Circuit Languages as a Synthesis of Learning and Reasoning

Guy Van den Broeck

Simons Symposium on New Directions in Theoretical Machine Learning

May 10, 2019

- How can we build on the recent success in supervised learning for perceptual and related tasks?
- What's next for ML if perception gets solved?
- Is the current set of methods sufficient to take us to the next level of "intelligent" reasoning?
- If not, what is missing, and how can we rectify it?
- What role can classical ideas in Reasoning, Representation Learning, Reinforcement Learning, Interactive Learning, etc. have to play?
- · What modes of analyses do we need to even conceptualize the next level of

How are ideas about automated **reasoning** from GOFAI relevant to modern statistical machine learning?

Outline: Reasoning ∩ Learning

1. Deep Learning with Symbolic Knowledge

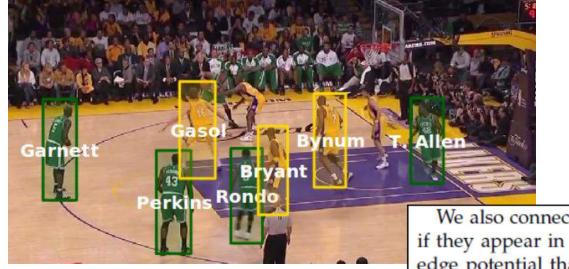
2. Efficient Reasoning During Learning

3. Probabilistic and Logistic Circuits

Deep Learning with Symbolic Knowledge



Motivation: Vision



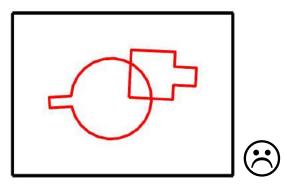
We also connect all pairs of identity nodes $y_{t,i}$ and $y_{t,j}$ if they appear in the same time *t*. We then introduce an edge potential that enforces mutual exclusion:

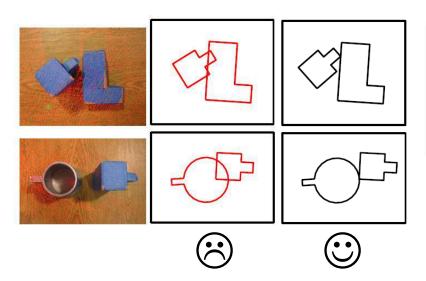
$$\psi_{\text{mutex}}(y_{t,i}, y_{t,j}) = \begin{cases} 1 & \text{if } y_{t,i} \neq y_{t,j} \\ 0 & \text{otherwise} \end{cases}$$
(5)

This potential specifies the constraint that a player can be appear only *once* in a frame. For example, if the *i*-th detection $y_{t,i}$ has been assign to Bryant, $y_{t,j}$ cannot have the same identity because Bryant is impossible to appear twice in a frame.

[Lu, W. L., Ting, J. A., Little, J. J., & Murphy, K. P. (2013). Learning to track and identify players from broadcast sports videos.]

Motivation: Robotics





The method developed in this paper can be used in a broad variety of semantic mapping and object manipulation tasks, providing an efficient and effective way to incorporate collision constraints into a recursive state estimator, obtaining optimal or near-optimal solutions.

Motivation: Language

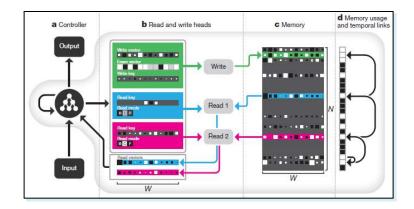
- Non-local dependencies:
 "At least one verb in each sentence"
- Sentence compression *"If a modifier is kept, its subject is also kept"*
- NELL ontology and rules

... and much more!

[Chang, M., Ratinov, L., & Roth, D. (2008). Constraints as prior knowledge], [Ganchev, K., Gillenwater, J., & Taskar, B. (2010). Posterior regularization for structured latent variable models] ... and many many more!

Motivation: Deep Learning

New Stechnology space Physics Health Earth Humans Life TOPICS EVENTS JOBS Indertement Meet The People Shaping The Future Of Energy: Reinventing Energy Summit - 25 November in London Home News 1 Technology Deep Mind's AI has learned to navigate the Tube using memory Composition of the Tube us

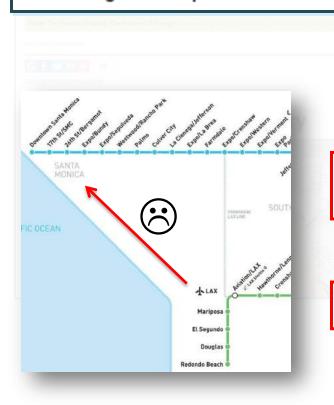


[Graves, A., Wayne, G., Reynolds, M., Harley, T., Danihelka, I., Grabska-Barwińska, A., et al.. (2016). Hybrid computing using a neural network with dynamic external memory. *Nature*, *538*(7626), 471-476.]

Motivation: Deep Learning

Mount

DeepMind's latest technique uses external memory to solve tasks that require logic and reasoning — a step toward more human-like Al.



[Graves, A., Wayne, G., Reynolds, M., Harley, T., Danihelka, I., Grabska-Barwińska, A., et al.. (2016). Hybrid computing using a neural network with dynamic external memory. *Nature*, *538*(7626), 471-476.]

Learning with Symbolic Knowledge

L	Κ	Р	А	Students
0	0	1	0	6
0	0	1	1	54
0	1	1	1	10
1	0	0	0	5
1	0	1	0	1
1	0	1	1	0
1	1	0	0	17
1	1	1	0	4
1	1	1	1	3 /

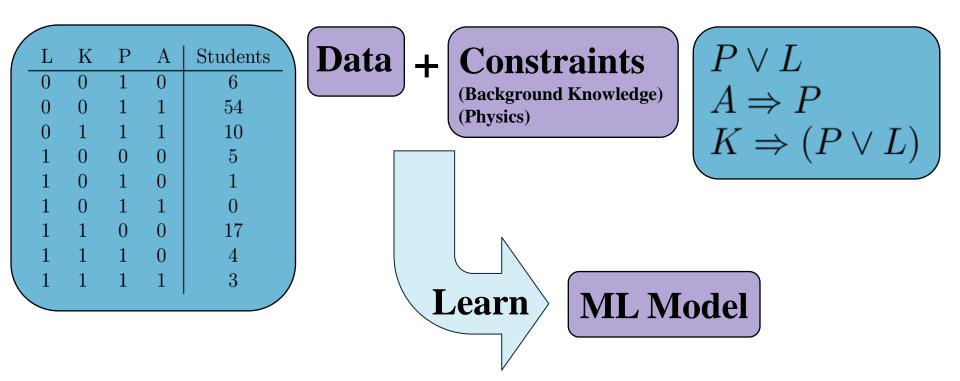
Data + Con

Constraints (Background Knowledge) (Physics)

$$P \lor L$$
$$A \Rightarrow P$$
$$K \Rightarrow (P \lor L)$$

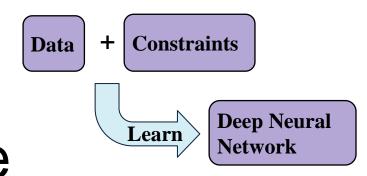
- Must take at least one of Probability (P) or Logic (L).
- 2. Probability (\mathbf{P}) is a prerequisite for AI (\mathbf{A}) .
- The prerequisites for KR (K) is either AI (A) or Logic (L).

