Monte-Carlo tree search for multi-player, no-limit Texas hold'em poker

Guy Van den Broeck

Opponent modeling

Who has the Ace?

Incomplete information

Who has the Ace?

What are the odds?

Game of chance

Who has the Ace?

What are the odds?

I'll bet because he always calls

Exploitation

Who has the Ace?

What are the odds?

What can happen next?

I'll bet because he always calls

Huge state space

Risk management & Continuous action space

Take-Away Message: We can solve all these problems!

Problem Statement

- A bot for Texas hold'em poker
 - No-Limit & > 2 players
 - Not done before!
 - Exploitative, not game theoretic
 - Game tree search + Opponent modeling
- Applies to any problem with either
 - incomplete information
 - non-determinism
 - continuous actions

- Overview approach
 - The Poker game tree
 - Opponent model
 - Monte-Carlo tree search
- Research challenges
 - Search
 - Opponent model
- Conclusion

Overview approach

- The Poker game tree
- Opponent model
- Monte-Carlo tree search
- Research challenges
 - Search
 - Opponent model
- Conclusion

- Overview approach
 - The Poker game tree
 - Opponent model
 - Monte-Carlo tree search
- Research challenges
 - Search
 - Opponent model
- Conclusion

Poker Game Tree

- Minimax trees: deterministic
 - Tic-tac-toe, checkers, chess, go,...

Poker Game Tree

- Minimax trees: deterministic
 - Tic-tac-toe, checkers, chess, go,...
- Expecti(mini)max trees: chance

min

Backgammon, ...

max

Poker Game Tree

Minimax trees: deterministic Tic-tac-toe, checkers, chess, go,... min max Expecti(mini)max trees: chance Backgammon, ... mix min max Miximax trees: hidden information + opponent model mix mix max

- Overview approach
 - The Poker game tree
 - Copponent model
 - Monte-Carlo tree search
- Research challenges
 - Search
 - Opponent model
- Conclusion

Short Experiment

Opponent Model

- Set of probability trees
- Weka's M5'
- Separate model for
 - Actions

 $P(A_i|A_0\ldots A_{i-1},C_0\ldots C_i)$

Hand cards at showdown $P(H|A_0 \dots A_n, C_0 \dots C_n)$

Fold Probability

```
nbAllPlayerRaises <= 1.5 :
callFrequency \leq 0.128 :
    nbActionsThisRound \leq 2.5:
         potOdds <= 0.28 :
              AF <= 2.585 : 0.6904
              AF > 2.585:
                   potSize <= 3.388 :
                        round=flop <= 0.5 : 0.8068
                        round=flop > 0.5 : 0.6896
                   potSize > 3.388 : 0.8198
         potOdds > 0.28:
               stackSize \leq 97.238:
                   callFrequency <= 0.038 : 0.8838
                   callFrequency > 0.038:
                        round=flop <= 0.5 : 0.8316
                        round=flop > 0.5:
                             nbSeatedPlayers <= 7.5 : 0.6614</pre>
                        nbSeatedPlayers > 7.5 : 0.7793
               stackSize > 97.238 :
                   potSize <= 4.125 :
                        foldFrequency <= 0.813 : 0.7839</pre>
                        foldFrequency > 0.813 : 0.9037
                   potSize > 4.125 : 0.8623
    nbActionsThisRound > 2.5:
          potOdds <= 0.218 :
              callFrequency <= 0.067 : 0.8753
              callFrequency > 0.067 : 0.7661
         potOdds > 0.218 :
              AF <= 2.654 : 0.8818
             AF > 2.654 : 0.921
```


Learn distribution of hand ranks at showdown

- Overview approach
 - The Poker game tree
 - Opponent model
 - Monte-Carlo tree search
- Research challenges
 - Search
 - Opponent model
- Conclusion

Traversing the tree

Limit Texas Hold'em

- 10¹⁸ nodes
- Fully traversable
- No-limit
 - >10⁷¹ nodes
 - Too large to traverse
 - Sampled, not searched
 - Monte-Carlo Tree Search

