Probabilistic Circuits

Antonio Vergari

Representations Inference Learning Applications

University of California, Los Angeles
based on joint AAAI-2020 and UAI-2019 tutorials with

Guy Van den Broeck

University of California, Los Angeles

Robert Peharz
 TU Eindhoven

YooJung Choi

University of California, Los Angeles

Nicola Di Mauro

University of Bari

The Alphabet Soup of probabilistic models

Intractable and tractable models

tractability is a spectrum

Expressive models without compromises

a unifying framework for tractable models

Why tractable inference?

or expressiveness vs tractability

Why tractable inference?

or expressiveness vs tractability

Probabilistic circuits

a unified framework for tractable models

Why tractable inference?

or expressiveness vs tractability

Probabilistic circuits

a unified framework for tractable models

Building circuits

learning them from data and compiling other models

Why tractable inference?

or expressiveness vs tractability

Probabilistic circuits

a unified framework for tractable models

Building circuits

learning them from data and compiling other models

Applications

what are circuits useful for

Why tractable inference?

or the inherent trade-off of tractability vs. expressiveness

Why probabilistic inference?

q_{1} : What is the probability that today is a Monday and there is a traffic jam on Alma Str.?

© fineartamerica.com

Why probabilistic inference?

q_{1} : What is the probability that today is a Monday and there is a traffic jam on Alma Str.?
q_{2} : Which day is most likely to have a traffic jam on my route to campus?

© fineartamerica.com

Why probabilistic inference?

q_{1} : What is the probability that today is a Monday and there is a traffic jam on Alma Str.?
q_{2} : Which day is most likely to have a traffic jam on my route to campus?
\Rightarrow fitting a predictive model!

© fineartamerica.com

Why probabilistic inference?

q_{1} : What is the probability that today is a Monday and there is a traffic jam on Alma Str.?
q_{2} : Which day is most likely to have a traffic jam on my route to campus?
fitting a predictive model!

© fineartamerica.com

Why probabilistic inference?

q_{1} : What is the probability that today is a Monday and there is a traffic jam on Alma Str.?
q_{2} : Which day is most likely to have a traffic jam on my route to campus?
\Rightarrow fitting a predictive model!
\Rightarrow answering probabilistic queries on a probabilistic model of the world m

© fineartamerica.com

$$
\mathrm{q}_{1}(\mathbf{m})=\boldsymbol{?} \quad \mathrm{q}_{2}(\mathbf{m})=\boldsymbol{?}
$$

Why probabilistic inference?

q_{1} : What is the probability that today is a Monday and there is a traffic jam on Alma Str.?
$\mathbf{X}=\left\{\right.$ Day, Time, $\operatorname{Jam}_{\text {Str } 1}$, Jam $\left._{\text {Str2 }}, \ldots, \operatorname{Jam}_{\mathrm{StrN}}\right\}$
$\mathrm{q}_{1}(\mathbf{m})=p_{\mathrm{m}}\left(\right.$ Day $=$ Mon, $\left.\mathrm{Jam}_{\text {Alma }}=1\right)$

© fineartamerica.com

Why probabilistic inference?

q_{1} : What is the probability that today is a Monday and there is a traffic jam on Alma Str.?
$\mathbf{X}=\left\{\right.$ Day, Time, $\left.\boldsymbol{J a m}_{\text {Str } 1}, \operatorname{Jam}_{\mathrm{Str} 2}, \ldots, \mathrm{Jam}_{\mathrm{StrN}}\right\}$
$\mathrm{q}_{1}(\mathbf{m})=p_{\mathrm{m}}\left(\right.$ Day $=$ Mon, $\left.\mathrm{Jam}_{\text {Alma }}=1\right)$
\Rightarrow marginals

© fineartamerica.com

Why probabilistic inference?

q_{2} : Which day is most likely to have a traffic jam on my route to campus?
$\mathbf{X}=\left\{\right.$ Day, Time, Jamstr1, Jam $_{\text {Str2 }}, \ldots$, Jam $\left._{\text {StrN }}\right\}$
$\mathrm{q}_{2}(\mathbf{m})=\operatorname{argmax}_{\mathrm{d}} p_{\mathrm{m}}\left(\right.$ Day $\left.=\mathrm{d} \wedge \bigvee_{i \in \text { route }} \operatorname{Jam}_{\text {Stri }}\right)$

© fineartamerica.com

Why probabilistic inference?

q_{2} : Which day is most likely to have a traffic jam on my route to campus?
$\mathbf{X}=\left\{\right.$ Day, Time, Jamstr1, Jam $_{\text {Str2 }}, \ldots$, Jam $\left._{\text {StrN }}\right\}$
$\mathrm{q}_{2}(\mathbf{m})=\operatorname{argmax}_{\mathrm{d}} p_{\mathrm{m}}\left(\right.$ Day $\left.=\mathrm{d} \wedge \bigvee_{i \in \text { route }} \mathrm{Jam}_{\text {Stri }}\right)$

$$
\Rightarrow \text { marginals + MAP + logical events }
$$

© fineartamerica.com

Tractable Probabilistic Inference

A class of queries \mathcal{Q} is tractable on a family of probabilistic models \mathcal{M} iff for any query $\mathrm{q} \in \mathcal{Q}$ and model $\mathrm{m} \in \mathcal{M}$ exactly computing $q(\mathbf{m})$ runs in time $O($ poly $(|\mathbf{m}|))$.

Tractable Probabilistic Inference

A class of queries \mathcal{Q} is tractable on a family of probabilistic models \mathcal{M} iff for any query $\mathrm{q} \in \mathcal{Q}$ and model $\mathrm{m} \in \mathcal{M}$ exactly computing $q(\mathbf{m})$ runs in time $O($ poly $(|\mathbf{m}|))$.
\Longrightarrow
often poly will in fact be linear!

Tractable Probabilistic Inference

A class of queries \mathcal{Q} is tractable on a family of probabilistic models \mathcal{M} iff for any query $\mathrm{q} \in \mathcal{Q}$ and model $\mathrm{m} \in \mathcal{M}$ exactly computing $q(\mathbf{m})$ runs in time $O($ poly $(|\mathbf{m}|))$.
\Rightarrow often poly will in fact be linear!
\Rightarrow Note: if \mathcal{M} and \mathcal{Q} are compact in the number of random variables \mathbf{X}, that is, $|\mathrm{m}|,|\mathrm{q}| \in O(\operatorname{poly}(|\mathbf{X}|))$, then query time is $O(\operatorname{poly}(|\mathbf{X}|))$.

Tractable Probabilistic Inference

A class of queries \mathcal{Q} is tractable on a family of probabilistic models \mathcal{M} iff for any query $\mathrm{q} \in \mathcal{Q}$ and model $\mathrm{m} \in \mathcal{M}$ exactly computing $q(\mathbf{m})$ runs in time $O($ poly $(|\mathbf{m}|))$.
\Longrightarrow
often poly will in fact be linear!

Why exact inference?

or "What about approximate inference?"

1. No need for approximations when we can be exact
2. We can do exact inference in approximate models [Dechter et al. 2002; cho et al. 2010; Lowd et al. 2010; Sontag et al. 2011; Friedman et al. 2018]
3. Approximations shall come with guarantees
4. Approximate inference (even with guarantees) can mislead learners [Kulesza et al. 2007]
5. Annroximations can be intractable as well posum etal 1993; Roth 1996

Why exact inference?

or "What about approximate inference?"