Learning with Symbolic Knowledge



Today's machine learning tools don't take knowledge as input! 😕

Deep Learning with Symbolic Knowledge



Neural Network

Output is probability vector **p**, not Boolean logic!

Semantic Loss

<u>Q</u>: How close is output **p** to satisfying constraint α ? <u>Answer</u>: Semantic loss function $L(\alpha, \mathbf{p})$

- Axioms, for example:
 - If α fixes the labels, then L(α ,**p**) is cross-entropy
 - If α implies β then $L(\alpha, \mathbf{p}) \ge L(\beta, \mathbf{p})$ (α more strict)
- Implied Properties:
 - If α is equivalent to β then $L(\alpha, \mathbf{p}) = L(\beta, \mathbf{p})$ Loss!

SFMANTIC

– If **p** is Boolean and satisfies α then $L(\alpha, \mathbf{p}) = 0$

Semantic Loss: Definition

<u>Theorem</u>: Axioms imply unique semantic loss:

$$L^{s}(\alpha, p) \propto -\log \sum_{\mathbf{x} \models \alpha} \prod_{i:\mathbf{x} \models X_{i}} p_{i} \prod_{i:\mathbf{x} \models \neg X_{i}} (1 - p_{i})$$
Probability of getting state **x** after flipping coins with probabilities **p**
Probability of satisfying α after flipping coins with probabilities **p**

Simple Example: Exactly-One

- Data must have some label We agree this must be one of the 10 digits:
- Exactly-one constraint \rightarrow For 3 classes: $\begin{cases} x_1 \\ \neg x \\ \neg x \end{cases}$
- Semantic loss:

$$\begin{cases}
x_1 \lor x_2 \lor x_3 \\
\neg x_1 \lor \neg x_2 \\
\neg x_2 \lor \neg x_3 \\
\neg x_1 \lor \neg x_3
\end{cases}$$

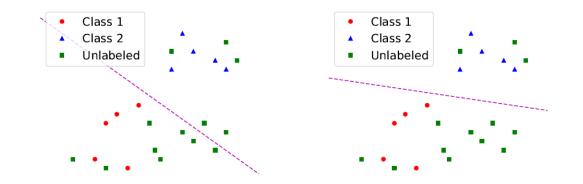
L^s(exactly-one, p)
$$\propto -\log \sum_{i=1}^{n} p_i \prod_{j=1, j \neq i}^{n} (1 - p_j)$$

Only $x_i = 1$ after flipping coins

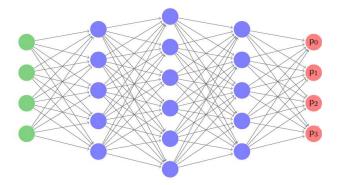
Exactly one true x after flipping coins

Semi-Supervised Learning

 Intuition: Unlabeled data must have some label Cf. entropy minimization, manifold learning



• Minimize exactly-one semantic loss on unlabeled data



Train with *existing loss* + *w* · *semantic loss*

Experimental Evaluation

Accuracy % with # of used labels	100	1000	ALL
AtlasRBF (Pitelis et al., 2014)	91.9 (±0.95)	96.32 (±0.12)	98.69
Deep Generative (Kingma et al., 2014)	96.67(±0.14)	97.60 (±0.02)	99.04
Virtual Adversarial (Miyato et al., 2016)	97.67	98.64	99.36
Ladder Net (Rasmus et al., 2015)	98.94 (±0.37)	99.16 (±0.08)	99.43 (±0.02)
Baseline: MLP, Gaussian Noise	78.46 (±1.94)	94.26 (±0.31)	99.34 (±0.08)
Baseline: Self-Training	72.55 (±4.21)	87.43 (±3.07)	
Baseline: MLP with Entropy Regularizer	96.27 (±0.64)	98.32 (±0.34)	99.37 (±0.12)
MLP with Semantic Loss	98.38 (±0.51)	98.78 (±0.17)	99.36 (±0.02)

Competitive with state of the art in semi-supervised deep learning

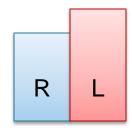
Accuracy % with # of used labels	100	500	1000	ALL
Ladder Net (Rasmus et al., 2015)	81.46 (±0.64)	85.18 (±0.27)	86.48 (±0.15)	90.46
Baseline: MLP, Gaussian Noise MLP with Semantic Loss	69.45 (±2.03) 86.74 (±0.71)	78.12 (±1.41) 89.49 (±0.24)	80.94 (±0.84) 89.67 (±0.09)	89.87 89.81

Outperforms SoA!

Same conclusion on CIFAR10

Accuracy % with # of used labels	4000	ALL
CNN Baseline in Ladder Net	$76.67 (\pm 0.61)$	90.73
Ladder Net (Rasmus et al., 2015)	79.60 (±0.47)	
Baseline: CNN, Whitening, Cropping	77.13	90.96
CNN with Semantic Loss	81.79	90.92

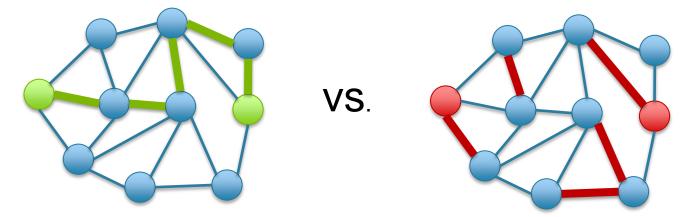
Efficient Reasoning During Learning



But what about real constraints?

• Path constraint

cf. Nature paper



- Example: 4x4 grids
 2²⁴ = 184 paths + 16,777,032 non-paths
- Easily encoded as logical constraints ③

[Nishino et al., Choi et al.]

How to Compute Semantic Loss?

• In general: #P-hard ⊗

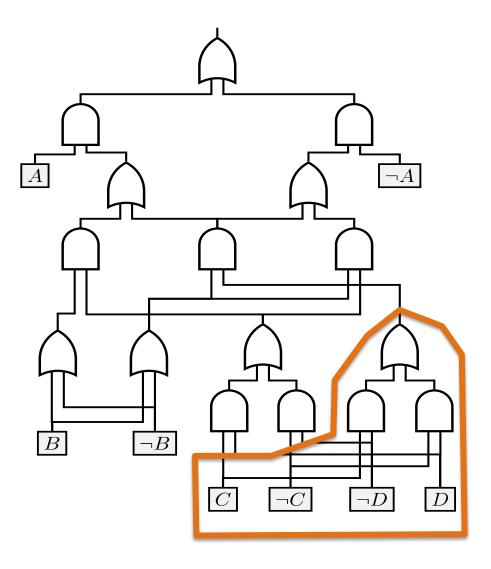
$$\mathrm{L}^{\mathrm{s}}(\alpha, \mathsf{p}) \propto -\log \sum_{\mathbf{x} \models \alpha} \prod_{i: \mathbf{x} \models X_{i}} \mathsf{p}_{i} \prod_{i: \mathbf{x} \models \neg X_{i}} (1 - \mathsf{p}_{i})$$

