Recent advances in lifted inference @ Leuven

H. Blockeel, J. Davis, L. De Raedt, <u>D. Fierens</u>, W. Meert, N. Taghipour, <u>G. Van den Broeck</u>

- Introduction to lifted inference
- Four contributions
 - Arbitrary constraints
 - Completeness results
 - Conditioning
 - An approximate method

and many more!

Attends(p₁) Attends(p₂) ... Attends(p_N)

Topic

$$P(S, A_1,..., A_N, T) = \frac{1}{Z} \prod_{i=1}^{N} \phi_1(A_i, S) \prod_{i=1}^{N} \phi_2(T, A_i)$$

$$P(S) = \frac{1}{Z} \sum_{T} \sum_{A_1} ... \sum_{A_N} \prod_{i=1}^{N} \phi_1(A_i, S) \prod_{i=1}^{N} \phi_2(T, A_i)$$

will it become a series?

$$P(S) = \frac{1}{Z} \sum_{T} \sum_{A_i} ... \sum_{A_N} \prod_{i=1}^{N} \phi_1(A_i, S) \prod_{i=1}^{N} \phi_2(T, A_i)$$
will it become
a series ?
$$2^{(N+1)} \text{ terms}$$

N times the same product!

N times the same sum!

Lifted Variable Elimination

[Poole '03,...]

- Repeatedly apply certain operators on the model
 - Lifted multiplication
 - Lifted sum-out
 - •
- Until the desired result is found

Lifted Knowledge Compilation

[Van den Broeck et al '11,...]

- Compile the model into a "lifted" circuit ("FO d-DNNF")
 - How? Compilation rules
- Inference = traversing the circuit

- Introduction to lifted inference
- Four contributions
 - Arbitrary constraints
 - Completeness results
 - Conditioning
 - An approximate method

Bigger groups = more lifting!

Bigger groups = more lifting!

The groups are specified by constraints

Importance of constraints

[Taghipour et al, AISTATS'12]

Exact lifted algorithms use a particular constraint language

```
group → constraint → can it be expressed in the language?
```

- Often leads to unnecessarily small groups
 - → less lifting

Importance of constraints

[Taghipour et al, AISTATS'12]

Exact lifted algorithms use a particular constraint language

```
group → constraint → can it be expressed in the language?
```

- Often leads to unnecessarily small groups
 - → less lifting
- We avoid using a particular constraint language Instead: arbitrary constraints
 - + relational algebra

- Introduction to lifted inference
- Four contributions
 - Arbitrary constraints
 - Completeness results
 - Conditioning
 - An approximate method

- Introduction to lifted inference
- Four contributions
 - Arbitrary constraints
 - Completeness result
 - Conditioning
 - Approximate inference

- Introduction to lifted inference
- Four contributions
 - Arbitrary constraints
 - Completeness result
 - Conditioning
 - Approximate inference

What is Lifted Inference?

Propositional inference is intractable

Solution: lifted inference

"Exploit symmetries"

"Reason at first-order level"

"Reason about groups of objects as a whole"

"Avoid repeated computations"

"Mimic resolution in theorem proving"

 There is a common understanding but no formal definition of lifted inference!

What is Lifted Inference?

 What is commonly understood as exact lifted inference?

Definition: Domain-Lifted Inference Complexity of computing P(q|e) in model m is polynomial time in the domain sizes of the logical variables in q,e,m

- 1.5 Attends(person) → Series
 - 1.2 Topic → Attends(person)

What is Lifted Inference?

 What is commonly understood as exact lifted inference?

Definition: Domain-Lifted Inference Complexity of computing P(q|e) in model m is polynomial time in the domain sizes of the logical variables in q,e,m

Possibly exponential in the size of q,e,m
 # predicates, # parfactors, # atoms,
 # arguments, # formulas, # constants in model

What is Lifted Inference?

- Motivation: Large domains lead to intractable propositional inference.
- A formal framework for lifted inference
 - Definition + complexity considerations
 - ~ PAC-learnability (Valiant)

Other notions, e.g., for approximate inference.

Completeness

 A procedure that is domain-lifted for all models in a class M is called complete for M

All models in M are "liftable"

 There was no completeness result for existing algorithms

> If you give me a model, I cannot say if grounding will be needed, untill I run the inference algorithm itself.

Completeness Result

Probabilistic inference in models with

- universal quantifiers ∀ and
- 2 logical variables per formula

is domain-liftable.

- A non-trivial class of models
- First completeness results in exact lifted inference
 - Lifted knowledge compilation procedure
 - Lifted variable elimination procedure

Completeness Game

No domain-lifted inference procedure exists

FOL
$$\forall$$
, \exists ,= [Jaeger 99]

... [Jaeger 12]

?

FOL ∀,=, 2 variables [Van den Broeck 11]

Complete domain-lifted inference procedure

Outline

- Introduction to lifted inference
- Four contributions
 - Arbitrary constraints
 - Completeness result
 - Conditioning
 - Approximate inference

Conditioning

- Task: Probability of query q given evidence e: P(q|e) Domain-lifted inference is exponential in the size of e.
- Can we compute conditional probabilities efficiently?
 Depends on the arity of literals conditioned on:

Literal Arity	Complexity of Conditioning
0	Polynomial
1	Polynomial if supported by compilation
≥ 2	#P-hard
	l e e e e e e e e e e e e e e e e e e e

Positive and negative result for lifted inference

Outline

- Introduction to lifted inference
- Four contributions
 - Arbitrary constraints
 - Completeness result
 - Conditioning
 - Approximate inference

Lifted RCR

- Practical usefulness of lifted inference shown for approximate inference with lifted BP
- Lifted Relax, Compensate and Recover
 - (1) Clone all atoms in a model
 - (2) Relax equivalences between clones
 - (3) Compensate for removed equivalences
 - (4) Recover equivalences until model too complex
- Exact lifted inference black box in (3)

Lifted RCR

Outline

- Introduction to lifted inference
- Four contributions
 - Arbitrary constraints
 - Completeness result
 - Conditioning
 - Approximate inference

Posters!

First-Order Knowledge Compilation for Lifted Probabilistic Inference

IIICAILII Van den Broeck, Guy; Taghipour, Nima; Meert, Wannes; Davis, Jesse; De Raedt, Luc. Lifted probabilistic inference by first-order knowledge compilation INIPOLII Van den Broeck, Guy. On the completeness of first-order knowledge compilation for lifted probabilistic inference
IAAALIZI Van den Broeck, Guy; Davis, Jesse. Conditioning in first-order knowledge compilation and lifted probabilistic inference

