		
	$TECH_REPORT.$		
Title Quotations can appear only in titl			
Location	The words CA , $Australia$, NY are		
	LOCATION.		

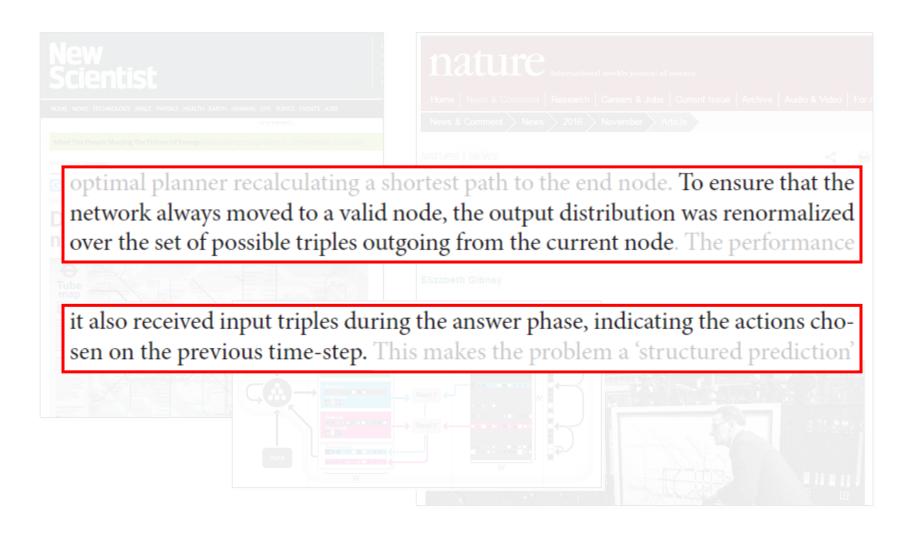


[Graves, A., Wayne, G., Reynolds, M., Harley, T., Danihelka, I., Grabska-Barwińska, A., et al.. (2016). Hybrid computing using a neural network with dynamic external memory. *Nature*, *538*(7626), 471-476.]

[Graves, A., Wayne, G., Reynolds, M., Harley, T., Danihelka, I., Grabska-Barwińska, A., et al.. (2016). Hybrid computing using a neural network with dynamic external memory. *Nature*, *538*(7626), 471-476.]



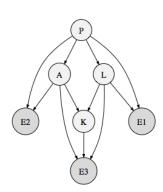
[Graves, A., Wayne, G., Reynolds, M., Harley, T., Danihelka, I., Grabska-Barwińska, A., et al.. (2016). Hybrid computing using a neural network with dynamic external memory. *Nature*, *538*(7626), 471-476.]



[Graves, A., Wayne, G., Reynolds, M., Harley, T., Danihelka, I., Grabska-Barwińska, A., et al.. (2016). Hybrid computing using a neural network with dynamic external memory. *Nature*, *538*(7626), 471-476.]

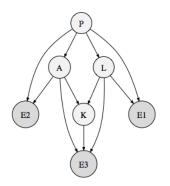
What are people doing now?

- Ignore
- Hack your way around
- Handcraft into models
- Use specialized distributions
- Find non-structured encoding
- Try to learn constraints



What are people doing now?

- Ignore
- Hack your way around
- Handcraft into models
- Use specialized distributions
- Find non-structured encoding
- Try to learn constraints



Accuracy?

Specialized skill?

Impossible?

Intractable inference?

Intractable learning?

Waste parameters?

Risk predicting out of space?

+

you are on your own 🕾

Structured Probability Spaces

- Everywhere in ML!
 - Configuration problems, video, text, deep learning
 - Planning and diagnosis (physics)
 - Cooking scenarios (interpreting videos)
 - Combinatorial objects: parse trees, rankings, directed acyclic graphs, trees, simple paths, game traces, etc.

Structured Probability Spaces

- Everywhere in ML!
 - Configuration problems, video, text, deep learning
 - Planning and diagnosis (physics)
 - Cooking scenarios (interpreting videos)
 - Combinatorial objects: parse trees, rankings, directed acyclic graphs, trees, simple paths, game traces, etc.
- Representations: constrained conditional models, mixed networks, probabilistic logics.

Structured Probability Spaces

- Everywhere in ML!
 - Configuration problems, video, text, deep learning
 - Planning and diagnosis (physics)
 - Cooking scenarios (interpreting videos)
 - Combinatorial objects: parse trees, rankings, directed acyclic graphs, trees, simple paths, game traces, etc.
- Representations: constrained conditional models, mixed networks, probabilistic logics.

No ML boxes out there that take constraints as input!

The Problem / The ML Box

Goal: Constraints as important as data! General purpose!

Data

Probabilistic Model
(Distribution)

Constraints

Specification Language: Logic

Structured Probability Space

unstructured

L	K	P	A
0	0	0	0
0	0	0	1
0	0	1	0
0	0	1	1
0	1	0	0
0	1	0	1
0	1	1	0
0	1	1	1
1	0	0	0
1	0	0	1
1	0	1	0
1	0	1	1
1	1	0	0
1	1	0	1
1	1	1	0
1	1	1	1

- Must take at least one of Probability or Logic.
- Probability is a prerequisite for AI.
- The prerequisites for KR is either AI or Logic.

7 out of 16 instantiations are impossible

structured

L	K	P	A
	0	0	0
0	0	0	1
0	0	1	0
0	0	1	1
	1	0	0
0	1	0	1
	1	1	0
0	1	1	1
1	0	0	0
1	0	0	1
1	0	1	0
1	0	1	1
1	1	0	0
1	1	0	1
1	1	1	0
1	1	1	1

Boolean Constraints

unstructured

L	K	P	A
0	0	0	0
0	0	0	1
0	0	1	0
0	0	1	1
0	1	0	0
0	1	0	1
0	1	1	0
0	1	1	1
1	0	0	0
1	0	0	1
1	0	1	0
1	0	1	1
1	1	0	0
1	1	0	1
1	1	1	0
1	1	1	1

$$\begin{aligned} P \lor L \\ A \Rightarrow P \\ K \Rightarrow (P \lor L) \end{aligned}$$

7 out of 16 instantiations are impossible

structured

L	K	P	A
0	0	0	0
0	0	0	1
0	0	1	0
0	0	1	1
	1	0	0
0	1	0	1
		1	0
0	1	1	1
1	0	0	0
1	0	0	1
1	0	1	0
1	0	1	1
1	1	0	0
1	1	0	1
1	1	1	0
1	1	1	1

Combinatorial Objects: Rankings

rank	sushi
1	fatty tuna
2	sea urchin
3	salmon roe
4	shrimp
5	tuna
6	squid
7	tuna roll
8	see eel
9	egg
10	cucumber roll

rank	sushi
1	shrimp
2	sea urchin
3	salmon roe
4	fatty tuna
5	tuna
6	squid
7	tuna roll
8	see eel
9	egg
10	cucumber roll

10 items: 3,628,800

rankings

20 items:

2,432,902,008,176,640,000 rankings

Combinatorial Objects: Rankings

rank	sushi		
1	fatty tuna		
2	sea urchin		
3	salmon roe		
4	shrimp		
5	tuna		
6	squid		
7	tuna roll		
8	see eel		
9	egg		
10	cucumber roll		

rank	sushi
1	shrimp
2	sea urchin
3	salmon roe
4	fatty tuna
5	tuna
6	squid
7	tuna roll
8	see eel
9	egg
10	cucumber roll

 A_{ij} item i at position j (n items require n^2 Boolean variables)