Reasoning Tool: Logical Circuits

Representation of logical sentences:

 $(C \land \neg D) \lor (\neg C \land D)$

C XOR D

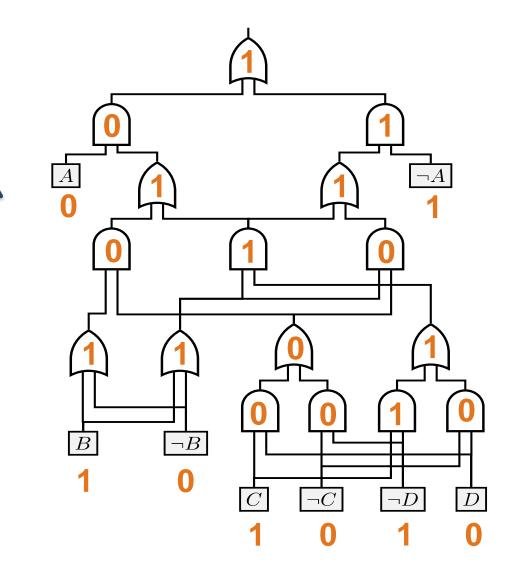


Reasoning Tool: Logical Circuits

Representation of logical sentences:

Input:

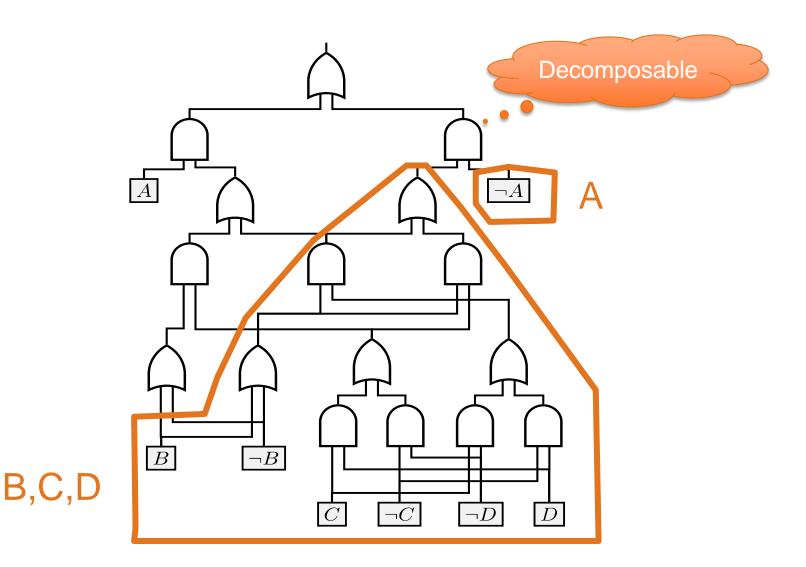
A	B	C	D
0	1	1	0



Tractable for Logical Inference

- Is there a solution? (SAT)
 - SAT($\alpha \lor \beta$) iff SAT(α) or SAT(β) (*always*)
 - $-SAT(\alpha \land \beta)$ iff **???**

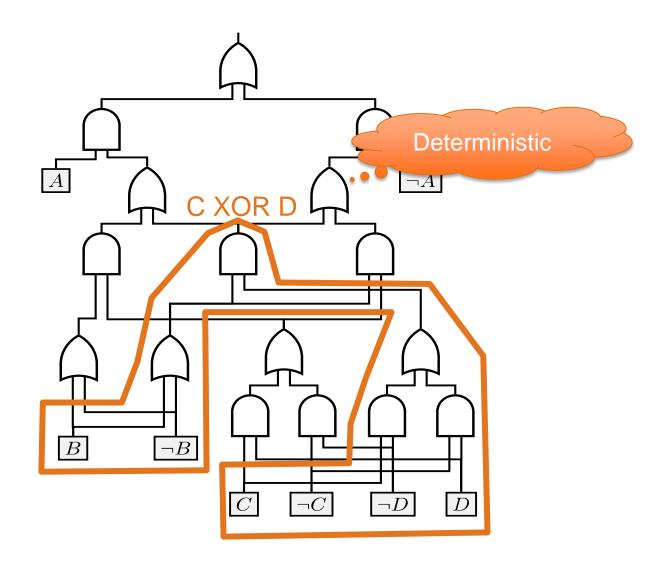
Decomposable Circuits



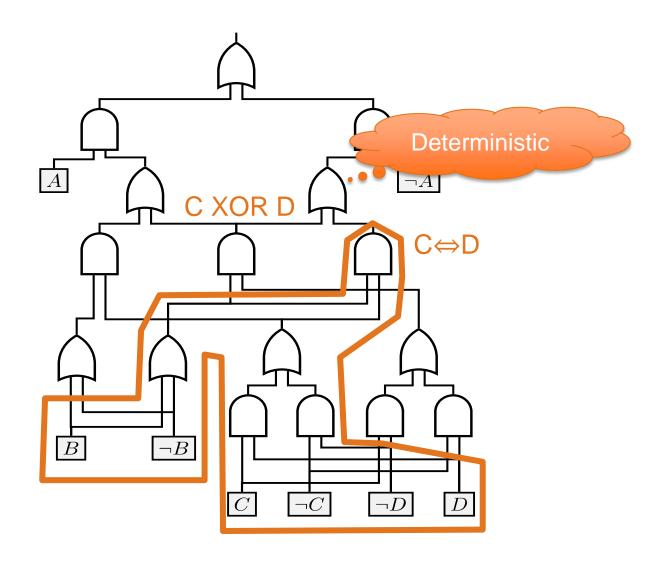
Tractable for Logical Inference

- Is there a solution? (SAT)
 - SAT($\alpha \lor \beta$) iff SAT(α) or SAT(β) (*always*)
 - SAT($\alpha \land \beta$) iff SAT(α) and SAT(β) (decomposable)
- How many solutions are there? (#SAT)
- Complexity linear in circuit size ③

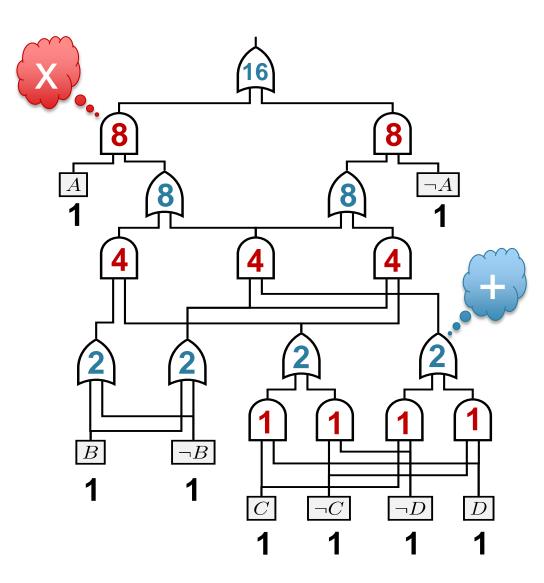
Deterministic Circuits



Deterministic Circuits



How many solutions are there? (#SAT)