1. No need for approximations when we can be exact
$\Rightarrow \quad$ do we lose some expressiveness?
2. We can do exact inference in approximate models [Dechter et al. 2002; cho et al. 2010; Lowd et al. 2010; Sontag et al. 2011; Friedman et al. 2018]
3. Approximations shall come with guarantees
4. Approximate inference (even with guarantees) can mislead learners
5. Approximations can be intractable as well [Dagum et al

Why exact inference?

or "What about approximate inference?"

1. No need for approximations when we can be exact
2. We can do exact inference in approximate models [Dechter et al. 2002; Choi
et al. 2010; Lowd et al. 2010; Sontag et al. 2011; Friedman et al. 2018]
3. Approximations shall come with guarantees
\Rightarrow sometimes they do, e.g., [Dechter et al. 2007]
4. Approximate inference (even with guarantees) can mislead learners
5. Approximations can be intractable as well [Dagum et al.

Why exact inference?

or "What about approximate inference?"

1. No need for approximations when we can be exact
2. We can do exact inference in approximate models [Dechter et al. 2002; Choi
et al. 2010; Lowd et al. 2010; Sontag et al. 2011; Friedman et al. 2018]
3. Approximations shall come with guarantees
4. Approximate inference (even with guarantees) can mislead learners [Kulesza et al. 2007] $\quad \Rightarrow$ Chaining approximations is flying with a blindfold on
5. Approximations can be intractable as well [Dagum et al. 1993; Roth 1996]

Why exact inference?

or "What about approximate inference?"

1. No need for approximations when we can be exact
2. We can do exact inference in approximate models [Dechter et al. 2002; Choi
et al. 2010; Lowd et al. 2010; Sontag et al. 2011; Friedman et al. 2018]
3. Approximations shall come with guarantees
4. Approximate inference (even with guarantees) can mislead learners [Kulesza et al. 2007]
5. Approximations can be intractable as well [Dagum et al. 1993; Roth 1996]
6. What are classes of queries?
7. Are my favorite models tractable?
8. Are tractable models expressive?

We introduce probabilistic circuits as a unified framework for tractable probabilistic modeling

Complete evidence (EVI)

q_{3} : What is the probability that today is a Monday at 12.00 and there is a traffic jam only on Alma Str.?

© fineartamerica.com

Complete evidence (EVI)

q_{3} : What is the probability that today is a Monday at 12.00 and there is a traffic jam only on Alma Str.?

$$
\begin{aligned}
& \mathbf{X}=\{\text { Day, Time, Jam } \\
& \mathrm{q}_{3}(\mathbf{m})=p_{\mathrm{m}}(\mathbf{X}=\{\text { Mon }, \text { Jamstr } 2, \ldots, \text { JamStrN }\}
\end{aligned}
$$

© fineartamerica.com

Complete evidence (EVI)

q_{3} : What is the probability that today is a Monday at 12.00 and there is a traffic jam only on Alma Str.?

$$
\begin{aligned}
& \mathbf{X}=\{\text { Day, Time, Jam } \\
& \mathrm{q}_{3}(\mathbf{m})=p_{\mathrm{m}}(\mathbf{X}=\{\text { Mon }, \text { Jamstr } 2, \ldots, \text { JamStrN }\}
\end{aligned}
$$

...fundamental in maximum likelihood learning

© fineartamerica.com

Generative Adversarial Networks

$\min _{\theta} \max _{\phi} \mathbb{E}_{\mathbf{x} \sim p_{\text {data }}(\mathbf{x})}\left[\log D_{\phi}(\mathbf{x})\right]+\mathbb{E}_{\mathbf{z} \sim p(\mathbf{z})}\left[\log \left(1-D_{\phi}\left(G_{\theta}(\mathbf{z})\right)\right)\right]$

$\min _{\theta} \max _{\phi} \mathbb{E}_{\mathbf{x} \sim p_{\text {data }}(\mathbf{x})}\left[\log D_{\phi}(\mathbf{x})\right]+\mathbb{E}_{\mathbf{z} \sim p(\mathbf{z})}\left[\log \left(1-D_{\phi}\left(G_{\theta}(\mathbf{z})\right)\right)\right]$

- no explicit likelihood! \Rightarrow adversarial training instead of MLE
\Rightarrow no tractable EVI
- good sample quality
\Rightarrow but lots of samples needed for MC
- unstable training
\Rightarrow mode collapse

Variational Autoencoders

$$
p_{\theta}(\mathbf{x})=\int p_{\theta}(\mathbf{x} \mid \mathbf{z}) p(\mathbf{z}) d \mathbf{z}
$$

\square an explicit likelihood model!

[^0]

$\log p_{\theta}(\mathbf{x}) \geq \mathbb{E}_{\mathbf{z} \sim q_{\phi}(\mathbf{z} \mid \mathbf{x})}\left[\log p_{\theta}(\mathbf{x} \mid \mathbf{z})\right]-\mathbb{K} \mathbb{L}\left(q_{\phi}(\mathbf{z} \mid \mathbf{x}) \| p(\mathbf{z})\right)$

- an explicit likelihood model!
- ... but computing $\log p_{\theta}(\mathbf{x})$ is intractable
\Rightarrow an infinite and uncountable mixture \Rightarrow no tractable EVIwe need to optimize the ELBO...
\Rightarrow which is "tricky" [Alemi et al. 2017; Dai

et al. 2019; Ghosh et al. 2019]

Autoregressive models

$$
p_{\theta}(\mathbf{x})=\prod_{i} p_{\theta}\left(x_{i} \mid x_{1}, x_{2}, \ldots, x_{i-1}\right)
$$

\square an explicit likelihood!
-...as a product of factors \Rightarrow tractable EVI!

- many neural variants
- NADE [Larochelle et al. 2011],

MADE [Germain et al. 2015]
PixeICNN [Salimans et al. 2017],
PixeIRNN [Oord et al. 2016]

Marginal queries (MAR)

q_{1} : What is the probability that today is a Monday 120 and there is a traffic jam on Alma Str.?

