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How are ideas about  

automated reasoning  

from GOFAI  

relevant to  

modern statistical  

machine learning? 



Outline: Reasoning ∩ Learning 

 

1. Deep Learning with Symbolic Knowledge 

 

2. Efficient Reasoning During Learning 

 

3. Probabilistic and Logistic Circuits 

 



Deep Learning with  

Symbolic Knowledge 

R 
 

L 
 



Motivation: Vision 

[Lu, W. L., Ting, J. A., Little, J. J., & Murphy, K. P. (2013). Learning to track and identify players from broadcast sports videos.] 

   



Motivation: Robotics 

[Wong, L. L., Kaelbling, L. P., & Lozano-Perez, T., Collision-free state estimation. ICRA 2012] 

   

 

  



Motivation: Language 

• Non-local dependencies: 

“At least one verb in each sentence” 

• Sentence compression 

“If a modifier is kept, its subject is also kept” 

• NELL ontology and rules 

 

        … and much more! 

[Chang, M., Ratinov, L., & Roth, D. (2008). Constraints as prior knowledge],  

[Ganchev, K., Gillenwater, J., & Taskar, B. (2010). Posterior regularization for structured latent variable models] 

… and many many more! 



Motivation: Deep Learning 

[Graves, A., Wayne, G., Reynolds, M., Harley, T., Danihelka, I., Grabska-Barwińska, A., et al.. (2016).  

Hybrid computing using a neural network with dynamic external memory. Nature, 538(7626), 471-476.] 



Motivation: Deep Learning 

[Graves, A., Wayne, G., Reynolds, M., Harley, T., Danihelka, I., Grabska-Barwińska, A., et al.. (2016).  

Hybrid computing using a neural network with dynamic external memory. Nature, 538(7626), 471-476.] 

… but … 

 



Learning with Symbolic Knowledge 

Constraints 
(Background Knowledge) 

(Physics) 

+ Data 

1. Must take at least one of Probability (P) 

or Logic (L). 

2. Probability (P) is a prerequisite for AI (A). 

3. The prerequisites for KR (K) is either AI 

(A) or Logic (L). 



Learning with Symbolic Knowledge 

Constraints 
(Background Knowledge) 

(Physics) 

ML Model 

+ 

Today‟s machine learning tools  

don‟t take knowledge as input!  

Learn 

Data 



Deep Learning 
with 

Symbolic Knowledge 

Data Constraints 

Deep Neural 

Network 

+ 

Learn 

Input 

Neural Network Logical Constraint 

Output 

Output is  

probability vector p,  

not Boolean logic! 



Semantic Loss 

Q: How close is output p to satisfying constraint α? 

                             Answer: Semantic loss function L(α,p) 
  

• Axioms, for example: 

– If α fixes the labels, then L(α,p) is cross-entropy  

– If α implies β then L(α,p) ≥ L(β,p)     (α more strict) 

 

• Implied Properties:  

– If α is equivalent to β then L(α,p) = L(β,p) 

– If p is Boolean and satisfies α then L(α,p) = 0 

SEMANTIC 

Loss! 



Semantic Loss: Definition 

Theorem: Axioms imply unique semantic loss: 

 

 

Probability of getting state x after  

flipping coins with probabilities p 

Probability of satisfying α after  

flipping coins with probabilities p 



Simple Example: Exactly-One 

• Data must have some label 

We agree this must be one of the 10 digits: 

• Exactly-one constraint 

                → For 3 classes: 

• Semantic loss: 

 

𝒙𝟏 ∨ 𝒙𝟐∨ 𝒙𝟑
¬𝒙𝟏 ∨ ¬𝒙𝟐
¬𝒙𝟐 ∨ ¬𝒙𝟑
¬𝒙𝟏 ∨ ¬𝒙𝟑

 

Only 𝒙𝒊 = 𝟏 after flipping coins 

Exactly one true 𝒙 after flipping coins 



Semi-Supervised Learning 

• Intuition: Unlabeled data must have some label 

Cf. entropy minimization, manifold learning 

 

 

 

 

• Minimize exactly-one semantic loss on unlabeled data 

 
Train with 

𝑒𝑥𝑖𝑠𝑡𝑖𝑛𝑔 𝑙𝑜𝑠𝑠 + 𝑤 ∙ 𝑠𝑒𝑚𝑎𝑛𝑡𝑖𝑐 𝑙𝑜𝑠𝑠 



Experimental Evaluation 

Competitive with 

state of the art  

in semi-supervised 

deep learning 

Outperforms SoA! 

Same conclusion on CIFAR10 



Efficient Reasoning 

During Learning 

R 
 

L 
 



But what about real constraints? 

cf. Nature paper 

• Path constraint 

 

 

 

  
• Example: 4x4 grids 

224 = 184 paths + 16,777,032 non-paths 

• Easily encoded as logical constraints  
[Nishino et al., Choi et al.] 

vs. 