Combinatorial Objects: Rankings

rank	sushi
1	fatty tuna
2	sea urchin
3	salmon roe
4	shrimp
5	tuna
6	squid
7	tuna roll
8	see eel
9	egg
10	cucumber roll

rank	sushi
1	shrimp
2	sea urchin
3	salmon roe
4	fatty tuna
5	tuna
6	squid
7	tuna roll
8	see eel
9	egg
10	cucumber roll

 A_{ij} item i at position j (n items require n^2 Boolean variables)

An item may be assigned to more than one position

A position may contain more than one item

 A_{ij} : item i at position j

	pos 1	pos 2	pos 3	pos 4
item 1	A_{11}	A_{12}	A_{13}	A_{14}
item 2	A_{21}	A_{22}	A_{23}	A_{24}
item 3	A_{31}	A_{32}	A_{33}	A_{34}
item 4	A_{41}	A_{42}	A_{43}	A_{44}

 A_{ij} : item i at position j

	pos 1	pos 2	pos 3	pos 4
item 1	A_{11}	A_{12}	A_{13}	A_{14}
item 2	A_{21}	A_{22}	A_{23}	A_{24}
item 3	A_{31}	A_{32}	A_{33}	A_{34}
item 4	A_{41}	A_{42}	A_{43}	A_{44}

constraint: each item *i* assigned to a unique position (*n* constraints)

$$\bigvee_{j} A_{ij} \wedge \left(\bigwedge_{k \neq j} \neg A_{ik} \right)$$

 A_{ii} : item i at position j

	pos 1	pos 2	pos 3	pos 4
item 1	A_{11}	A_{12}	A_{13}	A_{14}
item 2	A_{21}	A_{22}	A_{23}	A_{24}
item 3	A_{31}	A_{32}	A_{33}	A_{34}
item 4	A_{41}	A_{42}	A_{43}	A_{44}

constraint: each item i assigned to a unique position (*n* constraints)

$$\bigvee_{j} A_{ij} \wedge \left(\bigwedge_{k \neq j} \neg A_{ik} \right)$$

 $\bigvee_{j} A_{ij} \wedge \left(\bigwedge_{k \neq j} \neg A_{ik} \right)$ **constraint:** each position j assigned a unique item (*n* constraints)

$$\bigvee_i A_{ij} \wedge \left(\bigwedge_{k \neq i} \neg A_{kj} \right)$$

 A_{ii} : item i at position j

	pos 1	pos 2	pos 3	pos 4
item 1	A_{11}	A_{12}	A_{13}	A_{14}
item 2	A_{21}	A_{22}	A_{23}	A_{24}
item 3	A_{31}	A_{32}	A_{33}	A_{34}
item 4	A_{41}	A_{42}	A_{43}	A_{44}

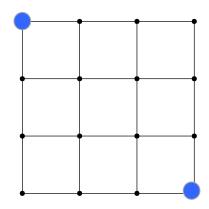
constraint: each item i assigned to a unique position (*n* constraints)

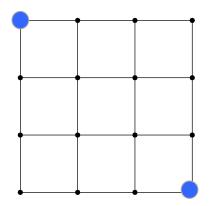
$$\bigvee_{j} A_{ij} \wedge \left(\bigwedge_{k \neq j} \neg A_{ik} \right)$$

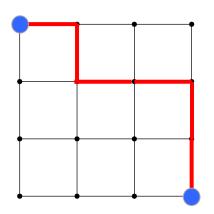
 $\bigvee_{j} A_{ij} \wedge \left(\bigwedge_{k \neq j} \neg A_{ik} \right)$ **constraint:** each position j assigned a unique item (*n* constraints)

$$\bigvee_i A_{ij} \wedge \left(\bigwedge_{k \neq i} \neg A_{kj} \right)$$

total constraints 2n 2^{n^2} <u>unstructured</u> space n!structured space

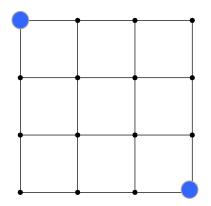


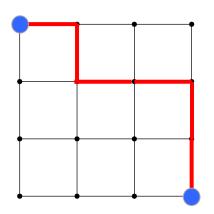


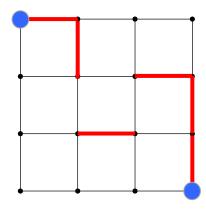


Good variable assignment (represents route)

184







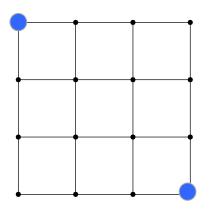
Good variable assignment (represents route)

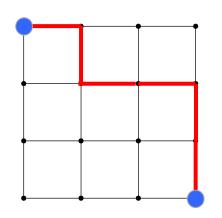
(does not represent route)

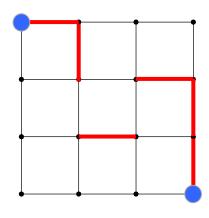
Bad variable assignment

184

16,777,032







Good variable assignment (represents route)

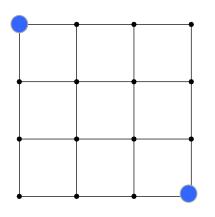
184

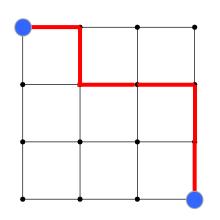
Bad variable assignment (does not represent route)

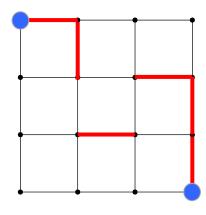
16,777,032

Space easily encoded in logical constraints ©

Structured Space for Paths







Good variable assignment (represents route)

184

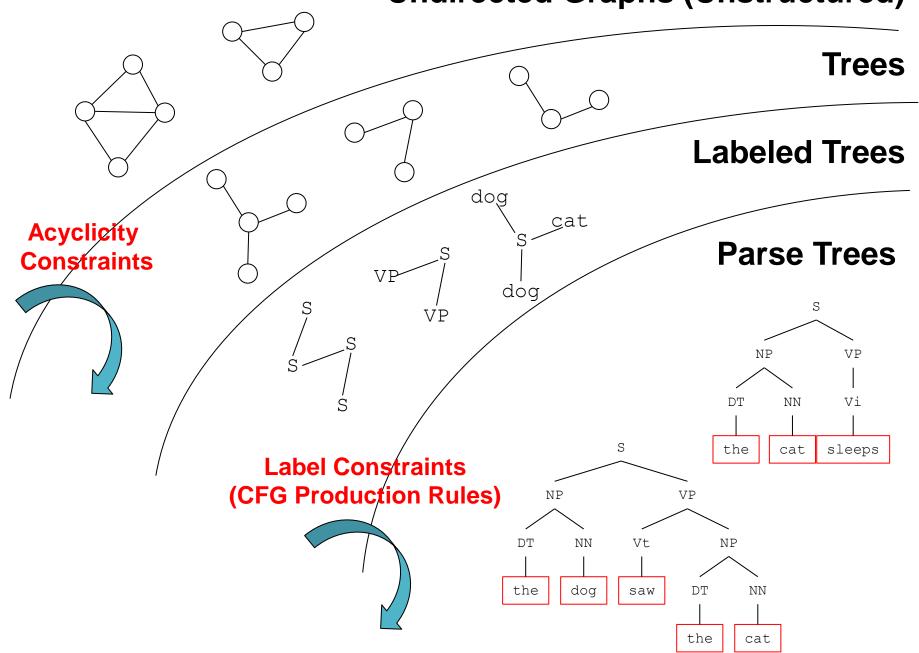
Bad variable assignment (does not represent route)