© fineartamerica.com

Marginal queries (MAR)

q_{1} : What is the probability that today is a Monday 1200 and there is a traffic jam on Alma Str.?

$$
\mathbf{q}_{1}(\mathbf{m})=p_{\mathbf{m}}\left(\text { Day }=\text { Mon }, \operatorname{Jam}_{\text {Alma }}=1\right)
$$

© fineartamerica.com

Marginal queries (MAR)

q_{1} : What is the probability that today is a Monday 2 and there is a traffic jam on Alma Str.?

$$
\mathrm{q}_{1}(\mathbf{m})=p_{\mathrm{m}}\left(\text { Day }=\text { Mon }, \operatorname{Jam}_{\text {Alma }}=1\right)
$$

General: $p_{\mathrm{m}}(\mathbf{e})=\int p_{\mathrm{m}}(\mathbf{e}, \mathbf{H}) d \mathbf{H}$

$$
\text { where } \mathbf{E} \subset \mathbf{X}, \quad \mathbf{H}=\mathbf{X} \backslash \mathbf{E}
$$

© fineartamerica.com

Marginal queries (MAR)

q_{1} : What is the probability that today is a Monday 2 and there is a traffic jam on Alma Str.?
$\mathrm{q}_{1}(\mathbf{m})=p_{\mathrm{m}}\left(\right.$ Day $\left.=\operatorname{Mon}, \operatorname{Jam}_{\text {Alma }}=1\right)$

General: $p_{\mathrm{m}}(\mathbf{e})=\int p_{\mathrm{m}}(\mathbf{e}, \mathbf{H}) d \mathbf{H}$ and if you can answer MAR queries, then you can also do conditional queries (CON):

© fineartamerica.com

$$
p_{\mathrm{m}}(\mathbf{q} \mid \mathbf{e})=\frac{p_{\mathrm{m}}(\mathbf{q}, \mathbf{e})}{p_{\mathrm{m}}(\mathbf{e})}
$$

Autoregressive models

$$
p_{\theta}(\mathbf{x})=\prod_{i} p_{\theta}\left(x_{i} \mid x_{1}, x_{2}, \ldots, x_{i-1}\right)
$$

\square an explicit likelihood!
-...as a product of factors \Rightarrow tractable EVI!

$$
p_{\theta}(\mathbf{x})=\prod_{i} p_{\theta}\left(x_{i} \mid x_{1}, x_{2}, \ldots, x_{i-1}\right)
$$

\square an explicit likelihood!
....as a product of factors \Rightarrow tractable EVI!

- ... but we need to fix a variable ordering \Rightarrow only some MAR queries are tractable for one ordering

Normalizing flows

$p_{\mathbf{X}}(\mathbf{x})=p_{\mathbf{Z}}\left(f^{-1}(\mathbf{x})\right)\left|\operatorname{det}\left(\frac{\delta f^{-1}}{\delta \mathbf{x}}\right)\right|$an explicit likelihood
\Rightarrow tractable EVI!
\square ... computing the determinant of the Jacobian

MaッMnlinima flarme

$$
p_{\mathbf{X}}(\mathbf{x})=p_{\mathbf{Z}}\left(f^{-1}(\mathbf{x})\right)\left|\operatorname{det}\left(\frac{\delta f^{-1}}{\delta \mathbf{x}}\right)\right|
$$an explicit likelihood \Rightarrow tractable EVI!

- ... computing the determinant of the Jacobian
- MAR is generally intractable \Rightarrow unless f is a "trivial" bijection

Probabilistic Graphical Models (PGMs)

Declarative semantics: a clean separation of modeling assumptions from inference

Nodes: random variables
Edges: dependencies

Inference: \quad conditioning [Darwiche 2001; Sang et al. 2005]

- elimination [Zhang et al. 1994; Dechter 1998]
\square message passing [Yedidia et al. 2001; Dechter
et al. 2002; Choi et al. 2010; Sontag et al. 2011]

Complexity of MAR on PGMs

Exact complexity: Computing MAR and CON is \#P-complete
$\Rightarrow \quad$ [Cooper 1990; Roth 1996]

Approximation complexity: Computing MAR and COND approximately within a relative error of $2^{n^{1-\epsilon}}$ for any fixed ϵ is NP-hard
$\Rightarrow \quad$ [Dagum et al. 1993; Roth 1996]

Why? Treewidth!

Treewidth:

Informally, how tree-like is the graphical model m?
Formally, the minimum width of any tree-decomposition of m .
Fixed-parameter tractable: MAR and CON on a graphical model m with treewidth w take time $O\left(|\mathbf{X}| \cdot 2^{w}\right)$, which is linear for fixed width w
[Dechter 1998; Koller et al. 2009]. $\quad \Rightarrow \quad$ what about bounding the treewidth by design?

Low-treewidth PGMs

Thin Junction trees
[Bach et al. 2001]

If treewidth is bounded (e.g. $\cong 20$), exact MAR and CON inference is possible in practice

What do we lose?

Expressiveness: Ability to represent rich and complex classes of distributions

Bounded-treewidth PGMs lose the ability to represent all possible distributions ...

[^1]
Mixtures

Mixtures as a convex combination of k (simpler) probabilistic models

$$
p(X)=w_{1} \cdot p_{1}(X)+w_{2} \cdot p_{2}(X)
$$

EVI, MAR, CON queries scale linearly in k

Mixtures

Mixtures as a convex combination of k (simpler) probabilistic models

$$
\begin{aligned}
p(X)= & p(Z=1) \cdot p_{1}(X \mid Z=1) \\
& +p(Z=\mathbf{2}) \cdot p_{2}(X \mid Z=\mathbf{2})
\end{aligned}
$$

Mixtures are marginalizing a categorical latent variable Z with k values
\Rightarrow increased expressiveness

Expressiveness and efficiency

Expressiveness: Ability to represent rich and effective classes of functions
\Rightarrow mixture of Gaussians can approximate any distribution!

[^2]
Expressiveness and efficiency

Expressiveness: Ability to represent rich and effective classes of functions
\Rightarrow mixture of Gaussians can approximate any distribution!

Expressive efficiency (succinctness) Ability to represent rich and effective classes of functions compactly
\Rightarrow but how many components does a Gaussian mixture need?

Cohen et al., "On the expressive power of deep learning: A tensor analysis", 2016 Martens et al., "On the Expressive Efficiency of Sum Product Networks", 2014

How expressive efficient are mixture?

How expressive efficient are mixture?

stack mixtures like in deep generative models 31/123

Maximum A Posteriori (MAP)

aka Most Probable Explanation (MPE)
q_{5} : Which combination of roads is most likely to be jammed on Monday at 9am?

© fineartamerica.com

Maximum A Posteriori (MAP)

aka Most Probable Explanation (MPE)
q_{5} : Which combination of roads is most likely to be jammed on Monday at 9am?

$$
\mathrm{q}_{5}(\mathbf{m})=\operatorname{argmax}_{\mathbf{j}} p_{\mathrm{m}}\left(\mathbf{j}_{1}, \mathbf{j}_{2}, \ldots \mid \text { Day }=\mathrm{M}, \text { Time }=9\right)
$$

© fineartamerica.com

Maximum A Posteriori (MAP)

aka Most Probable Explanation (MPE)
q_{5} : Which combination of roads is most likely to be jammed on Monday at 9am?

$$
\mathrm{q}_{5}(\mathbf{m})=\operatorname{argmax}_{\mathbf{j}} p_{\mathbf{m}}\left(\mathbf{j}_{1}, \mathbf{j}_{2}, \ldots \mid \text { Day }=\mathrm{M}, \text { Time }=9\right)
$$

General: $\operatorname{argmax}_{\mathbf{q}} p_{\mathrm{m}}(\mathbf{q} \mid \mathbf{e})$

$$
\text { where } \mathbf{Q} \cup \mathbf{E}=\mathbf{X}
$$

© fineartamerica.com

Maximum A Posteriori (MAP)

aka Most Probable Explanation (MPE)
q_{5} : Which combination of roads is most likely to be jammed on Monday at 9am?
...intractable for latent variable models!

$$
\begin{aligned}
\max _{\mathbf{q}} p_{\mathbf{m}}(\mathbf{q} \mid \mathbf{e}) & =\max _{\mathbf{q}} \sum_{\mathbf{z}} p_{\mathbf{m}}(\mathbf{q}, \mathbf{z} \mid \mathbf{e}) \\
& \neq \sum_{\mathbf{z}} \max _{\mathbf{q}} p_{\mathbf{m}}(\mathbf{q}, \mathbf{z} \mid \mathbf{e})
\end{aligned}
$$

© fineartamerica.com

Marginal MAP (MMAP)

aka Bayesian Network MAP
q6: Which combination of roads is most likely to be jammed ondan?