How to Compute Semantic Loss? 

• In general: #P-hard  

 



Reasoning Tool: Logical Circuits 

Representation of 

logical sentences: 

 

𝐶 ∧ ¬𝐷 ∨ ¬𝐶 ∧ 𝐷  

         

C XOR D 
 



Input: 
 

1 0 

1 0 

1 0 0 1 

0 

1 

0 1 

0 1 0 

1 1 

1 1 0 1 

0 1 0 

Reasoning Tool: Logical Circuits 

Representation of 

logical sentences: 



Tractable for Logical Inference 

• Is there a solution? (SAT) 

– SAT(𝛼 ∨ 𝛽) iff SAT(𝛼) or SAT(𝛽)     (always) 

– SAT(𝛼 ∧ 𝛽) iff ??? 

 

 



Decomposable Circuits 

Decomposable 

B,C,D 

A 



Tractable for Logical Inference 

• Is there a solution? (SAT) 

– SAT(𝛼 ∨ 𝛽) iff SAT(𝛼) or SAT(𝛽)     (always) 

– SAT(𝛼 ∧ 𝛽) iff SAT(𝛼) and SAT(𝛽)  (decomposable) 

• How many solutions are there? (#SAT) 

 

• Complexity linear in circuit size  

 

 

 

✓ 



Deterministic Circuits 

Deterministic 

C XOR D 



Deterministic Circuits 

Deterministic 

C XOR D 

C⇔D 



How many solutions are there? (#SAT) 

1 1 

1 1 

1 1 1 1 

1 

16 

8 8 

4 4 4 

8 8 

2 2 2 2 

1 1 1 

+ 

x 



Tractable for Logical Inference 

• Is there a solution? (SAT) 

• How many solutions are there? (#SAT) 

• Conjoin, disjoin, equivalence checking, etc. 

• Complexity linear in circuit size  

 

• Compilation into circuit by 

– ↓ exhaustive SAT solver 

– ↑ conjoin/disjoin/negate 

✓ 
✓ 

[Darwiche and Marquis, JAIR 2002] 

✓ 



How to Compute Semantic Loss? 

• In general: #P-hard  

• With a logical circuit for α: Linear  

• Example: exactly-one constraint: 

 

 

 

 

 

• Why? Decomposability and determinism! 

L(α,p) = L(    , p) =     - log(          ) 



Predict Shortest Paths 

Add semantic loss  

for path constraint 

Is output  

a path? 
Are individual  

edge predictions  

correct? 

Is prediction 

the shortest path? 

This is the real task! 

(same conclusion for predicting sushi preferences, see paper) 



Conclusions 1 

• Knowledge is (hidden) everywhere in ML 

• Semantic loss makes logic differentiable 

• Performs well semi-supervised 

• Requires hard reasoning in general 

– Reasoning can be encapsulated in a circuit 

– No overhead during learning 

• Performs well on structured prediction 

• A little bit of reasoning goes a long way! 



Probabilistic and Logistic Circuits 

R 
 

L 
 



A False Dilemma? 

Classical AI Methods 
 

     

 

Hungry? 

 
$25? 

 

Restau 
rant? 

 

Sleep? 

 

Clear Modeling Assumption 

Well-understood 

           … 

Neural Networks 
 

     

 

“Black Box” 

Empirical performance 



Can we turn  

logic circuits 

into a  

statistical model? 

Inspiration: Probabilistic Circuits 



Probabilistic Circuits 

Input: 
 

1 0 

1 0 

1 0 0 1 

0 0 0 1 

.1 .8 0 .3 

.01 .24 0 

.194 .096 

0 .096 

𝐏𝐫(𝑨,𝑩, 𝑪, 𝑫) =𝟎. 𝟎𝟗𝟔  

(.1x1) + (.9x0) 

.8 x .3 



L K L  

1 0 

P A P  

1 0 

L L  

1 0 

P A P 

0.6 0.4 

L K L  

1 0 

P P  

1 0 

A A 

0.8 0.2 

A A 
0.25 0.75 

A A 
0.9 0.1 

0.1 0.6 

0.3 

Can read probabilistic independences off the circuit structure  

Each node represents  

a normalized 

distribution! 



L K L  

1 0 

P A P  

1 0 

L L  

1 0 

P A P 

0.6 0.4 

L K L  

1 0 

P P  

1 0 

K K 

0.8 0.2 

A A 
0.25 0.75 

A A 
0.9 0.1 

0.1 0.6 

0.3 

Student takes course L 

Student takes course P 

Probability of course P given L 

Parameters are Interpretable 



Properties, Properties, Properties! 

