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" Introduction to lifted inference

= Four contributions
* Arbitrary constraints
* Completeness results
* Conditioning
* An approximate method



Lifted inference
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Elimination compilation propagation
(2003) (2011) (2008)

and many more !
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N times the same product !
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compute only once !
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“lifted sum-out” “lifted multiplication”



Lifted Variable Elimination
[Poole '03,...]

= Repeatedly apply certain operators on
the model

* Lifted multiplication
* Lifted sum-out

= Until the desired result is found



Lifted Knowledge Compilation
[Van den Broeck et al ‘11, ...]

= Compile the model into a “lifted” circuit
("FO d-DNNF")
* How? Compilation rules

= Inference = traversing the circuit
* Time = poly(domain s:ze)
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Bigger groups = more lifting !



Bigger groups = more lifting !
The groups are specified by constraints



Importance of constraints
[Taghipour et al, AISTATS'"12

= Exact lifted algorithms use a particular
constraint language

group — constraint — can it be expressed
in the language ?

= Often leads to unnecessarily small groups
— less lifting
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Importance of constraints
[Taghipour et al, AISTATS'"12

= Exact lifted algorithms use a particular
constraint language

group — constraint — can it be expressed
in the language ?

= Often leads to unnecessarily small groups
— less lifting

= We avoid using a particular constraint language
Instead: arbitrary constraints
+ relational algebra
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What is Lifted Inference?

* Propositional inference is intractable
Solution: lifted inference

“Exploit symmetries”
“Reason at first-order level”
“Reason about groups of objects as a whole”
“Avoid repeated computations”

“Mimic resolution in theorem proving”

* There is a common understanding but
no formal definition of lifted inference!



What is Lifted Inference?

* \What is commonly understood as
exact lifted inference?

Definition: Domain-Lifted Inference
Complexity of computing P(g|e) in model m is
polynomial time in the domain sizes of the
logical variables in g,e,m
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What is Lifted Inference?

* \What is commonly understood as
exact lifted inference?

Definition: Domain-Lifted Inference
Complexity of computing P(g|e) in model m is
polynomial time in the domain sizes of the
logical variables in g,e,m

* Possibly exponential in the size of g,e,m

# predicates, # parfactors, # atoms,
# arguments, # formulas, # constants in model

[Van den Broeck NIPS11]



What is Lifted Inference?

* Motivation: Large domains lead to intractable
propositional inference.

e A formal framework for lifted inference

» Definition + complexity considerations
» ~ PAC-learnability (Valiant)

* Other notions, e.qg., for approximate inference.

[Van den Broeck NIPS11]



Completeness

* A procedure that is domain-lifted for all models
in a class M is called complete for M

All models in M are ‘liftable”

 There was no completeness result
for existing algorithms

If you give me a model,
| cannot say if grounding will be needed,
untill | run the inference algorithm itself.

[Van den Broeck NIPS11]



Completeness Result

Probabilistic inference in models with
* universal quantifiers V and

» 2 logical variables per formula

is domain-liftable.

* A non-trivial class of models

* First completeness results in exact lifted inference
o Lifted knowledge compilation procedure
 Lifted variable elimination procedure

[Van den Broeck NIPS11], [Taghipour et al.]



Expressivity

Completeness Game

No domain-lifted inference procedure exists

FOL V,3,= [Jaeger 99]

. [Jaeger 12]

?

FOL V,=, 2 variables [Van den Broeck 11]

Complete domain-lifted inference procedure
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Conditioning

» Task: Probability of query g given evidence e: P(qg|e)
Domain-lifted inference is exponential in the size of e.

» Can we compute conditional probabilities efficiently?
Depends on the arity of literals conditioned on:

Literal Arity Complexity of Conditioning
Polynomial

Polynomial 1f supported by compilation
#P-hard

» Positive and negative result for lifted inference

[Van den Broeck, Davis AAAI12]
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Lifted RCR

 Practical usefulness of lifted inference shown

for approximate inference with
 Lifted Relax, Compensate and

(1) Clone all atoms in a model

ifted BP

Recover

(2) Relax equivalences between clones

(3) Compensate for removed equivalences

(4) Recover equivalences until model too complex
» Exact lifted inference black box in (3)

[Van den Broeck, Choi, Darwiche]



Lifted RCR

S 100%
0 o 1%
e
2%  0.01%
T 0
g < 0.0001%
O &  1e-06%
)
< 1e-08%
0% 25% 50% 75% 100%
/ % Recovered Equivalences /
Special case: Lifted BP Exact lifted inference
Tractable Intractable