© fineartamerica.com

Marginal MAP (MMAP)

aka Bayesian Network MAP
q_{6} : Which combination of roads is most likely to be jammed at 9am?

$$
\mathrm{q}_{6}(\mathbf{m})=\operatorname{argmax}_{\mathbf{j}} p_{\mathrm{m}}\left(\mathbf{j}_{1}, \mathbf{j}_{2}, \ldots \mid \text { Time }=9\right)
$$

© fineartamerica.com

Marginal MAP (MMAP)

aka Bayesian Network MAP
q_{6} : Which combination of roads is most likely to be jammed at 9am?

$$
\mathrm{q}_{6}(\mathbf{m})=\operatorname{argmax}_{\mathbf{j}} p_{\mathrm{m}}\left(\mathbf{j}_{1}, \mathbf{j}_{2}, \ldots \mid \text { Time }=9\right)
$$

General: $\operatorname{argmax}_{\mathbf{q}} p_{\mathrm{m}}(\mathbf{q} \mid \mathbf{e})$

$$
=\operatorname{argmax}_{\mathbf{q}} \sum_{\mathbf{h}} p_{\mathrm{m}}(\mathbf{q}, \mathbf{h} \mid \mathbf{e})
$$

where $\mathbf{Q} \cup \mathbf{H} \cup \mathbf{E}=\mathbf{X}$

Marginal MAP (MMAP)

aka Bayesian Network MAP
q6: Which combination of roads is most likely to be jammed en_umery at 9am?

$$
\mathrm{q}_{6}(\mathbf{m})=\operatorname{argmax}_{\mathbf{j}} p_{\mathrm{m}}\left(\mathbf{j}_{1}, \mathbf{j}_{2}, \ldots \mid \text { Time }=9\right)
$$

$$
\Rightarrow \quad N P^{P P} \text {-complete [Park et al. 2006] }
$$

$$
\Rightarrow \quad \text { NP-hard for trees [Campos 2011] }
$$

[^3]
Advanced queries

q_{2} : Which day is most likely to have a traffic jam on my route to work?

© fineartamerica.com

Advanced queries

q_{2} : Which day is most likely to have a traffic jam on my route to work?

$$
\mathrm{q}_{2}(\mathbf{m})=\operatorname{argmax}_{\mathrm{d}} p_{\mathrm{m}}\left(\text { Day }=\mathrm{d} \wedge \bigvee_{i \in \text { route }} \text { Jamstr } i\right)
$$

$$
\Rightarrow \text { marginals + MAP + logical events }
$$

© fineartamerica.com

Advanced queries

q_{2} : Which day is most likely to have a traffic jam on my route to work?
q_{7} : What is the probability of seeing more traffic jams in Palo Verde than Midtown?

© fineartamerica.com

Advanced queries

q_{2} : Which day is most likely to have a traffic jam on my route to work?
q_{7} : What is the probability of seeing more traffic jams in Palo Verde than Midtown?

```
\(\Rightarrow\) counts + group comparison
```


© fineartamerica.com

Advanced queries

q_{2} : Which day is most likely to have a traffic jam on my route to work?
q_{7} : What is the probability of seeing more traffic jams in Palo Verde than Midtown?
and more:
\square expected classification agreement
[Oztok et al. 2016; Choi et al. 2017, 2018]

© fineartamerica.com

Fully factorized models

A completely disconnected graph. Example: Product of Bernoullis (PoBs)

$$
p(\mathbf{x})=\prod_{i=1}^{n} p\left(x_{i}\right)
$$

x_{5}

Complete evidence, marginals and MAP, MMAP inference is linear!
\Rightarrow but definitely not expressive...
more tractable queries

more tractable queries

Expressive models are not very tractable...

and tractable ones are not very expressive...

probabilistic circuits are at the "sweet spot"

Probabilistic Circuits

Probabilistic circuits

A probabilistic circuit \mathcal{C} over variables \mathbf{X} is a computational graph encoding a (possibly unnormalized) probability distribution $p(\mathbf{X})$

Probabilistic circuits

A probabilistic circuit \mathcal{C} over variables \mathbf{X} is a computational graph encoding a (possibly unnormalized) probability distribution $p(\mathbf{X})$
\Rightarrow operational semantics!

Probabilistic circuits

A probabilistic circuit \mathcal{C} over variables \mathbf{X} is a computational graph encoding a (possibly unnormalized) probability distribution $p(\mathbf{X})$
\Rightarrow operational semantics!
\Rightarrow by constraining the graph we can make inference tractable...

1. What are the building blocks of probabilistic circuits? \Rightarrow How to build a tractable computational graph?
2. For which queries are probabilistic circuits tractable?
\Rightarrow tractable classes induced by structural properties

How can probabilistic circuits be learned?

Distributions as computational graphs

Base case: a single node encoding a distribution \Rightarrow e.g., Gaussian PDF continuous random variable

Distributions as computational graphs

Base case: a single node encoding a distribution
\Rightarrow e.g., indicators for X or $\neg X$ for Boolean random variable

Distributions as computational graphs

Simple distributions are tractable "black boxes" for:
\square EVI: output $p(\mathbf{x})$ (density or mass)

- MAR: output 1 (normalized) or Z (unnormalized)
- MAP: output the mode

Distributions as computational graphs

Simple distributions are tractable "black boxes" for:
\square EVI: output $p(\mathbf{x})$ (density or mass)
\square MAR: output 1 (normalized) or Z (unnormalized)

- MAP: output the mode

Factorizations as product nodes

Divide and conquer complexity

$$
p\left(X_{1}, X_{2}, X_{3}\right)=p\left(X_{1}\right) \cdot p\left(X_{2}\right) \cdot p\left(X_{3}\right)
$$

\Rightarrow e.g. modeling a multivariate Gaussian with diagonal covariance matrix...

Factorizations as product nodes

Divide and conquer complexity

$$
p\left(X_{1}, X_{2}, X_{3}\right)=p\left(X_{1}\right) \cdot p\left(X_{2}\right) \cdot p\left(X_{3}\right)
$$

\Rightarrow...with a product node over some univariate Gaussian distribution

Factorizations as product nodes

Divide and conquer complexity

$$
p\left(x_{1}, x_{2}, x_{3}\right)=p\left(x_{1}\right) \cdot p\left(x_{2}\right) \cdot p\left(x_{3}\right)
$$

\Rightarrow feedforward evaluation

Factorizations as product nodes

Divide and conquer complexity

$$
p\left(x_{1}, x_{2}, x_{3}\right)=p\left(x_{1}\right) \cdot p\left(x_{2}\right) \cdot p\left(x_{3}\right)
$$

\Rightarrow feedforward evaluation

Mixtures as sum nodes

Enhance expressiveness

$$
p(X)=w_{1} \cdot p_{1}(X)+w_{2} \cdot p_{2}(X)
$$

\Rightarrow e.g. modeling a mixture of Gaussians...