16,777,032

Space easily encoded in logical constraints ©

Unstructured probability space: $184+16,777,032 = 2^{24}$

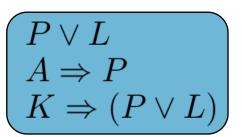
Undirected Graphs (Unstructured)

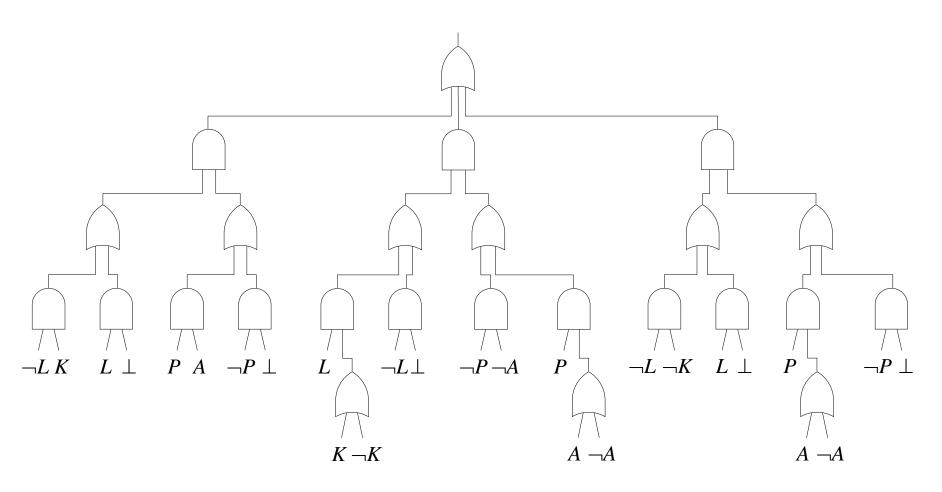


"Deep Architecture"