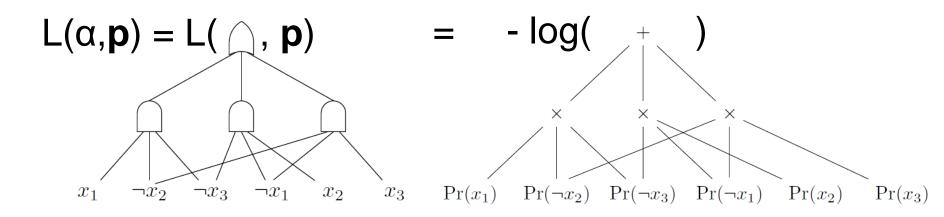
Tractable for Logical Inference

- Is there a solution? (SAT)
- How many solutions are there? (#SAT) ✓
- Conjoin, disjoin, equivalence checking, etc.
- Complexity linear in circuit size 😳

- Compilation into circuit by
 - $-\downarrow$ exhaustive SAT solver
 - ↑ conjoin/disjoin/negate

How to Compute Semantic Loss?

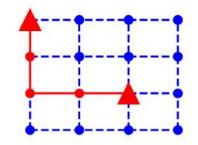
- In general: #P-hard ⊗
- With a logical circuit for α : Linear \bigcirc
- Example: exactly-one constraint:

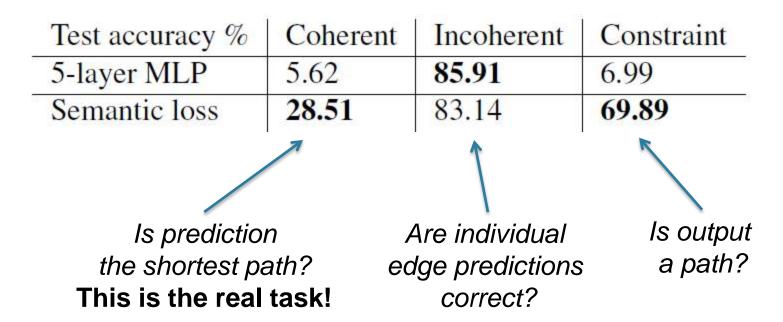


• Why? Decomposability and determinism!

Predict Shortest Paths

Add semantic loss for path constraint



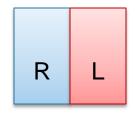


(same conclusion for predicting sushi preferences, see paper)

Conclusions 1

- Knowledge is (hidden) everywhere in ML
- Semantic loss makes logic differentiable
- Performs well semi-supervised
- Requires hard reasoning in general
 - Reasoning can be encapsulated in a circuit
 - No overhead during learning
- Performs well on structured prediction
- A little bit of reasoning goes a long way!

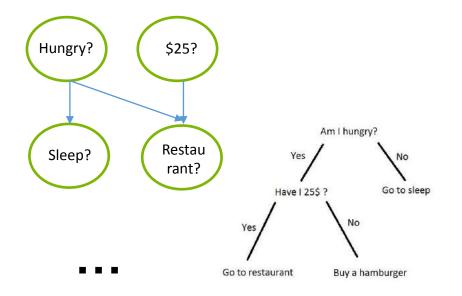
Probabilistic and Logistic Circuits



A False Dilemma?

Classical AI Methods

Neural Networks

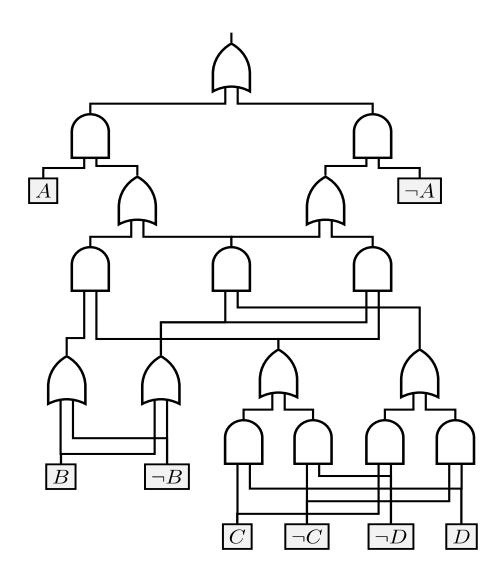


Convolution Convolution Fully connected Fully connected . 0 ٥

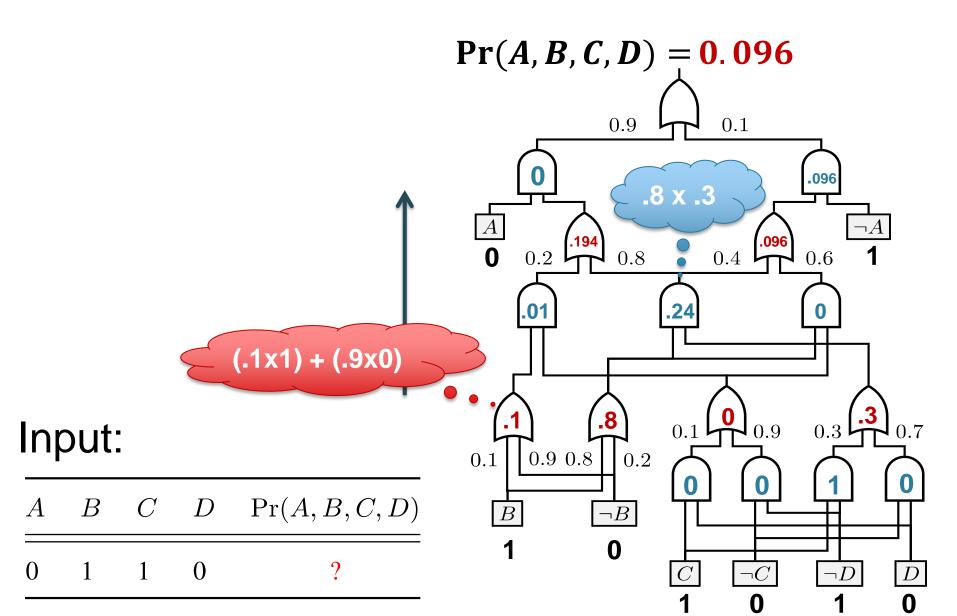
Clear Modeling Assumption Well-understood "Black Box" Empirical performance