Mixtures as sum nodes

Enhance expressiveness

$$
p(x)=0.2 \cdot p_{1}(x)+0.8 \cdot p_{2}(x)
$$

\Rightarrow...as weighted a sum node over Gaussian input distributions

Mixtures as sum nodes

Enhance expressiveness

$$
p(x)=0.2 \cdot p_{1}(x)+0.8 \cdot p_{2}(x)
$$

\Rightarrow by stacking them we increase expressive efficiency

A grammar for tractable models

Recursive semantics of probabilistic circuits

A grammar for tractable models

Recursive semantics of probabilistic circuits

A grammar for tractable models

Recursive semantics of probabilistic circuits

A grammar for tractable models

Recursive semantics of probabilistic circuits

A grammar for tractable models

Recursive semantics of probabilistic circuits

Probabilistic circuits are not PGMs!

They are probabilistic and graphical, however ...

	PGMs	Circuits
Nodes:	random variables	unit of computations
Edges:	dependencies	order of execution
Inference:	conditioning	feedforward pass
	elimination	backward pass
	message passing	
	\Rightarrow they are computational graphs, more like neural networks	

Just sum, products and distributions?

just arbitrarily compose them like a neural network!

Just sum, products and distributions?

\Rightarrow structural constraints needed for tractability

Which structural constraints to ensure tractability?

Decomposability

A product node is decomposable if its children depend on disjoint sets of variables \Rightarrow just like in factorization!

decomposable circuit

non-decomposable circuit

Smoothness

aka completeness
A sum node is smooth if its children depend of the same variable sets
\Rightarrow otherwise not accounting for some variables

smooth circuit

non-smooth circuit
\Rightarrow smoothness can be easily enforced [Shih et al. 2019]

Smoothness + decomposability $=$ tractable MAR

Computing arbitrary integrations (or summations) \Rightarrow linear in circuit size!
E.g., suppose we want to compute Z:

$$
\int \boldsymbol{p}(\mathbf{x}) d \mathbf{x}
$$

Smoothness + decomposability $=$ tractable MAR

$$
\text { If } p(\mathbf{x})=\sum_{i} w_{i} p_{i}(\mathbf{x}) \text {, (smoothness): }
$$

$$
\int p(\mathbf{x}) d \mathbf{x}=\int \sum_{i} w_{i} p_{i}(\mathbf{x}) d \mathbf{x}=
$$

$$
=\sum_{i} w_{i} \int p_{i}(\mathbf{x}) d \mathbf{x}
$$

\Rightarrow integrals are "pushed down" to children

Smoothness + decomposability $=$ tractable MAR

$$
\text { If } p(\mathbf{x}, \mathbf{y}, \mathbf{z})=p(\mathbf{x}) p(\mathbf{y}) p(\mathbf{z}),(\text { decomposability }):
$$

$$
\begin{aligned}
& \iiint p(\mathbf{x}, \mathbf{y}, \mathbf{z}) d \mathbf{x} d \mathbf{y} d \mathbf{z}= \\
= & \iiint p(\mathbf{x}) p(\mathbf{y}) p(\mathbf{z}) d \mathbf{x} d \mathbf{y} d \mathbf{z}= \\
= & \int p(\mathbf{x}) d \mathbf{x} \int p(\mathbf{y}) d \mathbf{y} \int p(\mathbf{z}) d \mathbf{z}
\end{aligned}
$$

\Rightarrow larger integrals decompose into easier

Smoothness + decomposability $=$ tractable MAR

Forward pass evaluation for MAR
\Rightarrow linear in circuit size!
E.g. to compute $p\left(x_{2}, x_{4}\right)$:

- leafs over X_{1} and X_{3} output $Z_{i}=\int p\left(x_{i}\right) d x_{i}$
\Rightarrow for normalized leaf distributions: 1.0
\square leafs over X_{2} and X_{4} output EVI
- feedforward evaluation (bottom-up)

Smoothness + decomposability $=$ tractable MAR

Forward pass evaluation for MAR
\Rightarrow linear in circuit size!
E.g. to compute $p\left(x_{2}, x_{4}\right)$:

- leafs over X_{1} and X_{3} output $Z_{i}=\int p\left(x_{i}\right) d x_{i}$

$$
\Rightarrow \text { for normalized leaf distributions: } 1.0
$$

\square leafs over X_{2} and X_{4} output EVI
\square feedforward evaluation (bottom-up)

Smoothness + decomposability $=$ tractable CON

Analogously, for arbitrary conditional queries:

$$
p(\mathbf{q} \mid \mathbf{e})=\frac{p(\mathbf{q}, \mathbf{e})}{p(\mathbf{e})}
$$

1. evaluate $p(\mathbf{q}, \mathbf{e}) \Rightarrow$ one feedforward pass
2. evaluate $p(\mathbf{e}) \Rightarrow$ another feedforward pass \Rightarrow...still linear in circuit size!

Smoothness + decomposability $=$ tractable MAP

We can also decompose bottom-up a MAP query:

$$
\underset{\mathbf{q}}{\operatorname{argmax}} p(\mathbf{q} \mid \mathbf{e})
$$

Smoothness + decomposability = twestule nino

We cannot decompose bottom-up a MAP query:

$$
\underset{\mathbf{q}}{\operatorname{argmax}} p(\mathbf{q} \mid \mathbf{e})
$$

since for a sum node we are marginalizing out a latent variable

$$
\underset{\mathbf{q}}{\operatorname{argmax}} \sum_{i} w_{i} p_{i}(\mathbf{q}, \mathbf{e})=\underset{\mathbf{q}}{\operatorname{argmax}} \sum_{\mathbf{z}} p(\mathbf{q}, \mathbf{z}, \mathbf{e}) \neq \sum_{\mathbf{z}} \underset{\mathbf{q}}{\operatorname{argmax}} p(\mathbf{q}, \mathbf{z}, \mathbf{e})
$$

\Rightarrow MAP for latent variable models is intractable [Conaty et al. 2017]

Determinism

aka selectivity

A sum node is deterministic if the output of only one children is non zero for any input \Rightarrow e.g. if their distributions have disjoint support

deterministic circuit

non-deterministic circuit

Determinism + decomposability $=$ tractable MAP

Computing maximization with arbitrary evidence \mathbf{e} \Rightarrow linear in circuit size!
E.g., suppose we want to compute:

$$
\max _{\mathbf{q}} p(\mathbf{q} \mid \mathbf{e})
$$

Determinism + decomposability $=$ tractable MAP

$$
\text { If } p(\mathbf{q}, \mathbf{e})=\sum_{i} w_{i} \boldsymbol{p}_{i}(\mathbf{q}, \mathbf{e})=\max _{i} w_{i} \boldsymbol{p}_{i}(\mathbf{q}, \mathbf{e})
$$ (deterministic sum node):

$$
\begin{aligned}
\max _{\mathbf{q}} p(\mathbf{q}, \mathbf{e}) & =\max _{\mathbf{q}} \sum_{i} w_{i} p_{i}(\mathbf{q}, \mathbf{e}) \\
& =\max _{\mathbf{q}} \max _{i} w_{i} p_{i}(\mathbf{q}, \mathbf{e}) \\
& =\max _{i} \max _{\mathbf{q}} w_{i} p_{i}(\mathbf{q}, \mathbf{e})
\end{aligned}
$$