Monte-Carlo Tree Search

[Chaslot08]

- Selection

UCT (Multi-Armed Bandit)

$$\hat{V}(c_i) + C \sqrt{\frac{\ln \mathrm{T}(P)}{\mathrm{T}(c_i)}}$$

 $\hat{V}(c_i) + C$

UCT (Multi-Armed Bandit)

 $\frac{\ln \mathrm{T}(P)}{\mathrm{T}(q)}$

exploitation

exploration

 $\hat{V}(c_i)$

$$\mathbf{P}(c_i) \sim \exp\left(-2.4 \frac{\hat{V}(c_{best}) - \hat{V}(c_i)}{\sqrt{2(\overline{\sigma}(c_{best})^2 + \overline{\sigma}(c_i)^2)}}\right)$$

Backpropagation

 $\hat{V}(P)$ is an estimate of the reward r(P)

 $\Gamma(P)$ is the number of samples

Backpropagation

 $\hat{V}(P)$ is an estimate of the reward r(P)

 $\Gamma(P)$ is the number of samples

Sample-weighted average

$$\hat{V}(n) = \sum_{j} \frac{\mathrm{T}(c_j)}{\mathrm{T}(n)} \hat{V}(c_j)$$

Backpropagation

 $\hat{V}(P)$ is an estimate of the reward r(P)

 $\Gamma(P)$ is the number of samples

Sample-weighted average

$$\hat{V}(n) = \sum_{j} \frac{\mathrm{T}(c_j)}{\mathrm{T}(n)} \hat{V}(c_j)$$

Maximum child

$$\hat{V}(P) = \max_{j} \hat{V}(c_j)$$

Backpropagation

Initial experiments

- 1*MCTS + 2*rule based
- Exploitative!

- Overview approach
 - The Poker game tree
 - Opponent model
 - Monte-Carlo tree search
- Research challenges
 - Search
 - Opponent model
- Conclusion

- Overview approach
 - The Poker game tree
 - Opponent model
 - Monte-Carlo tree search
- **Research challenges**
 - Search
 - Uncertainty in MCTS
 - **Continuous action spaces**
 - Opponent model
 - Colline learning
 - Concept drift
- Conclusion

- Overview approach
 - The Poker game tree
 - Opponent model
 - Monte-Carlo tree search
- Research challenges
 - Search
 - **1** Uncertainty in MCTS
 - **Continuous action spaces**
 - Opponent model
 - Colline learning
 - Concept drift
- Conclusion

- Overview approach
 - The Poker game tree
 - Opponent model
 - Monte-Carlo tree search
- Research challenges
 - Search
 - **1** Uncertainty in MCTS
 - Continuous action spaces
 - Opponent model
 - Colline learning
 - Concept drift
- Conclusion

MCTS for games with uncertainty?

- Expected reward distributions (ERD)
- Sample selection using ERD
- Backpropagation of ERD

[VandenBroeck09]

	MiniMax
Estimating	r(P)

10 samples

100 samples

 ∞ samples

100 samples

 ∞ samples

 ∞ samples

Variance Sampling

Variance Sampling Uncertainty + Sampling

Variance Sampling Uncertainty + Sampling
Expected reward distribution

Variance

Sampling Uncertainty + Sampling

Sampling

Expected reward distribution

ERD selection strategy

- Objective?
 - Find maximum expected reward
 - Sample more in subtrees with
 (1) High expected reward
 (2) Uncertain estimate
- UCT does (1) but not really (2)
- CrazyStone does (1) and (2) for deterministic games (Go)
- **UCT+ selection**: $\hat{V}(c_i) + C.\sigma_{\hat{V},c_i}$ (1) (2)

ERD selection strategy

- Objective?
 - Find maximum expected reward
 - Sample more in subtrees with
 (1) High expected reward
 (2) Uncertain estimate
- UCT does (1) but not really (2)
- CrazyStone does (1) and (2) for deterministic games (Go)
- **UCT+ selection**: $\hat{V}(c_i) + C.\sigma_{\hat{V},c_i}$