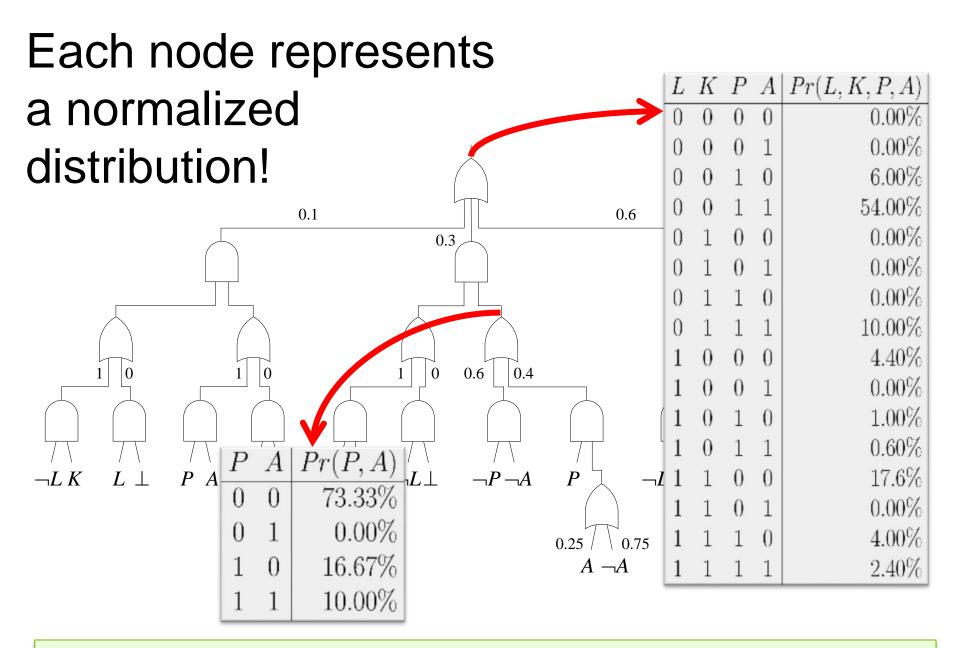
Inspiration: Probabilistic Circuits

Can we turn logic circuits into a statistical model?



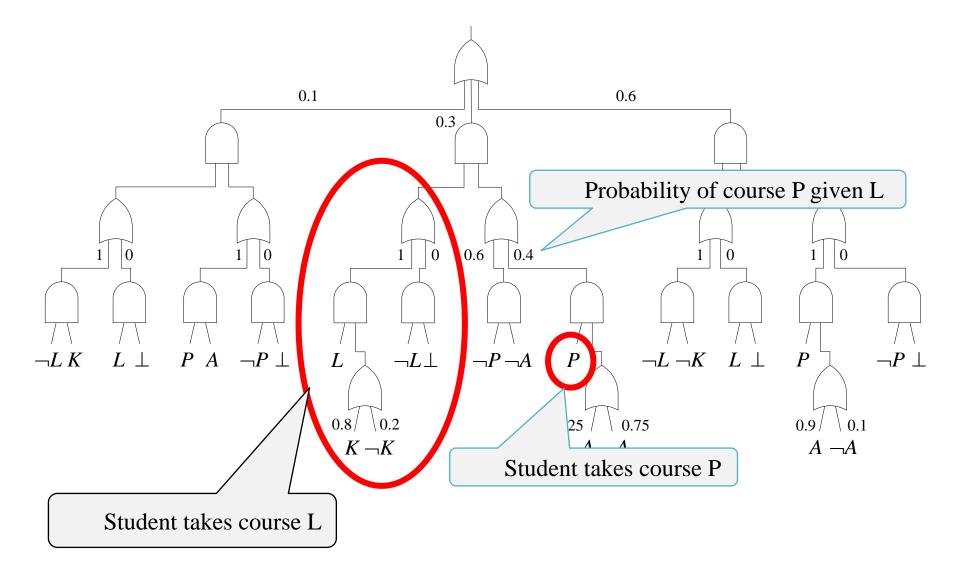
Probabilistic Circuits





Can read probabilistic independences off the circuit structure

Parameters are Interpretable



Properties, Properties, Properties!

- Read conditional independencies from structure
- Interpretable parameters (XAI) (conditional probabilities of logical sentences)
- Closed-form parameter learning
- Efficient reasoning

- MAP inference: most-likely assignment to x given y (otherwise NP-hard)
- Computing conditional probabilities Pr(x|y) (otherwise #P-hard)
- Algorithms linear in circuit size 😳
- x and y could even be complex logical circuits

Discrete Density Estimation

Datasets	Var	LearnPSDD Ensemble	Best-to-Date	
NLTCS	16	-5.99^{+}	-6.00	
MSNBC	17	-6.04^{\dagger}	-6.04^{\dagger}	
KDD	64	-2.11^{\dagger}	-2.12	
Plants	69	-13.02	-11.99^{\dagger}	
Audio	100	-39.94	-39.49^{\dagger}	
Jester	100	-51.29	-41.11^{\dagger}	
Netflix	100	-55.71^{\dagger}	-55.84	
Accidents	111	-30.16	-24.87^{\dagger}	
Retail	135	-10.72^{\dagger}	-10.78	
Pumsb-Star	163	-26.12	-22.40^{\dagger}	
DNA	180	-88.01	-80.03^{\dagger}	
Kosarek	190	-10.52^\dagger	-10.54	
MSWeb	294	-9.89	-9.22^{\dagger}	
Book	500	-34.97	-30.18^{\dagger}	
EachMovie	500	-58.01	-51.14^{\dagger}	
WebKB	839	-161.09	-150.10^{\dagger}	
Reuters-52	889	-89.61	-80.66^{\dagger}	
20NewsGrp.	910	-155.97	-150.88^{\dagger}	
BBC	1058	-253.19	-233.26^{\dagger}	
AD	1556	-31.78	-14.36^{\dagger}	

Q: "Help! I need to learn a discrete probability distribution..." A: Learn probabilistic circuits!

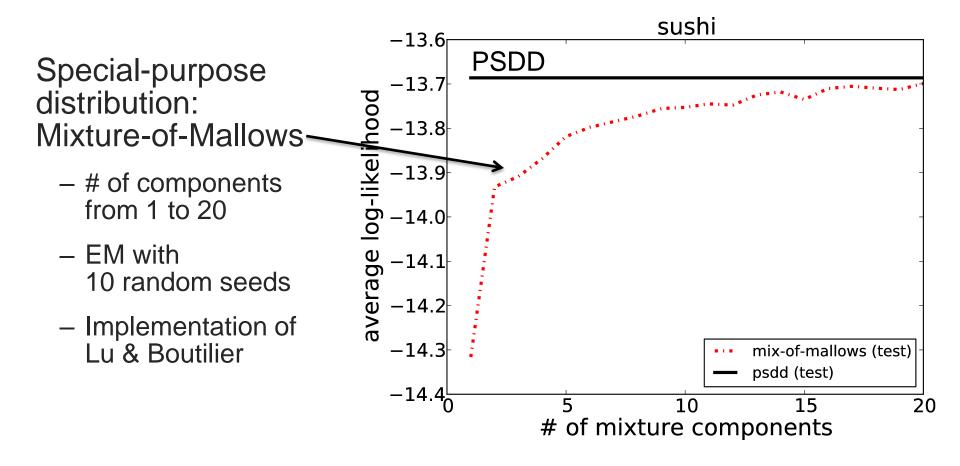
Strongly outperforms

- Bayesian network learners
- Markov network learners

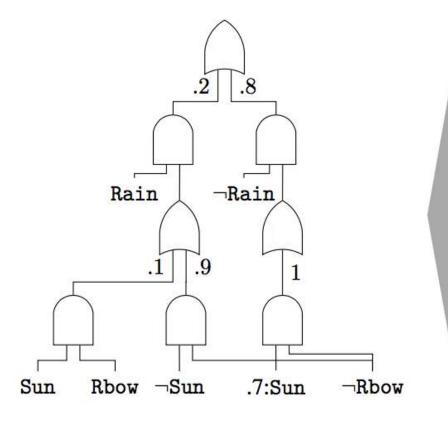
LearnPSDD state of the art on 6 datasets!