\Rightarrow one non-zero child term, thus sum is max

Determinism + decomposability $=$ tractable MAP

If $p(\mathbf{q}, \mathbf{e})=p\left(\mathbf{q}_{\mathbf{x}}, \mathbf{e}_{\mathbf{x}}, \mathbf{q}_{\mathbf{y}}, \mathbf{e}_{\mathbf{y}}\right)=p\left(\mathbf{q}_{\mathbf{x}}, \mathbf{e}_{\mathbf{x}}\right) p\left(\mathbf{q}_{\mathbf{y}}, \mathbf{e}_{\mathbf{y}}\right)$ (decomposable product node):

$$
\begin{aligned}
& \max _{\mathbf{q}} p(\mathbf{q} \mid \mathbf{e})=\max _{\mathbf{q}} p(\mathbf{q}, \mathbf{e}) \\
& \quad=\max _{\mathbf{q}_{\mathbf{x}}, \mathbf{q}_{\mathbf{y}}} p\left(\mathbf{q}_{\mathbf{x}}, \mathbf{e}_{\mathbf{x}}, \mathbf{q}_{\mathbf{y}}, \mathbf{e}_{\mathbf{y}}\right) \\
& \quad=\max _{\mathbf{q}_{\mathbf{x}}} p\left(\mathbf{q}_{\mathbf{x}}, \mathbf{e}_{\mathbf{x}}\right), \max _{\mathbf{q}_{\mathbf{y}}} p\left(\mathbf{q}_{\mathbf{y}}, \mathbf{e}_{\mathbf{y}}\right) \\
& \quad \Rightarrow \text { solving optimization independently }
\end{aligned}
$$

Determinism + decomposability $=$ tractable MAP

Evaluating the circuit twice:
bottom-up and top-down $\quad \Rightarrow$ still linear in circuit size!

Determinism + decomposability $=$ tractable MAP

Evaluating the circuit twice: bottom-up and top-down \Rightarrow still linear in circuit size!
E.g., for $\operatorname{argmax}_{x_{1}, x_{3}} p\left(x_{1}, x_{3} \mid x_{2}, x_{4}\right)$:

1. turn sum into max nodes and distributions into max distributions
2. evaluate $p\left(x_{2}, x_{4}\right)$ bottom-up
3. retrieve max activations top-down
4. compute MADstates for X_{1} and X_{3} at leaves

Determinism + decomposability $=$ tractable MAP

Evaluating the circuit twice: bottom-up and top-down $\quad \Rightarrow$ still linear in circuit size!
E.g., for $\operatorname{argmax}_{x_{1}, x_{3}} p\left(x_{1}, x_{3} \mid x_{2}, x_{4}\right)$:

1. turn sum into max nodes and distributions into max distributions
2. evaluate $p\left(x_{2}, x_{4}\right)$ bottom-up
3. retrieve max activations top-down
4. compute MAP states for X_{1} and X_{3} at leaves

Determinism + decomposability $=$ tractable MAP

Evaluating the circuit twice: bottom-up and top-down $\quad \Rightarrow$ still linear in circuit size!
E.g., for $\operatorname{argmax}_{x_{1}, x_{3}} p\left(x_{1}, x_{3} \mid x_{2}, x_{4}\right)$:

1. turn sum into max nodes and distributions into max distributions
2. evaluate $p\left(x_{2}, x_{4}\right)$ bottom-up
3. retrieve max activations top-down
4. compute MAP states for X_{1} and X_{3} at leaves

Determinism + decomposability $=$ tractable MAP

Evaluating the circuit twice: bottom-up and top-down $\quad \Rightarrow$ still linear in circuit size!
E.g., for $\operatorname{argmax}_{x_{1}, x_{3}} p\left(x_{1}, x_{3} \mid x_{2}, x_{4}\right)$:

1. turn sum into max nodes and distributions into max distributions
2. evaluate $p\left(x_{2}, x_{4}\right)$ bottom-up
3. retrieve max activations top-down
4. compute MAP states for X_{1} and X_{3} at leaves

Determinism + decomposability $=$ tractable MMAP

Analogously, we could can also do a MMAP query:

$$
\underset{\mathbf{q}}{\operatorname{argmax}} \sum_{\mathbf{z}} p(\mathbf{q}, \mathbf{z} \mid \mathbf{e})
$$

We cannot decompose a MMAP query!

we still have latent variables to marginalize...

Structured decomposability

A product node is structured decomposable if decomposes according to a node in a vtree

Structured decomposability

A product node is structured decomposable if decomposes according to a node in a vtree \Rightarrow stronger requirement than decomposability

vtree

non structured decomposable circuit

structured decomposability $=$ tractable...

Symmetric and group queries (exactly-k, odd-number, etc.) [Bekker et al. 2015]
For the "right" vtreeProbability of logical circuit event in probabilistic circuit [ibid.]Multiply two probabilistic circuits [Shen et al. 2016]KL Divergence between probabilistic circuits [Liang et al. 2017b]Same-decision probabilityExpected same-decision probribility [Choi et al. 2017$]$Expected classifier agreement [Choi et al. 2018]Expected predictions [Khosravi et al. 2019c]

structured decomposability $=$ tractable...

\square Symmetric and group queries (exactly- k, odd-number, etc.) [Bekker et al. 2015]
For the "right" vtree

- Probability of logical circuit event in probabilistic circuit [ibid.]
- Multiply two probabilistic circuits [Shen et al. 2016]
- KL Divergence between probabilistic circuits [Liang et al. 2017b]
- Same-decision probability [Oztok et al. 2016]

Expected same-decision probability [Choi et al. 2017]

- Expected classifier agreement [Choi et al. 2018]
- Expected predictions [Khosravi et al. 2019c]

where are probabilistic circuits?

tractability vs expressive efficiency

tractability vs expressive efficiency

Smooth V decomposable V deterministic
 \checkmark structured decomposable PCs?

	smooth	dec.	det.	str.dec.
Arithmetic Circuits (ACs) [Darwiche 2003]			(*)	\mathbf{X}
Sum-Product Networks (SPNs) [Poon et al. 2011]				
Cutset Networks (CNets) [Rahman et al. 2014]				
PSDDs [Kisa et al. 2014a]				
AndOrGraphs [Dechter et al. 2007]				

How expressive are probabilistic circuits?