[Van den Broeck, Choi, Darwiche]
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Lifted Variable Elimination
with Arbitrary Constraints
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Context and Motivation Constraint Handling Operations

Probabilistic Logical Models:
- Uncertainty: probability theany
* Relational structure: firet-orders logic
Efficient inference i= a key challange
Liftad infen axploit the ay iea in such modals
Idemify 8 group of imerchangeabls variables, perfomm
inference once for the group. instead of ance for aach individual

The groups are ddimdhymamdcmmnm
= Existing chea uea {i

Contribution and Conclusion

'We penerslize fiftad inference to work with erbitrary conatrainia
= capiure more symmelries, ie., more lifting

Parfactor Models

Fandom variable (randvar) - ground atom = = Fmokbes(ann)
Paramedrized randvar (FRY): a conatrained aiom
Smnbn[X}LX € {ann, bos, sart} |

Logical variabia s~ —sConstraint
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‘Counting paploit 5
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{I}mliptymht:hn;imhﬁlgvhmm
{2) sum-out Vfrom the resulting factor
LLiftad VE: do the same at the lovel of PAVE and parfeciors

A GC-EOVE- G-FOVE [Mikch et al 2008]
Asat of lited operationa:
- Sumout #Eay E45. 41m)
- Muttiplication FIBARD B AL T~ $alS T A
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= Constraint handling operations {our main contribution)
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First-Order Knowledge Compilation
for Lifted Probabilistic Inference
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First-Order Knowledge Compilation mcann

Compile a probabilistic logical model into a logical circuit and perform fifted probabilistic inference by evaluating the circuit.

Bariac — [ weg=aro | FO 0-DNNF Evatiate Cirouit
i | woseicounting | <= Cireut _— for Domain

o

Represents factor graph for given domain {aics, bot) i)

Reduce probablll..-uc |n‘erence o |

g D3Ity Foamula In First-Order Logic Plale. M)
x 4 - | weighted model counting in logic |
2 friends{ XY ) A smokesi X | = sinokest Y ) :
: o [} ——
Logleat Variabiz Atom )
DOMaEN of CoNstants Random variabée in {inie faise] (V
2.g. % In {aFce, bot] for each X AP Pepts)

|2 > N <ty Xeb| ui
I gf/}_{:_ Iots ) = VINED |[—Fee ¥ T X EOT D
_—D. Weighted model counting inference is efficient

] (polynomial) in & FO d-DMNF circuit.

Factor graph explodes

Propesitional inference is intractable
Sofution: Lifted inference

Conditioning taaana

Conditioning a logic formula I on term y replaces the
atoms of y in Z by true or false.

2.g., 50 paopie: 2500 fackors, 255 random varabies:
All proposifional circuits can be conditioned in polytime.

Research Questions: | ) ]

“Reas0n about Qroups of Giyects 55 a whols”™
= Can we efficiently condition a |

ExXplof symmetmes” “Avold repeated compuiations”

Research Questions: .

first-order d-DMNNF circuit? ;

= What is commonly understood as lifted inference?

LContribytion:
An algorithm for conditioning on arity 0/1 relations

» Coniribution:
A formal framework for exact lifted inference
{definition + complexity considerations) ~ PAC leaming

oprmmey

Domain-Lifted Probabilistic Inference
The complexity of computing Pigje) in model Mis
- Polynomial time in the domain sizes of the
logical variables in g.e M
= F'o..sley exponentlal in the size of g.e M
# Gartice, 8 aies ¢ wrzma

s § oo § csmmns i s

= When can a model be lifted?

Conditioning on arity = 2 is #P-hard, because any
H#2SAT problem can ke solved by conditioning

W o GiVE M & Model, | 3ot Say ¥ grouncing Wil be needed, Y

umtt | run the Fference algorhm [Ise

= Latesal Anity Complesi g
+ Confribution: A new operator for knowledge compilation §‘, 1} | i
« Confribution: First completeness result (liftability”) ;L‘ 1 Fatyim ¥ eompalation
z| Firstorder knowledge compilation performs domain- « Can lifted inference compute conditional
§_ lifted inference on any model with 2 logical variables probabilities polynomially in the size of evidence?
z| per formula or parfactor (2-WIFOMC).

In any first-order probabilistic model with a
minimal expressivity, computing conditional
probabilities exactly is #P-hard.
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Lifted inference is “solved” for 2WFOMC, a
first non-trivial class of problems.

hitp=tidiai cs kulewven be/ml/systems/wiomc

Website & Implementation: http://dtai.cs.kuleuven.be/ml/systems/wfomc