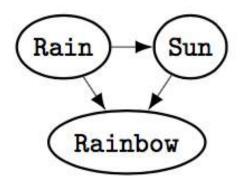
Competitive SPN learner

Learning Preference Distributions



Compilation for Prob. Inference





$$\Pr(\texttt{Rain}) = 0.2,$$

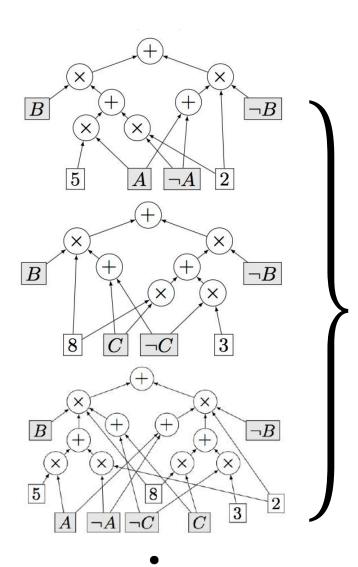
 $\Pr(\texttt{Sun} \mid \texttt{Rain}) = \begin{cases} 0.1 \text{ if } \texttt{Rain} \\ 0.7 \text{ if } \neg \texttt{Rain} \end{cases}$
 $\Pr(\texttt{Rbow} \mid \texttt{R}, \texttt{S}) = \begin{cases} 1 \text{ if } \texttt{Rain} \land \texttt{Sun} \\ 0 \text{ otherwise} \end{cases}$

Collapsed Compilation [NeurlPS 2018]

To sample a circuit:

- 1. Compile bottom up until you reach the size limit
- 2. Pick a variable you want to sample
- 3. Sample it according to its marginal distribution in the current circuit
- 4. Condition on the sampled value
- 5. (Repeat)

Asymptotically unbiased importance sampler 😳



Circuits + importance weights approximate any query

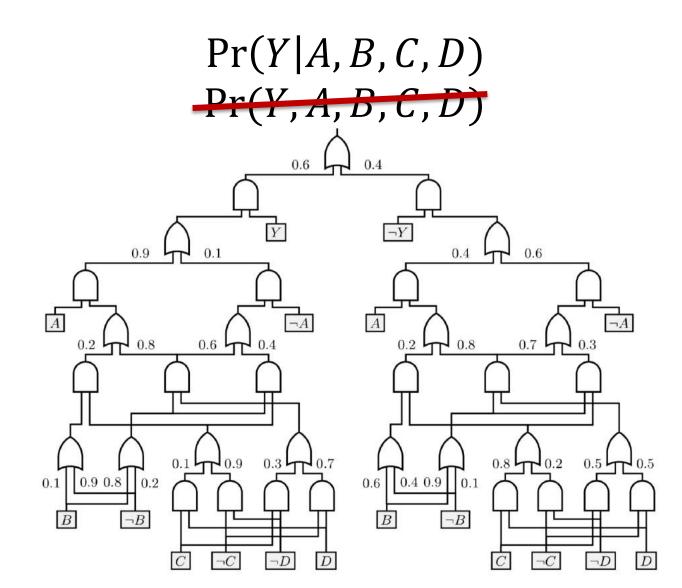
Experiments

Table 2: Hellinger distances across methods with internal treewidth and size bounds

Method	50-20	75-26	DBN	Grids	Segment	linkage	frust
EDBP-100k	2.19e - 3	3.17e - 5	6.39e - 1	1.24e - 3	1.63e - 6	6.54e - 8	4.73e - 3
EDBP-1m	$7.40e{-7}$	2.21e-4	$6.39e{-1}$	$1.98e{-7}$	1.93e-7	5.98e - 8	4.73e - 3
SS-10	$2.51e{-2}$	2.22e - 3	6.37e - 1	$3.10e{-1}$	3.11e-7	4.93e - 2	1.05e-2
SS-12	6.96e - 3	1.02e - 3	6.27e - 1	$2.48e{-1}$	$3.11e{-7}$	1.10e - 3	5.27 e - 4
SS-15	9.09e - 6	1.09e-4	(Exact)	$8.74e{-4}$	3.11e-7	4.06e - 6	6.23e - 3
FD	9.77e - 6	1.87e - 3	$1.24e{-1}$	1.98e - 4	6.00e - 8	5.99e - 6	5.96e - 6
MinEnt	$1.50 e{-5}$	3.29e - 2	1.83e - 2	3.61e - 3	3.40e-7	$6.16e{-5}$	$3.10e{-2}$
RBVar	2.66e - 2	$4.39e{-1}$	6.27e - 3	$1.20e{-1}$	3.01e-7	2.02e - 2	2.30e - 3

Competitive with state-of-the-art approximate inference in graphical models. Outperforms it on several benchmarks!

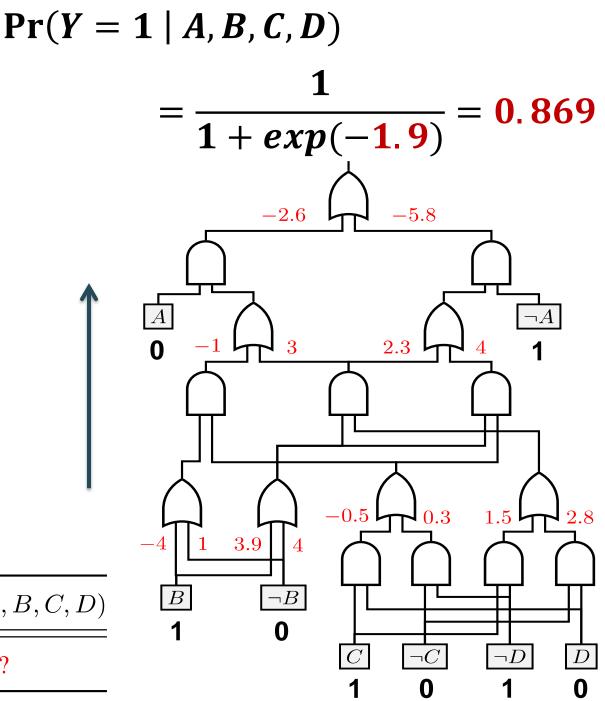
But what if I only want to classify Y?