Measuring average test set log-likelihood on 20 density estimation benchmarks

Comparing against intractable models:

- Bayesian networks (BN) [Chickering 2002] with sophisticated context-specific CPDsMADEs [Germain et al. 2015]
\square VAEs [Kingma et al. 2014] (IWAE ELBO [Burda et al. 2015])

[^4]
How expressive are probabilistic circuits?

density estimation benchmarks

dataset	best circuit	BN	MADE	VAE	dataset	best circuit	BN	MADE	VAE
nltcs	$\mathbf{- 5 . 9 9}$	-6.02	-6.04	$\mathbf{- 5 . 9 9}$	dna	$\mathbf{- 7 9 . 8 8}$	-80.65	-82.77	-94.56
msnbc	$\mathbf{- 6 . 0 4}$	$\mathbf{- 6 . 0 4}$	-6.06	-6.09	kosarek	$\mathbf{- 1 0 . 5 2}$	-10.83	-	-10.64
kdd	-2.12	-2.19	$\mathbf{- 2 . 0 7}$	-2.12	msweb	-9.62	-9.70	$\mathbf{- 9 . 5 9}$	-9.73
plants	$\mathbf{- 1 1 . 8 4}$	-12.65	-12.32	-12.34	book	-33.82	-36.41	-33.95	$\mathbf{- 3 3 . 1 9}$
audio	-39.39	-40.50	-38.95	$\mathbf{- 3 8 . 6 7}$	movie	-50.34	-54.37	-48.7	$\mathbf{- 4 7 . 4 3}$
jester	-51.29	$\mathbf{- 5 1 . 0 7}$	-52.23	$\mathbf{- 5 1 . 5 4}$	webkb	-149.20	-157.43	-149.59	$\mathbf{- 1 4 6 . 9}$
netflix	-55.71	-57.02	-55.16	$\mathbf{- 5 4 . 7 3}$	cr52	-81.87	-87.56	-82.80	$\mathbf{- 8 1 . 3 3}$
accidents	-26.89	$\mathbf{- 2 6 . 3 2}$	-26.42	-29.11	c20ng	-151.02	-158.95	-153.18	$\mathbf{- 1 4 6 . 9}$
retail	$\mathbf{- 1 0 . 7 2}$	-10.87	-10.81	-10.83	bbc	$\mathbf{- 2 2 9 . 2 1}$	-257.86	-242.40	-240.94
pumbs*	-22.15	$\mathbf{- 2 1 . 7 2}$	-22.3	-25.16	ad	-14.00	-18.35	$\mathbf{- 1 3 . 6 5}$	-18.81

Building circuits

Learning probabilistic circuits

A probabilistic circuit \mathcal{C} over variables \mathbf{X} is a computational graph encoding a (possibly unnormalized) probability distribution $p(\mathbf{X})$ parameterized by Ω

Learning probabilistic circuits

A probabilistic circuit \mathcal{C} over variables \mathbf{X} is a computational graph encoding a (possibly unnormalized) probability distribution $p(\mathbf{X})$ parameterized by Ω

Learning a circuit \mathcal{C} from data \mathcal{D} can therefore involve learning the graph (structure) and/or its parameters

Learning probabilistic circuits

Parameters
Structure

1. How to learn circuit parameters?
\Rightarrow convex optimization, EM, SGD, Bayesian learning, ...
2. How to learn the structure of circuits?
\Rightarrow local search, random structures, ensembles, ...

Which applications are circuits used for?

Learning circuit parameters

Let a circuit structure \mathcal{C} be given. We aim to learn its parameters:

- Parameters of input distributions
$\boldsymbol{\theta}=\left\{\boldsymbol{\theta}_{\mathrm{L}}\right\}_{\mathrm{L} \in \operatorname{leaves}(\mathcal{C})}$
\Rightarrow e.g. $\boldsymbol{\theta}_{\mathrm{L}}=(\mu, \sigma)$ if L is Gaussian, etc.

Learning circuit parameters

Let a circuit structure \mathcal{C} be given. We aim to learn its parameters:
\square Parameters of input distributions
$\boldsymbol{\theta}=\left\{\boldsymbol{\theta}_{\mathrm{L}}\right\}_{\mathrm{L} \in \text { leaves }(\mathcal{C})}$
\square Sum-weights $\mathbf{w}=\left\{\mathbf{w}_{\mathrm{s}}\right\}_{\mathrm{S} \in \operatorname{sums}(\mathcal{C})}$

$$
\Rightarrow \text { w.l.o.g., for each S: } \sum_{i} w_{\mathrm{S}, i}=1 \text { [Peharz et al. 2015; Zhao et al. 2015] }
$$

Learning circuit parameters

Let a circuit structure \mathcal{C} be given. We aim to learn its parameters:
\square Parameters of input distributions
$\boldsymbol{\theta}=\left\{\boldsymbol{\theta}_{\mathrm{L}}\right\}_{\mathrm{L} \in \text { leaves }(\mathcal{C})}$
\square Sum-weights $\mathbf{w}=\left\{\mathbf{w}_{\mathbf{S}}\right\}_{\mathrm{S} \in \operatorname{sums}(\mathcal{C})}$
\Rightarrow we marginalize out latent variable Z_{S}

$$
\mathcal{C}_{\mathrm{S}}=\sum_{i} \overbrace{p\left(Z_{\mathrm{S}}=i \mid{ }^{\prime} \text { context }^{\prime \prime}\right)}^{w_{\mathrm{S}, i}} \mathcal{C}_{\mathrm{N}_{i}}
$$

Augmentation

Making latent variables explicit

Augmentation

Making latent variables explicit
Setting single indicators to $1 \Rightarrow$ switches on corresponding child.

Augmentation

Making latent variables explicit
Yes, but we might have destroyed smoothness...

Augmentation

Making latent variables explicit
This is an example of smoothing.

Augmentation

Making latent variables explicit
Thus, sum weights have sound probabilistic semantics.

Expectation-Maximization

Given a probabilistic circuit \mathcal{C} and a dataset \mathbf{D}, the standard EM update is:

$$
w_{i, j}^{\text {new }}=\frac{\sum_{\mathbf{x} \in \mathbf{D}} \mathbb{P}\left[c t x_{i}=1 \wedge Z_{i}=j \mid \mathbf{x}, \mathbf{w}^{\text {old }}\right]}{\sum_{\mathbf{x} \in \mathbf{D}} \mathbb{P}\left[c t x_{i}=1 \mid \mathbf{x}, \mathbf{w}^{\text {old }}\right]}
$$

Expectation-Maximization

Given a probabilistic circuit \mathcal{C} and a dataset \mathbf{D}, the standard EM update is:

$$
w_{i, j}^{\text {new }}=\frac{\sum_{\mathbf{x} \in \mathbf{D}} \mathbb{P}\left[c t x_{i}=1 \wedge Z_{i}=j \mid \mathbf{x}, \mathbf{w}^{\text {old }}\right]}{\sum_{\mathbf{x} \in \mathbf{D}} \mathbb{P}\left[c t x_{i}=1 \mid \mathbf{x}, \mathbf{w}^{\text {old }}\right]}
$$

These expected statistics can be computed efficiently with backprop [Darwiche 2003]:

$$
\mathbb{P}\left[c t x_{i}=1 \wedge Z_{i}=j \mid \mathbf{x}, \mathbf{w}^{o l d}\right]=\frac{1}{\mathcal{C}(\mathbf{x})} \frac{\partial \mathcal{C}(\mathbf{x})}{\partial \mathcal{C}_{i}(\mathbf{x})} \mathcal{C}_{j}(\mathbf{x}) w_{i, j}^{o l d}
$$

Expectation-Maximization

Given a probabilistic circuit \mathcal{C} and a dataset \mathbf{D}, the standard EM update is:

$$
w_{i, j}^{\text {new }}=\frac{\sum_{\mathbf{x} \in \mathbf{D}} \mathbb{P}\left[c t x_{i}=1 \wedge Z_{i}=j \mid \mathbf{x}, \mathbf{w}^{\text {old }}\right]}{\sum_{\mathbf{x} \in \mathbf{D}} \mathbb{P}\left[c t x_{i}=1 \mid \mathbf{x}, \mathbf{w}^{\text {old }}\right]}
$$

These expected statistics can be computed efficiently with backprop [Darwiche 2003]:

$$
\mathbb{P}\left[c t x_{i}=1 \wedge Z_{i}=j \mid \mathbf{x}, \mathbf{w}^{\text {old }}\right]=\frac{1}{\mathcal{C}(\mathbf{x})} \frac{\partial \mathcal{C}(\mathbf{x})}{\partial \mathcal{C}_{i}(\mathbf{x})} \mathcal{C}_{j}(\mathbf{x}) w_{i, j}^{\text {old }}
$$

\Rightarrow This also works with missing values in \mathbf{x} ! Similar updates for leaves, when in exponential family.