"Expected value under perfect play"

ERD selection strategy

- Objective?
 - Find maximum expected reward
 - Sample more in subtrees with
 (1) High expected reward
 (2) Uncertain estimate
- UCT does (1) but not really (2)
- CrazyStone does (1) and (2) for deterministic games (Go)
- **UCT+ selection**: $\hat{V}(c_i) + C.\sigma_{\hat{V},c_i}$

"Measure of uncertainty due to sampling"

ERD max-distribution 🗙 💙 backpropagation

P(B<4) = 0.5 P(B>4) = 0.5P(A<4) = 0.8 P(A>4) = 0.2

• •	. ,	
	A<4	A>4
B<4	0.8*0.5	0.2*0.5
B>4	0.8*0.5	0.2*0.5

P(max(A,B)>4) = 0.6 > 0.5

Experiments

- 2*MCTS
 - Max-distribution
 - Sample-weighted

- 2*MCTS
 - UCT+ (stddev)

UCT

- Overview approach
 - The Poker game tree
 - Opponent model
 - Monte-Carlo tree search
- Research challenges
 - Search
 - Uncertainty in MCTS
 - **Continuous action spaces**
 - Opponent model
 - Colline learning
 - Concept drift
- Conclusion

Dealing with continuous actions

Sample discrete actions

-

Tree learning search (work in progress)

Tree learning search

- Based on regression tree induction from *data streams*
 - training examples arrive quickly
 - nodes split when significant reduction in stddev
 - training examples are immediately forgotten
- Edges in TLS tree are not actions, but sets of actions, e.g., (raise in [2,40]), (fold or call)
- MCTS provides a *stream* of (action,EV) examples
- Split action sets to reduce stddev of EV (when significant)

Each node has EV estimate, which generalizes over actions

Backpropagation

- Overview approach
 - The Poker game tree
 - Opponent model
 - Monte-Carlo tree search
- Research challenges
 - Search
 - Uncertainty in MCTS
 - **Continuous action spaces**
 - Opponent model
 - **Colline learning**
 - Concept drift
- Conclusion

- Overview approach
 - The Poker game tree
 - Opponent model
 - Monte-Carlo tree search
- Research challenges
 - Search
 - Uncertainty in MCTS
 - Continuous action spaces
 - Opponent model
 - **Colline learning**
 - Concept drift
- Conclusion

Online learning of opponent model

- Start from (safe) model of general opponent
- Exploit weaknesses of specific opponent

Multi-agent interaction

Multi-agent interaction

Yellow learns model for Blue and changes strategy

- Overview approach
 - The Poker game tree
 - Opponent model
 - Monte-Carlo tree search
- Research challenges
 - Search
 - Uncertainty in MCTS
 - Continuous action spaces
 - Opponent model
 - Colline learning
 - Concept drift
- Conclusion

Concept drift

- While learning from a stream, the training examples in the stream change
 - In opponent model: changing strategy
- * "Changing gears is not just about bluffing, it's about changing strategy to achieve a goal."
- Learning with concept drift
 - **adapt** quickly to changes
 - yet *robust* to noise
 - (recognize recurrent concepts)

Basic approach to 🛧 🕈 concept drift

- Maintain a window of training examples
 - Iarge enough to learn
 - small enough to adapt quickly
 - without 'old' concepts
- Heuristics to adjust window size
 - based on FLORA2 framework [Widmer92]

Outline

- Overview approach
 - The Poker game tree
 - Opponent model
 - Monte-Carlo tree search
- Research challenges
 - Search
 - Opponent model
- Conclusion

Conclusions

- First exploitive poker bot for
 - No-limit Holdem
 - > 2 players
- Apply in other games
 - backgammon
 - computational pool

- Challenge for MCTS
 - games with uncertainty
 - continuous action space
- Challenge for ML
 - I online learning
 - concept drift
 - (relational learning)

Thanks for listening!