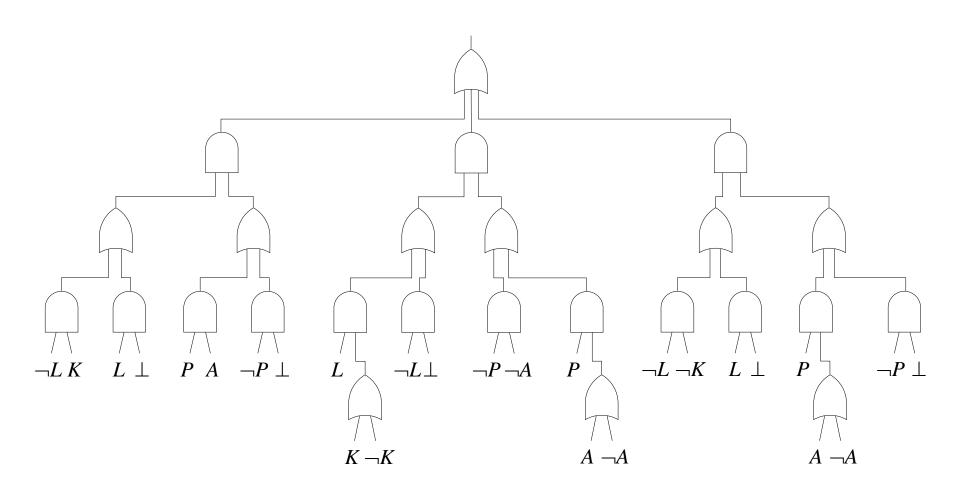
Logic + Probability

Logical Circuits

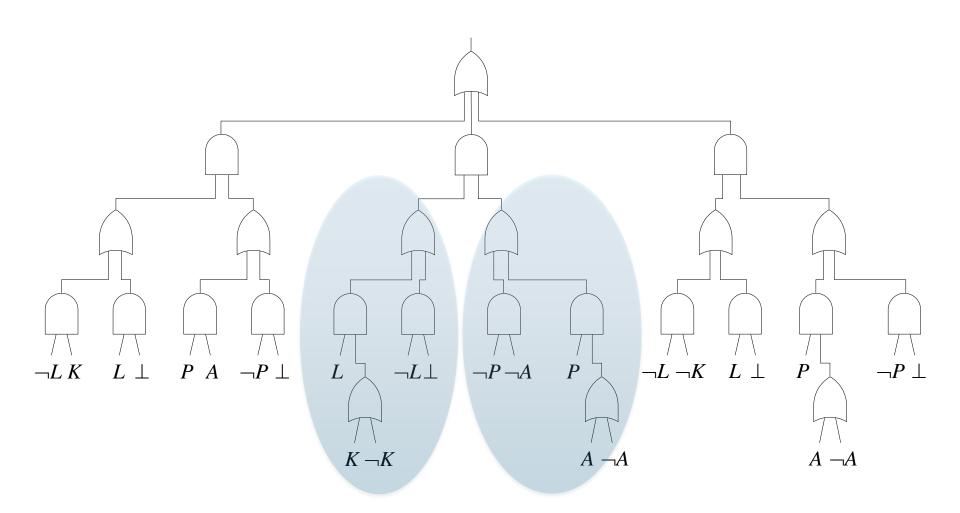




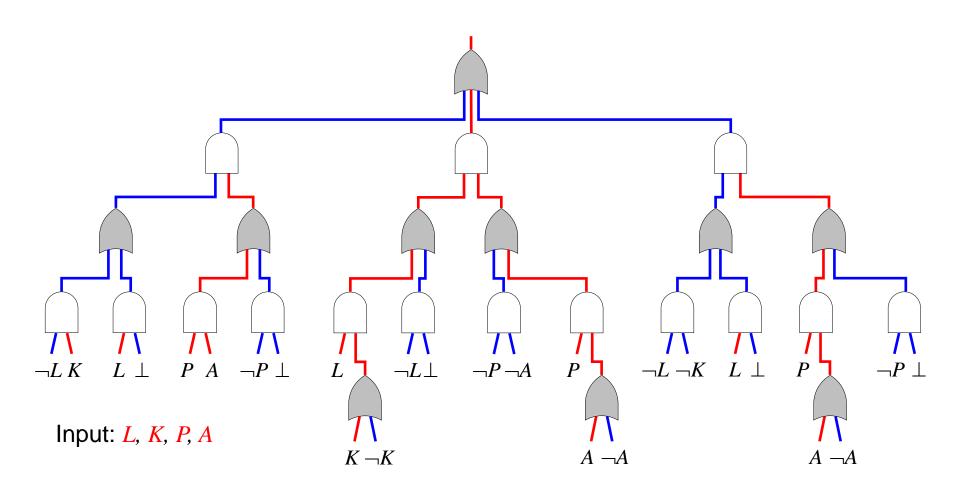
Property: Decomposability



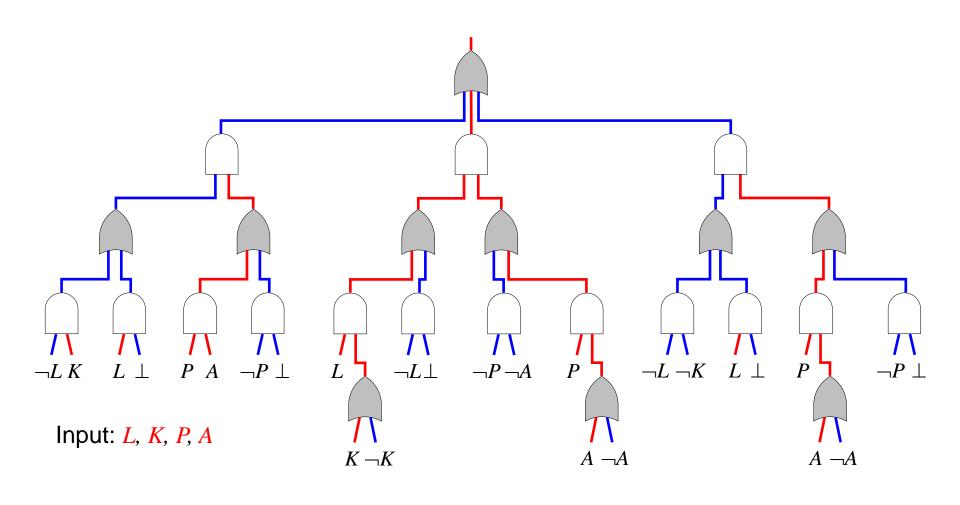
Property: Decomposability



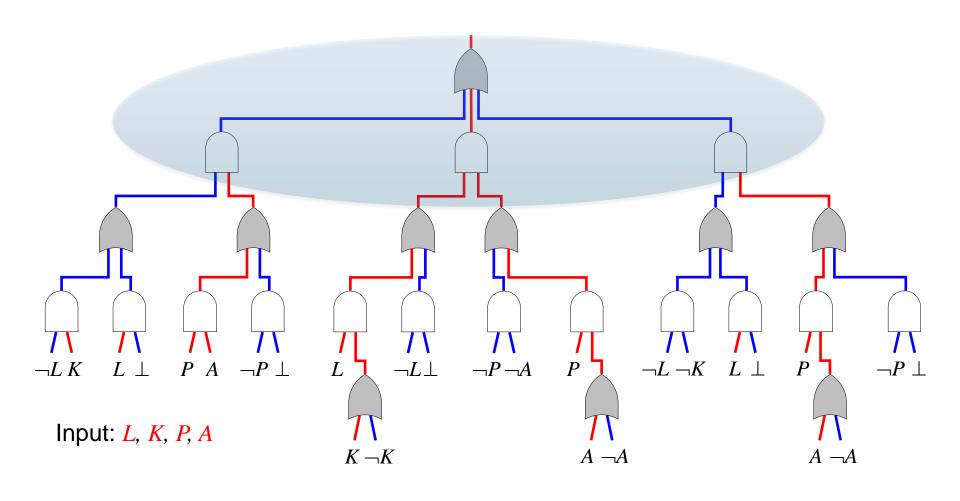
Property: Determinism



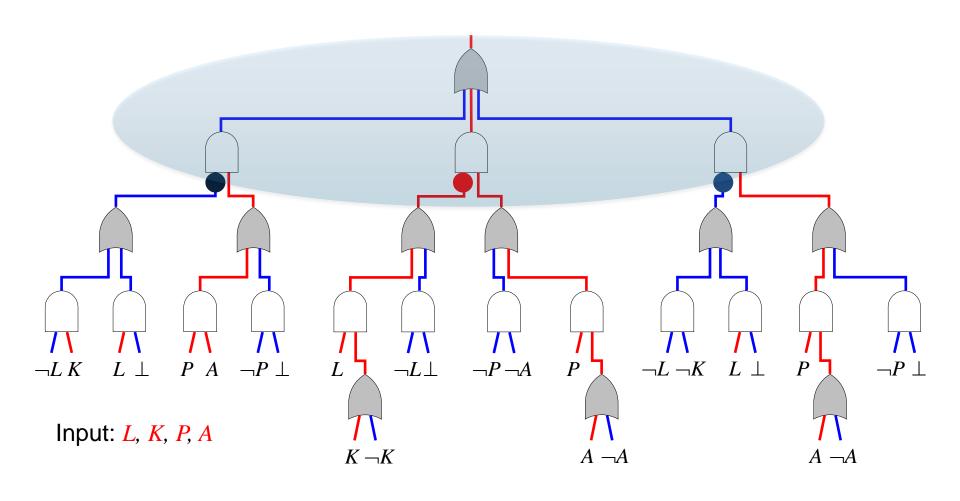
Sentential Decision Diagram (SDD)



Sentential Decision Diagram (SDD)



Sentential Decision Diagram (SDD)



Tractable for Logical Inference

- Is structured space empty? (SAT)
- Count size of structured space (#SAT)
- Check equivalence of spaces
- Algorithms linear in circuit size ©
 (pass up, pass down, similar to backprop)

Tractable for Logical Inference

- Is structured space empty? (SAT)
- Count size of structured space (#SAT)
- Check equivalence of spaces
- Algorithms linear in circuit size ©
 (pass up, pass down, similar to backprop)

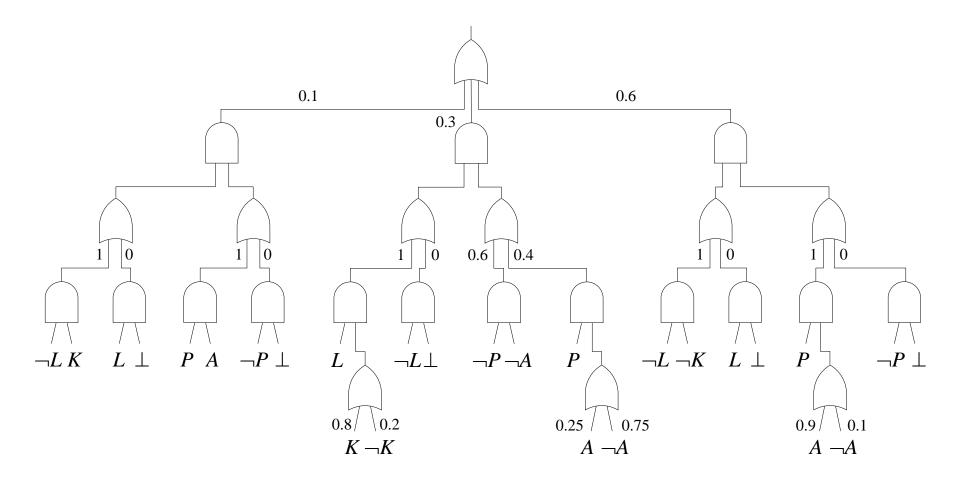
SCIENCE + TECHNOLOGY

Artificial intelligence framework developed by UCLA professor now powers Toyota websites

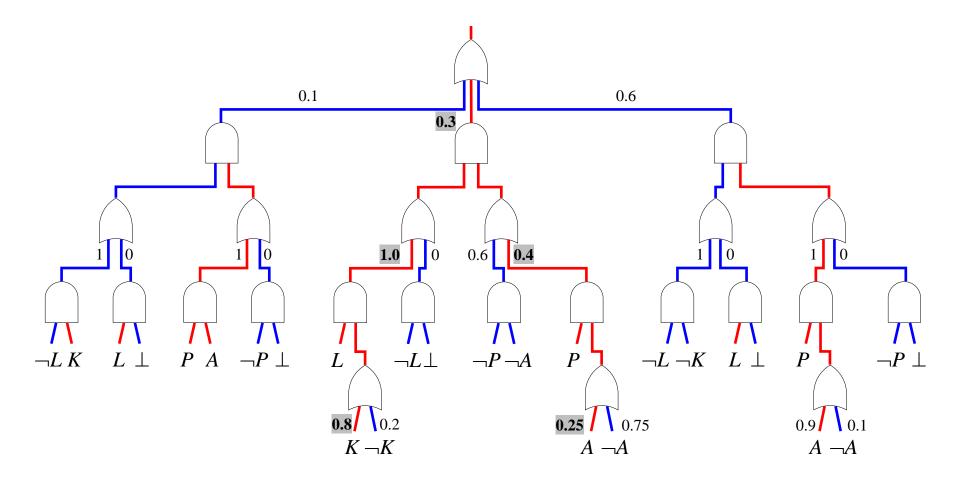
Adnan Darwiche's invention helps consumers customize their vehicles online