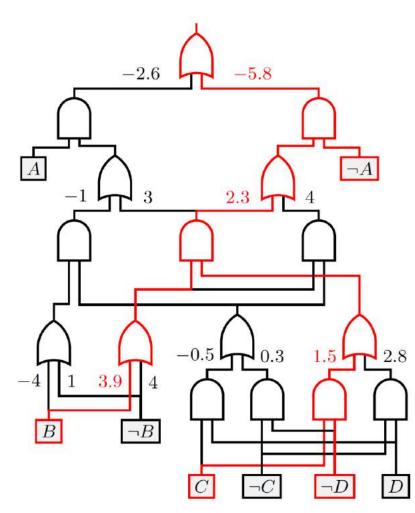
Logistic Circuits

Logistic function on output weight

A	В	C	D	$\Pr(Y \mid A, B, C, D)$
0	1	1	0	?



Alternative Semantics

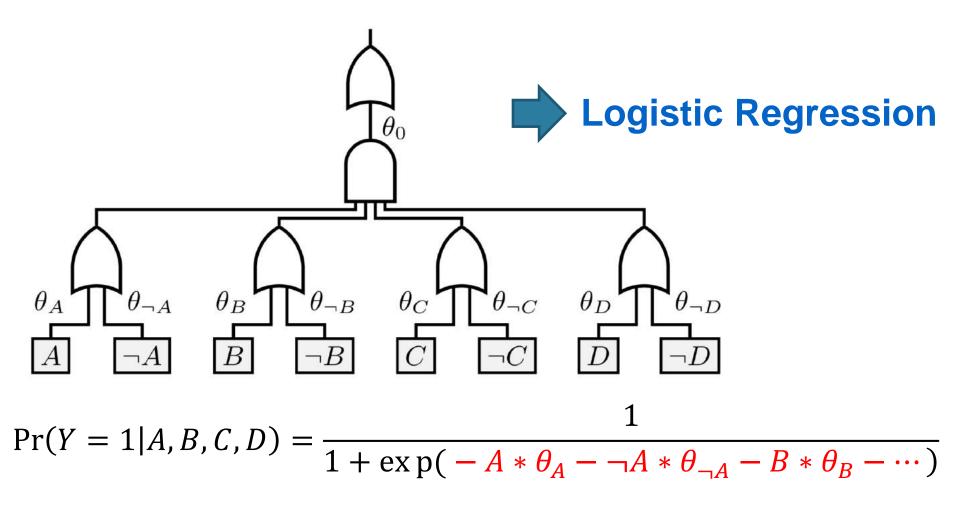


Represents Pr(Y | A, B, C, D)

- Take all 'hot' wires
- Sum their weights
- Push through logistic function

A	B	C	D	$g_r(ABCD)$	$\Pr(Y = 1 \mid ABCD)$
1	0	1	1	-3.1	4.31%
0	1	1	0	1.9	86.99%
1	1	1	0	5.8	99.70%

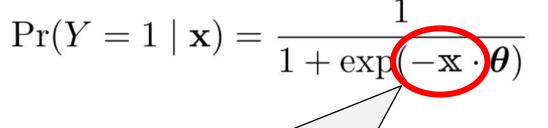
Special Case: Logistic Regression



Is this a coincidence? What about more general circuits?

Parameter Learning

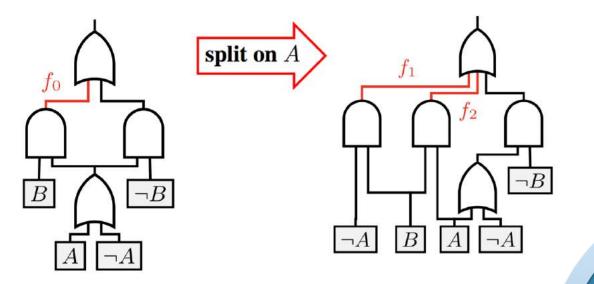
Reduce to logistic regression:



Features associated with each wire "Global Circuit Flow" features

Learning parameters θ is convex optimization!

Logistic Circuit Structure Learning



Generate candidate operations Calculate Gradient Variance

Execute the best operation

Comparable Accuracy with Neural Nets

ACCURACY % ON DATASET	MNIST	FASHION
BASELINE: LOGISTIC REGRESSION	85.3	79.3
BASELINE: KERNEL LOGISTIC REGRESSION	97.7	88.3
RANDOM FOREST	97.3	81.6
3-LAYER MLP	97.5	84.8
RAT-SPN (PEHARZ ET AL. 2018)	98.1	89.5
SVM WITH RBF KERNEL	98.5	87.8
5-LAYER MLP	99.3	89.8
LOGISTIC CIRCUIT (BINARY)	97 4	87.6
LOGISTIC CIRCUIT (REAL-VALUED)	99.4	91.3
CNN WITH 3 CONV LAYERS	99.1	90.7
Resnet (He et al. 2016)	99.5	93.6

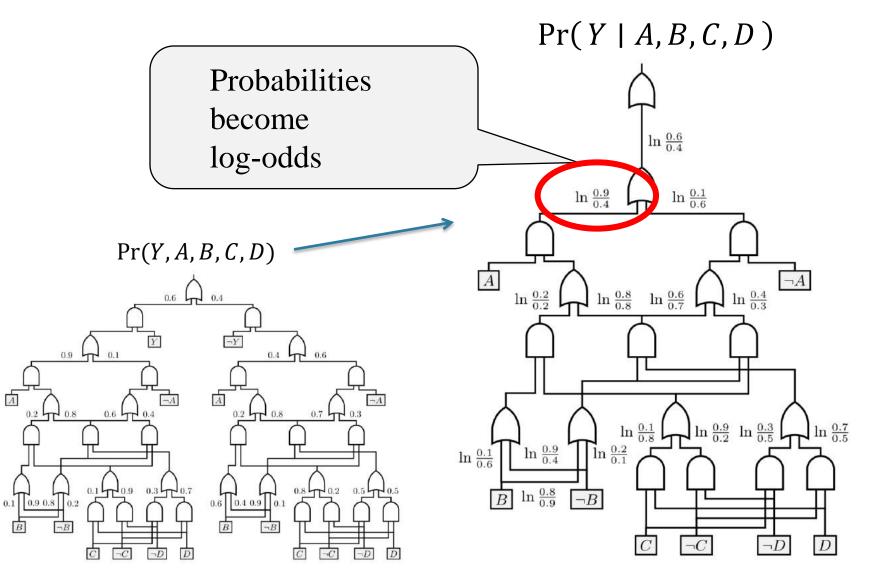
Significantly Smaller in Size

NUMBER OF PARAMETERS	Mnist	FASHION
BASELINE: LOGISTIC REGRESSION	<1K	<1K
BASELINE: KERNEL LOGISTIC REGRESSION	1,521 K	3,930K
LOGISTIC CIRCUIT (REAL-VALUED)	182K	467K
LOGISTIC CIRCUIT (BINARY)	268K	614K
3-layer MLP	1,411K	1,411K
RAT-SPN (Peharz et al. 2018)	8,500K	650K
CNN with 3 conv layers	2,196K	2,196K
5-layer MLP	2,411K	2,411K
Resnet (He et al. 2016)	4,838K	4,838K