• Read conditional independencies from structure 

• Interpretable parameters (XAI) 
(conditional probabilities of logical sentences) 

• Closed-form parameter learning 

• Efficient reasoning 

– MAP inference: most-likely assignment to x given y 
(otherwise NP-hard) 

– Computing conditional probabilities Pr(x|y)  
(otherwise #P-hard) 

– Algorithms linear in circuit size  

– x and y could even be complex  logical circuits 



Discrete Density Estimation 

LearnPSDD 

state of the art  

on 6 datasets! 

Q: “Help! I need to learn a  

discrete probability distribution…” 

A: Learn probabilistic circuits! 

 

 

Strongly outperforms 

• Bayesian network learners 

• Markov network learners 

 

 

Competitive SPN learner 



Learning Preference Distributions 

Special-purpose  
distribution: 
Mixture-of-Mallows 

– # of components 
from 1 to 20 

– EM with  
10 random seeds 

– Implementation of 
Lu & Boutilier 

PSDD 



Compilation for Prob. Inference 



Collapsed Compilation [NeurIPS 2018] 

To sample a circuit: 

1. Compile bottom up until you reach the size limit 

2. Pick a variable you want to sample 

3. Sample it according to its marginal distribution in 
the current circuit 

4. Condition on the sampled value 

5. (Repeat) 

 

Asymptotically unbiased importance sampler  



 Circuits +  
importance weights 
approximate any query 



Experiments 

 

Competitive with state-of-the-art  

approximate inference in graphical models. 

Outperforms it on several benchmarks!  



But what if I only want to classify Y? 

 Pr(𝑌, 𝐴, 𝐵, 𝐶, 𝐷)  
 Pr 𝑌 𝐴, 𝐵, 𝐶, 𝐷)  



1 0 

1 0 

1 0 0 1 

𝐏𝐫 𝒀 = 𝟏  𝑨, 𝑩, 𝑪,𝑫)   Logistic  
Circuits =

𝟏

𝟏 + 𝒆𝒙𝒑(−𝟏. 𝟗)
= 𝟎. 𝟖𝟔𝟗 

Input: 
 

Logistic function  

on output weight 



Alternative Semantics 

Represents Pr 𝑌 𝐴, 𝐵, 𝐶, 𝐷  

• Take all „hot‟ wires 

• Sum their weights 

• Push through logistic function 



Special Case: Logistic Regression 

Is this a coincidence?  

What about more general circuits? 

Pr 𝑌 = 1 𝐴, 𝐵, 𝐶, 𝐷 =
1

1 + ex p( − 𝐴 ∗ 𝜃𝐴 −¬𝐴 ∗ 𝜃¬𝐴 − 𝐵 ∗ 𝜃𝐵 −⋯)
 

Logistic Regression 



Parameter Learning 

Reduce to logistic regression: 

Features associated with each wire 

“Global Circuit Flow” features 

Learning parameters θ is convex optimization! 



Logistic Circuit Structure Learning 

Calculate 
Gradient 
Variance 

Execute the 
best operation 

Generate 
candidate 
operations 



Comparable Accuracy with Neural Nets 



Significantly Smaller in Size 



Better Data Efficiency 



Logistic vs. Probabilistic Circuits 

Probabilities 

become  

log-odds 

Pr 𝑌 𝐴, 𝐵, 𝐶, 𝐷  

 Pr(𝑌, 𝐴, 𝐵, 𝐶, 𝐷)  



Interpretable? 



2+2 = Reasoning About Classifiers 

2 = State-of-the-art (discrete) densities 

2 = Non-compromising classifiers 

 

2+2= Tools for reasoning about how a 

classifier acts on a distribution 

• Adversarial 

• Missing data 

• Active sensing 

• Explainability 

• Fairness 

• Robustness 

• Unknown unknowns 

• Selection bias 



What to expect of classifiers? [IJCAI19] 

• Given a predictor Y=F(X), a distribution P(X) 

• What is expected prediction of F in P(X|e)? 

• Computationally hard 

– Even with trivial F (#P-hard) 

– Even with trivial P (#P-hard) 

– Even with trivial F and P (NP-hard) 

• But: we can do this efficiently  

   on regression circuit F and  

     probabilistic circuit P! 



XAI User Study: 5 or 3? 

Correctly 

Classified 
Misclassified Sufficient Explanations 



Compare to  

Data Distribution-Unaware explanations 

Correctly 

Classified 
Misclassified 



Conclusions 2 

Statistical ML 

“Probability” 

Symbolic AI 

“Logic” 

Connectionism 

“Deep” 

Logistic 

Circuits 



Final Conclusions 

• Knowledge is everywhere in learning 

• Some concepts not easily learned from data 

• Make knowledge first-class citizen in ML 

 

• Logical circuits turned statistical models 

• Strong properties produce strong learners 

• There is no dilemma between  
understanding and accuracy? 

 

• A wealth of high-level reasoning approaches 
are still absent from ML discussion 
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