Matthew Chin | May 12, 2016

PSDD: Probabilistic SDD

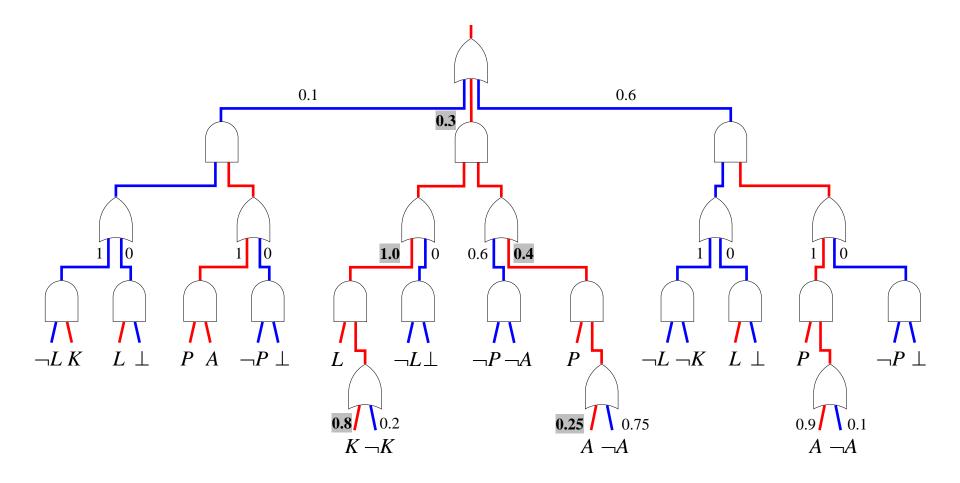


PSDD: Probabilistic SDD

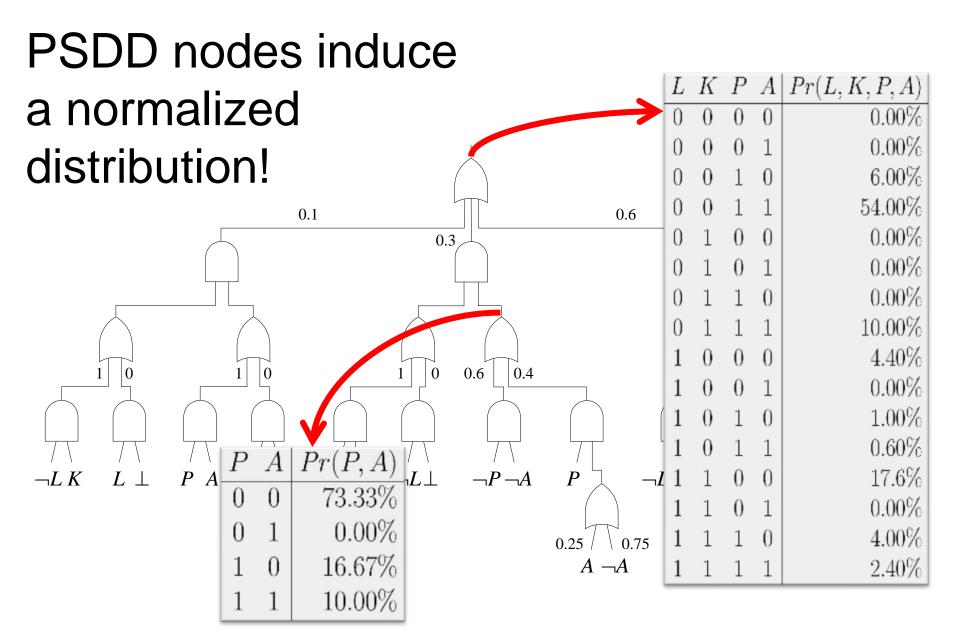


Input: *L*, *K*, *P*, *A*

PSDD: Probabilistic SDD



Input: L, K, P, A $P(L, K, P, A) = 0.3 \times 1.0 \times 0.8 \times 0.4 \times 0.25 = 0.024$



Can read independences off the circuit structure

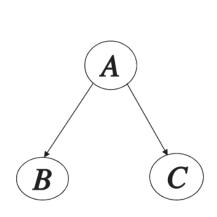
Tractable for Probabilistic Inference

- MAP inference: Find most-likely assignment (otherwise NP-complete)
- Computing conditional probabilities Pr(x|y) (otherwise PP-complete)
- Sample from Pr(x|y)
- Algorithms linear in circuit size ©
 (pass up, pass down, similar to backprop)

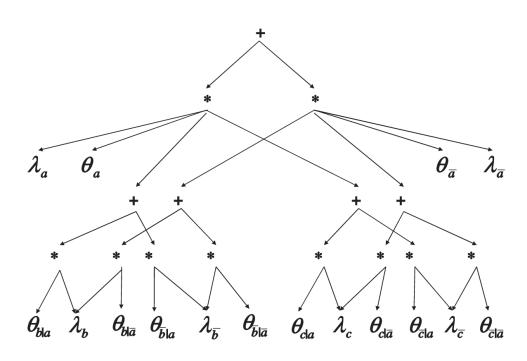
PSDDs are Arithmetic Circuits

(ACs)

[Darwiche, JACM 2003]



Bayesian Network (BN)

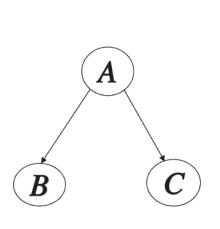


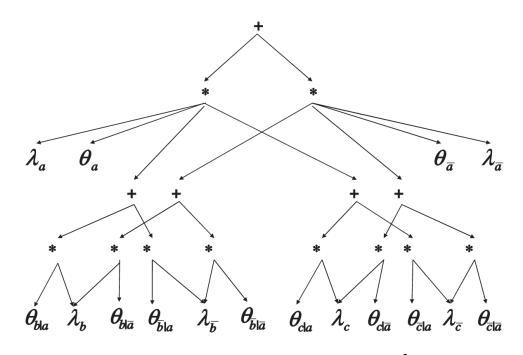
Arithmetic Circuit (AC)

PSDDs are Arithmetic Circuits

(ACs)

[Darwiche, JACM 2003]





Bayesian Network (BN)

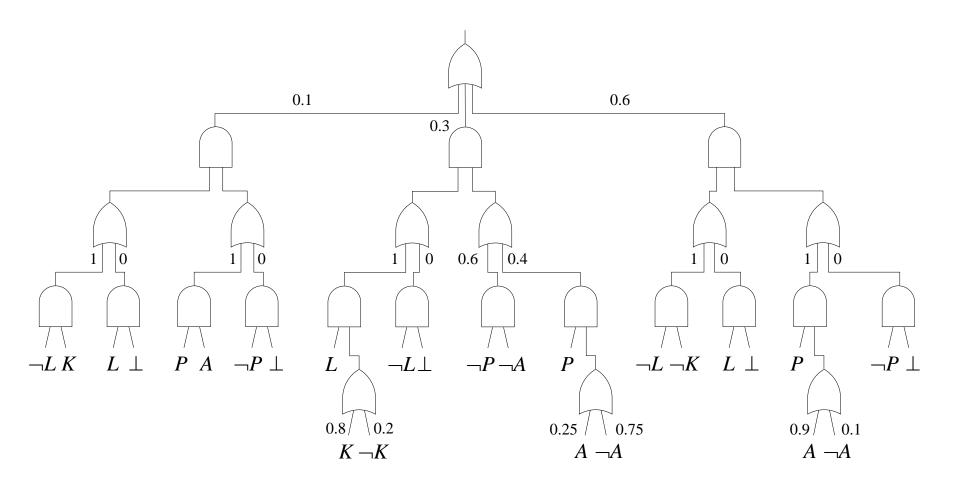
Arithmetic Circuit (AC)