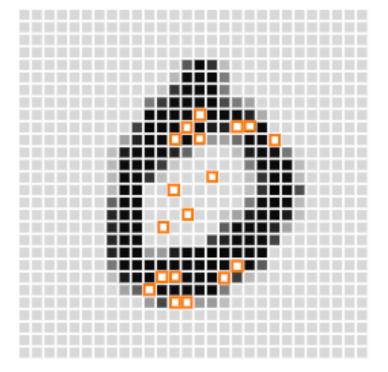
Better Data Efficiency

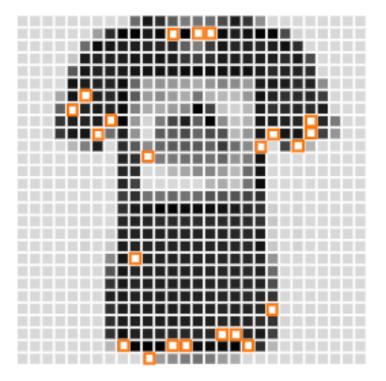
ACCURACY % WITH % OF TRAINING DATA	MNIST			FASHION		
	100%	10%	2%	100%	10%	2%
5-layer MLP	99.3	98.2	94.3	89.8	86.5	80.9
CNN with 3 Conv Layers	99.1	98.1	95.3	90.7	87.6	83.8
LOGISTIC CIRCUIT (BINARY)	97.4	96.9	94.1	87.6	86.7	83.2
LOGISTIC CIRCUIT (REAL-VALUED)	99.4	97.6	96.1	91.3	87.8	86.0

Logistic vs. Probabilistic Circuits



Interpretable?





2+2 = Reasoning About Classifiers

- 2 = State-of-the-art (discrete) densities
- 2 = Non-compromising classifiers

2+2= Tools for reasoning about how a classifier acts on a distribution

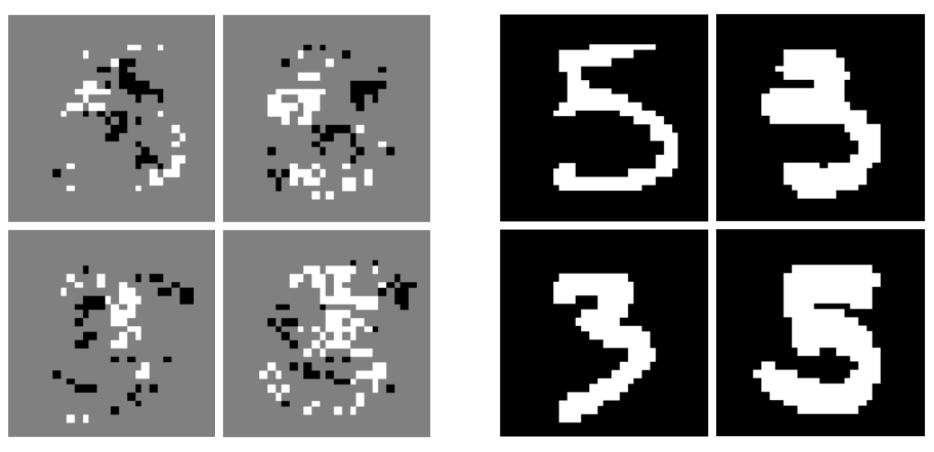
- Fairness
- Robustness
- Unknown unknowns
- Selection bias

- Adversarial
- Missing data
- Active sensing
- Explainability

What to expect of classifiers? [IJCAI19]

- Given a predictor Y=F(X), a distribution P(X)
- What is expected prediction of F in P(X|e)?
- Computationally hard
 - Even with trivial F (#P-hard)
 - Even with trivial P (#P-hard)
 - Even with trivial F and P (NP-hard)
- <u>But:</u> we can do this efficiently on regression circuit F and probabilistic circuit P!

XAI User Study: 5 or 3?

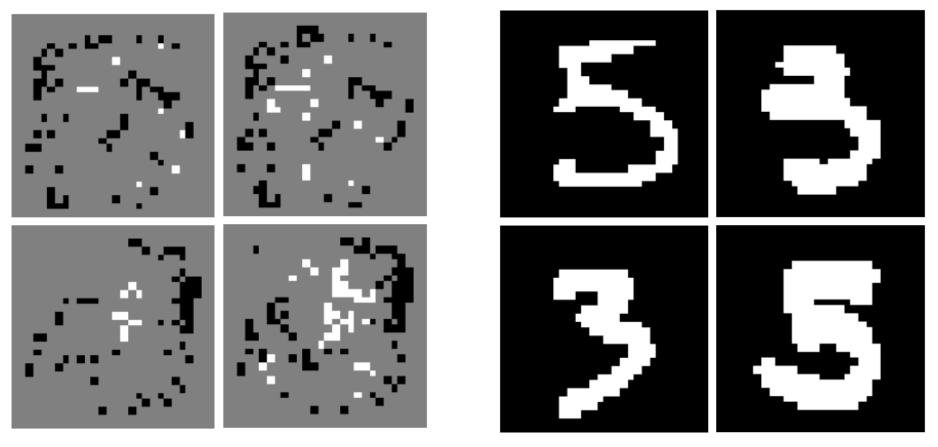


Sufficient Explanations

Correctly Classified

Misclassified

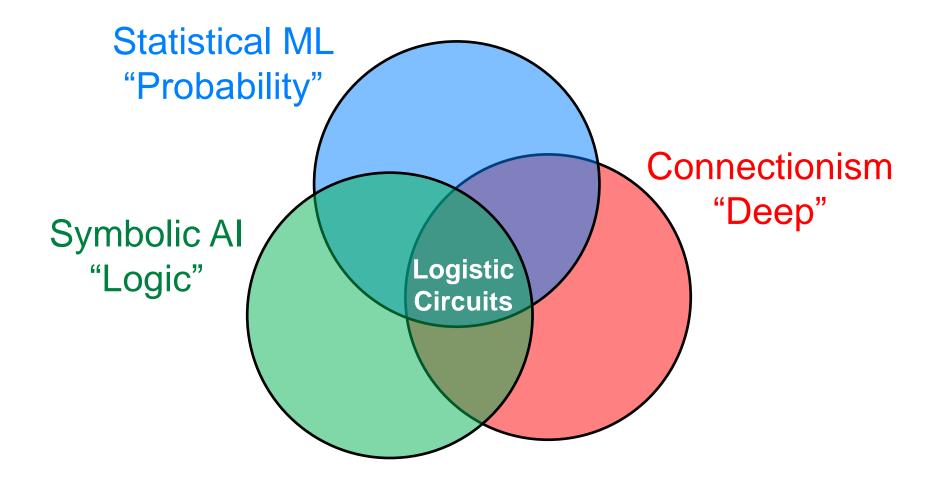
Compare to Data Distribution-Unaware explanations



Correctly Classified

Misclassified

Conclusions 2



Final Conclusions

- Knowledge is everywhere in learning
- Some concepts not easily learned from data
- Make knowledge first-class citizen in ML
- Logical circuits turned statistical models
- Strong properties produce strong learners
- There is no dilemma between understanding and accuracy?
- A wealth of high-level reasoning approaches are still absent from ML discussion

Acknowledgements

Thanks to my students and collaborators!

Thanks for your attention!

Questions?