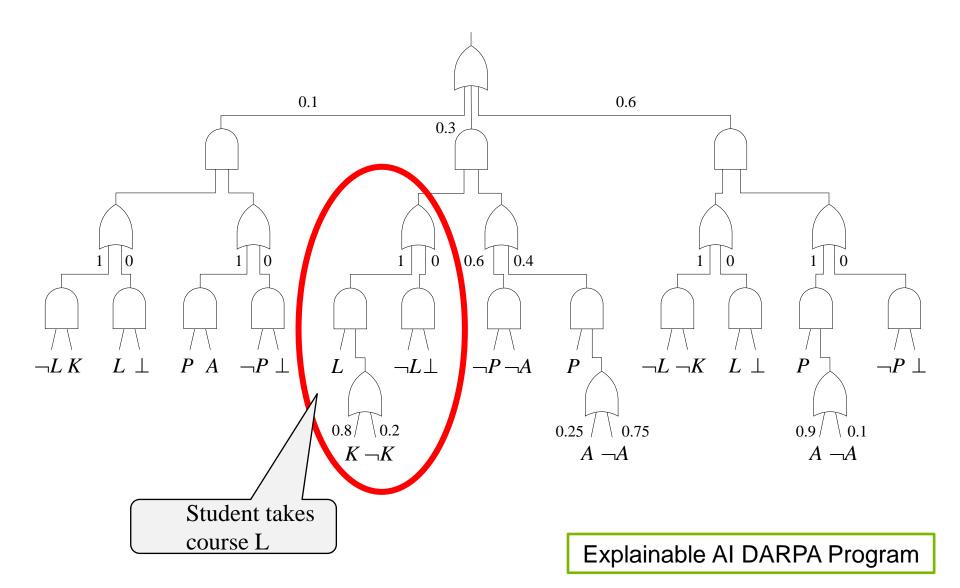
Known in the ML literature as SPNs UAI 2011, NIPS 2012 best paper awards

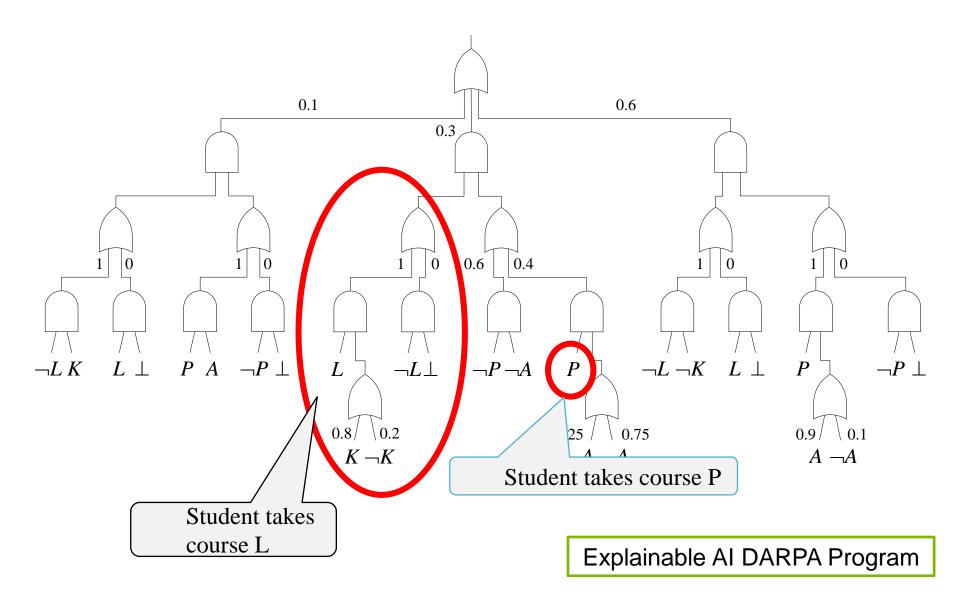
[ICML 2014] (SPNs equivalent to ACs)

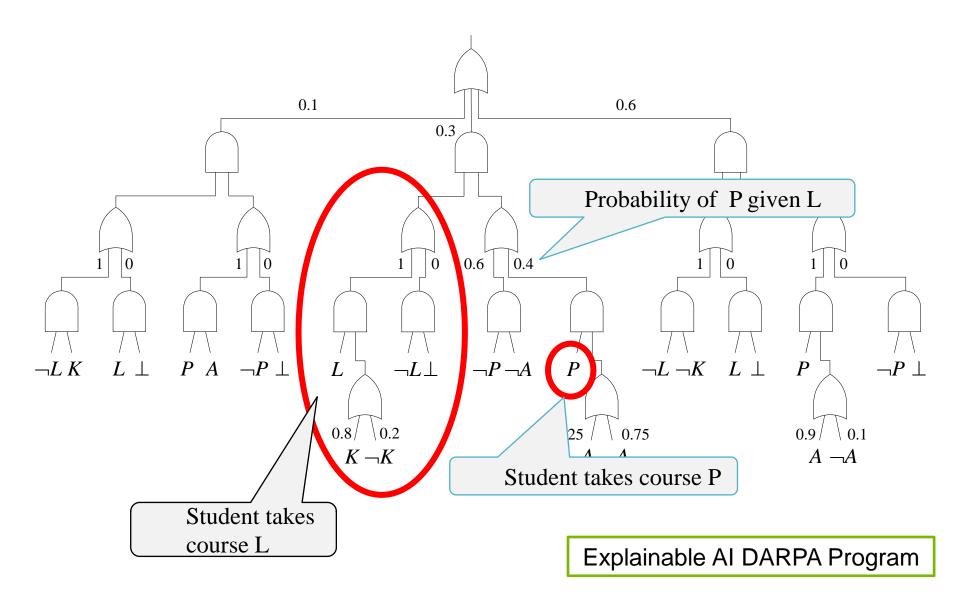
Learning PSDDs

Logic + Probability + ML









Learning Algorithms

Parameter learning:

Closed form max likelihood from complete data One pass over data to estimate Pr(x|y)

Note a lot to say: very easy!

Learning Algorithms

Parameter learning:

Closed form max likelihood from complete data One pass over data to estimate Pr(x|y)

Note a lot to say: very easy!

- Structure learning:
 - Compile constraints to SDD
 Use SAT solver technology
 (naive? see later)

Learning Algorithms

Parameter learning:

Closed form max likelihood from complete data One pass over data to estimate Pr(x|y)

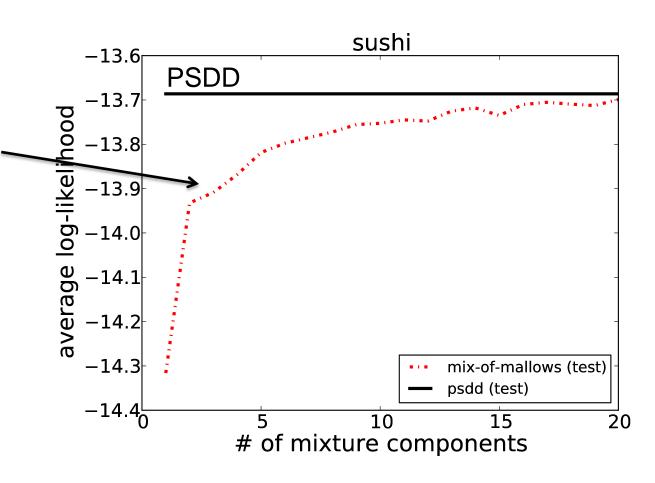
Note a lot to say: very easy!

- Structure learning:
 - Compile constraints to SDDUse SAT solver technology(naive? see later)
 - Search for structure to fit data (ongoing work)

Learning Preference Distributions

Special-purpose distribution:
Mixture-of-Mallows

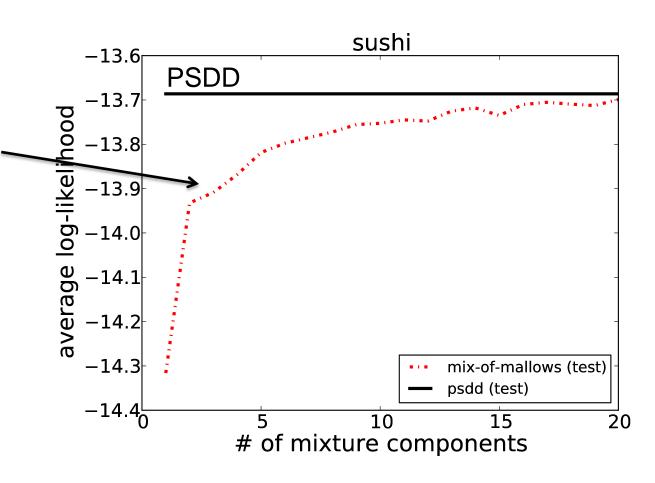
- # of componentsfrom 1 to 20
- EM with10 random seeds
- implementation of Lu & Boutilier



Learning Preference Distributions

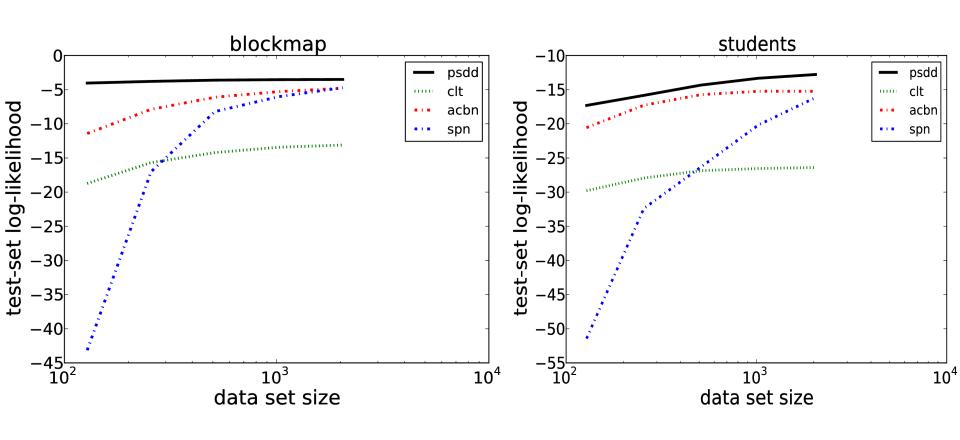
Special-purpose distribution:
Mixture-of-Mallows

- # of componentsfrom 1 to 20
- EM with10 random seeds
- implementation of Lu & Boutilier

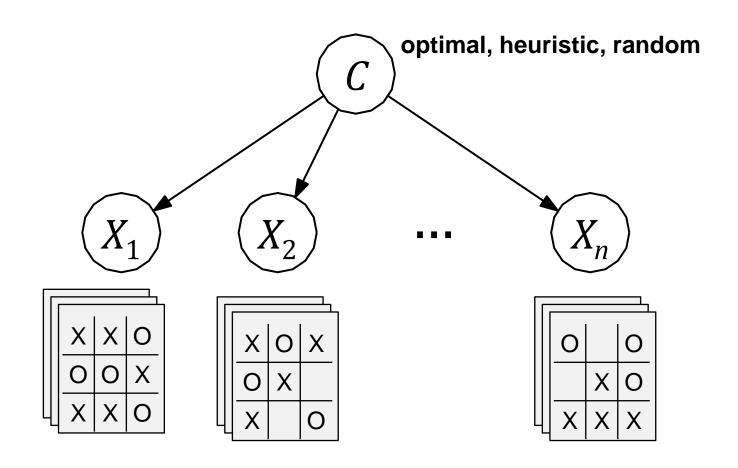


This is the naive approach, without real structure learning!

What happens if you ignore constraints?

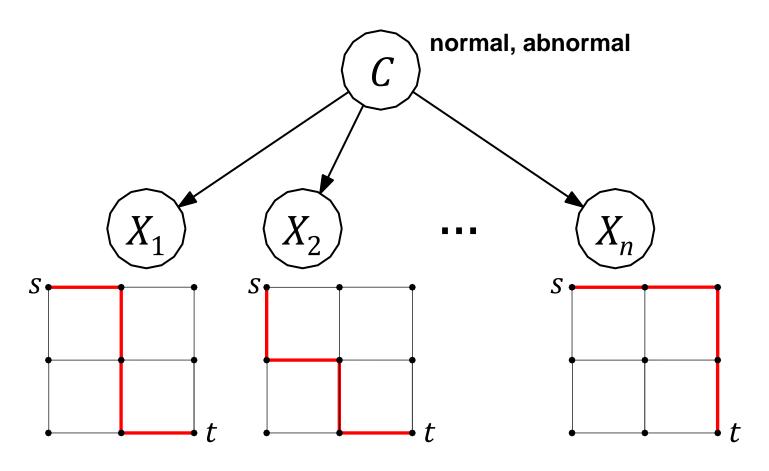


Structured Naïve Bayes Classifier



Attribute with 362,880 values (possible game traces)

Structured Naïve Bayes Classifier



Attribute with 789,360,053,252 values (routes in 8×8 grid)

Learning Route Distributions (ongoing)



- Uber GPS data in SF
- Project GPS coordinates onto a graph, then learn distributions over routes
- Applications:
 - Detect anomalies
 - Given a partial route, predict its most likely completion

Parameter Estimation

a classical complete dataset

id	X	Υ	Z
1	X ₁	y ₂	Z ₁
2	X_2	y ₁	z_2
3	X ₂	y ₁	z_2
4	X ₁	y ₁	z ₁
5	X ₁	y ₂	z_2

closed-form (maximum-likelihood estimates are unique) a classical incomplete dataset

id	Х	Υ	Z
1	X ₁	y ₂	?
2	X_2	y ₁	?
3	?	?	Z_2
4	?	y ₁	Z ₁
5	X ₁	y ₂	Z_2

EM algorithm

Parameter Estimation

a classical complete dataset

id	X	Y	Z
1	X ₁	y ₂	Z ₁
2	X_2	y ₁	z_2
3	X_2	y ₁	z_2
4	X ₁	y ₁	Z ₁
5	X ₁	y ₂	z_2

closed-form (maximum-likelihood estimates are unique) a classical incomplete dataset

id	X	Υ	Z
1	X ₁	y ₂	?
2	X_2	y ₁	?
3	?	?	Z_2
4	?	y ₁	Z ₁
5	x ₁	y ₂	Z_2

EM algorithm

a new type of incomplete dataset

id	Х	Υ	Z
1	$X \equiv Z$		
2	x ₂ ar	nd (y ₂ (or z ₂)
3	2	$x_2 \Rightarrow y$	1
4	X ⊕	Y ⊕ Z	Z ≡ 1
5	x ₁ ar	nd y ₂ a	nd z ₂

Missed in the ML literature

Structured Datasets

a classical **complete** dataset (e.g., total rankings)

id	1 st sushi	2 nd sushi	3 rd sushi	
1	fatty tuna	sea urchin	salmon roe	
2	fatty tuna	tuna	shrimp	
3	tuna	tuna roll	sea eel	
4	fatty tuna	salmon roe	tuna	
5	egg	squid	shrimp	

a classical **incomplete** dataset (e.g., top-*k* rankings)

id	1 st sushi	2 nd sushi	3 rd sushi	
1	fatty tuna	sea urchin	?	
2	fatty tuna	?	?	
3	tuna	tuna roll	?	
4	fatty tuna	salmon roe	?	
5	egg	?	?	•••

Structured Datasets

a classical **complete** dataset (e.g., total rankings)

id	1 st sushi	2 nd sushi	3 rd sushi	
1	fatty tuna	sea urchin	salmon roe	
2	fatty tuna	tuna	shrimp	
3	tuna	tuna roll	sea eel	
4	fatty tuna	salmon roe	tuna	
5	egg	squid	shrimp	

a new type of **incomplete** dataset (e.g., **partial** rankings)

id	1 st sushi	2 nd sushi	3 rd sushi	
1	(fatty t and	•••		
2	(fatty tuna is 1 st) and (salmon roe > egg)			
3	tuna > squid			
4	egg is last			
5	egg > squid > shrimp			

(represents constraints on possible *total rankings*)

Learning from Incomplete Data

Movielens Dataset:

- 3,900 movies, 6,040 users, 1m ratings
- take ratings from 64 most rated movies
- ratings 1-5 converted to pairwise prefs.

• PSDD for **partial** rankings

- 4 tiers
- 18,711 parameters

movies by expected tier

rank	movie		
1	The Godfather		
2	The Usual Suspects		
3	Casablanca		
4	The Shawshank Redemption		
5	Schindler's List		
6	One Flew Over the Cuckoo's Nest		
7	The Godfather: Part II		
8	Monty Python and the Holy Grail		
9	Raiders of the Lost Ark		
10	Star Wars IV: A New Hope		

PSDD Sizes

items	tier size		Size	
n	k	SDD	Structured Space	Unstructured Space
8	2	443	840	$1.84 \cdot 10^{19}$
27	3	$4,\!114$	$1.18 \cdot 10^{9}$	$2.82 \cdot 10^{219}$
64	4	$23,\!497$	$3.56 \cdot 10^{18}$	$1.04 \cdot 10^{1233}$
125	5	94,616	$3.45\cdot 10^{31}$	$3.92 \cdot 10^{4703}$
216	6	297,295	$1.57 \cdot 10^{48}$	$7.16 \cdot 10^{14044}$
343	7	781,918	$4.57\cdot 10^{68}$	$7.55 \cdot 10^{35415}$

rank	movie		
1	Star Wars V: The Empire Strikes Back		
2	Star Wars IV: A New Hope		
3	The Godfather		
4	The Shawshank Redemption		
5	The Usual Suspects		

rank	movie
1	Star Wars V: The Empire Strikes Back
2	Star Wars IV: A New Hope
3	The Godfather
4	The Shawshank Redemption
5	The Usual Suspects

- no other Star Wars movie in top-5
- at least one comedy in top-5

rank	movie
1	Star Wars V: The Empire Strikes Back
2	Star Wars IV: A New Hope
3	The Godfather
4	The Shawshank Redemption
5	The Usual Suspects

- no other Star Wars movie in top-5
- at least one comedy in top-5

rai	nk	movie
1	l	Star Wars V: The Empire Strikes Back
2	2	American Beauty
3	3	The Godfather
4	1	The Usual Suspects
5	5	The Shawshank Redemption

rank	movie
1	Star Wars V: The Empire Strikes Back
2	Star Wars IV: A New Hope
3	The Godfather
4	The Shawshank Redemption
5	The Usual Suspects

- no other Star Wars movie in top-5
- at least one comedy in top-5

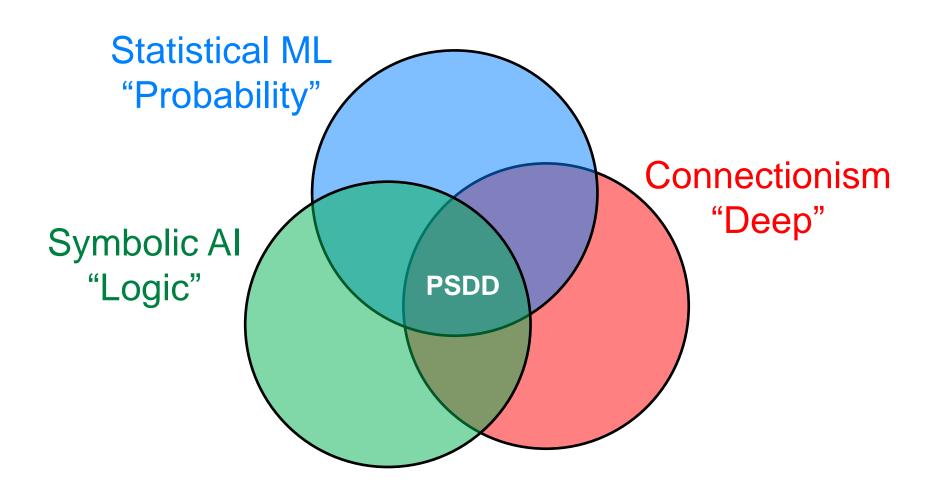
rank	movie
1	Star Wars V: The Empire Strikes Back
2	American Beauty
3	The Godfather
4	The Usual Suspects
5	The Shawshank Redemption

diversified recommendations via *logical constraints*

Conclusions

- Structured spaces are everywhere ©
- Roles of Boolean constraints in ML
 - Domain constraints and combinatorial objects (structured probability space)
 - Incomplete examples (structured datasets)
 - Questions and evidence (structured queries)
- Learn distributions over combinatorial objects
- Strong properties for inference and learning

Conclusions



References

Probabilistic Sentential Decision Diagrams

Doga Kisa, Guy Van den Broeck, Arthur Choi and Adnan Darwiche KR, 2014

Learning with Massive Logical Constraints

Doga Kisa, Guy Van den Broeck, Arthur Choi and Adnan Darwiche ICML 2014 workshop

Tractable Learning for Structured Probability Spaces

Arthur Choi, Guy Van den Broeck and Adnan Darwiche IJCAI, 2015

Tractable Learning for Complex Probability Queries

Jessa Bekker, Jesse Davis, Arthur Choi, Adnan Darwiche, Guy Van den Broeck. NIPS, 2015

Structured Features in Naive Bayes Classifiers

Arthur Choi, Nazgol Tavabi and Adnan Darwiche AAAI, 2016

Tractable Operations on Arithmetic Circuits

Jason Shen, Arthur Choi and Adnan Darwiche NIPS, 2016

Upcoming NIPS oral presentation "PSDDs can be multiplied efficiently"

Questions?

PSDD with 15,000 nodes