Deterministic Circuits

Exact Maximum Likelihood

Given a deterministic circuit \mathcal{C} and a complete dataset \mathbf{D}, the maximum-likelihood sum-weights are:

$$
w_{i, j}^{\mathrm{MLE}}=\frac{\sum_{\mathbf{x} \in \mathbf{D}} \mathbb{1}\{\mathbf{x} \mid=[i \wedge j]\}}{\sum_{\mathbf{x} \in \mathbf{D}} \mathbb{1}\{\mathbf{x} \models[i]\}}
$$

[^5]
Deterministic Circuits

Exact Maximum Likelihood

Given a deterministic circuit \mathcal{C} and a complete dataset \mathbf{D}, the maximum-likelihood sum-weights are:

$$
w_{i, j}^{\mathrm{MLE}}=\frac{\sum_{\mathbf{x} \in \mathbf{D}} \mathbb{1}\{\mathbf{x} \models[i \wedge j]\}}{\sum_{\mathbf{x} \in \mathbf{D}} \mathbb{1}\{\mathbf{x} \models[i]\}}
$$

[^6]
Deterministic Circuits

Exact Maximum Likelihood

Given a deterministic circuit \mathcal{C} and a complete dataset \mathbf{D}, the maximum-likelihood sum-weights are:

$$
w_{i, j}^{\mathrm{MLE}}=\frac{\sum_{\mathbf{x} \in \mathbf{D}} \mathbb{1}\{\mathbf{x} \models[i \wedge j]\}}{\sum_{\mathbf{x} \in \mathbf{D}} \mathbb{1}\{\mathbf{x} \models[i]\}} \quad \begin{aligned}
& \text { \# samples activating node } j \\
& \text { \# samples activating node } i
\end{aligned}
$$

[^7]
Deterministic Circuits

Exact Maximum Likelihood

Given a deterministic circuit \mathcal{C} and a complete dataset \mathbf{D}, the maximum-likelihood sum-weights are:

$$
w_{i, j}^{\mathrm{MLE}}=\frac{\sum_{\mathbf{x} \in \mathbf{D}} \mathbb{1}\{\mathbf{x} \models[i \wedge j]\}}{\sum_{\mathbf{x} \in \mathbf{D}} \mathbb{1}\{\mathbf{x} \models[i]\}}
$$

$$
\text { \# samples activating node } j
$$

$$
\text { \# samples activating node } i
$$

global maximum with single pass over \mathbf{D}
\Rightarrow regularization, e.g. Laplace-smoothing, to avoid divide by zero
\Rightarrow when missing data, fallback to EM

[^8]
Gradient descent

In alternative to EM, just descent the negative (log-)likelihood by (S)GD
\Rightarrow circuits are differentiable!
backprop + your favorite gradient-based optimizer
need to reparametrize sum node weights ...
\Rightarrow e.g. by (log-)softmax
\square...or project them to their constraint set [Duchi2008]
\square analogously for input distribution parameters
\Rightarrow e.g. $\sigma>0$ in Gaussians: use softplus or clipping

Gradient descent

In alternative to EM, just descent the negative (log-)likelihood by (S)GD
\Rightarrow circuits are differentiable!
backprop + your favorite gradient-based optimizer
need to reparametrize sum node weights ...
\Rightarrow
e.g. by (log-)softmax
\square...or project them to their constraint set [Duchi2008]
\square
analogously for input distribution parameters
\Rightarrow e.g. $\sigma>0$ in Gaussians: use softplus or clipping
pros:
Easy to implement and combine with other cost functions

Gradient descent

In alternative to EM, just descent the negative (log-)likelihood by (S)GD
\Rightarrow circuits are differentiable!

\square
backprop + your favorite gradient-based optimizer
need to reparametrize sum node weights ...
\Rightarrow
e.g. by (log-)softmax
...or project them to their constraint set [Duchi2008]
\square analogously for input distribution parameters
\Rightarrow e.g. $\sigma>0$ in Gaussians: use softplus or clipping
pros:
Easy to implement and combine with other cost functions

cons:

(S)GD converges slowly

Bayesian parameter learning

Formulate a prior $p(\mathbf{w}, \boldsymbol{\theta})$ over sum-weights and leaf-parameters and perform posterior inference:

$$
p(\mathbf{w}, \boldsymbol{\theta} \mid \mathcal{D}) \propto p(\mathbf{w}, \boldsymbol{\theta}) p(\mathcal{D} \mid \mathbf{w}, \boldsymbol{\theta})
$$

■ Moment matching (oBMM) [Jaini et al. 2016; Rashwan et al. 2016]

- Collapsed variational inference algorithm [Zhao et al. 2016b]

■ Gibbs sampling [Trapp et al. 2019; Vergari et al. 2019]

Learning probabilistic circuits

Parameters

Structure

	deterministic closed-form MLE [Kisa et al. 2014b; Peharz et al. 2014a] non-deterministic em [Poon et al. 2011; Peharz 2015; Zhao et al. 2016a] SGD [Sharir et al. 2016; Peharz et al. 2019] Bayesian JJaini et al. 2016; Rashwan et al. 2016] [Zhao et al. 2016b; Trapp et al. 2019; Vergari et al. 2019]	$?$
	$?$	$?$

LearnSPN

Learning both structure and parameters of a circuit by starting from a data matrix

LearnSPN

Looking for sub-population in the data-clustering-to introduce sum nodes...

LearnSPN

..seeking independencies among sets of RVs to factorize into product nodes
Gens et al., "Learning the Structure of Sum-Product Networks", 2013

LearnSPN

...learning smaller estimators as a a recursive data crawler
Gens et al., "Learning the Structure of Sum-Product Networks", 2013

Randomized structure learning

Randomly generate a region graph
Then, populate each region with tensorized circuit nodes

\Rightarrow hierarchical partitioning of variables

 \Rightarrow competitive with SOTA[^9]
Learning probabilistic circuits

Parameters

Structure

	deterministic	greedy
	closed-form MLE [Kisa et al. 2014b; Peharz et al. 2014a]	top-down [Gens et al. 2013; Rooshenas et al. 2014]
	non-deterministic	[Rahman et al. 2014; Vergari et al. 2015]
	EM [Poon et al. 2011; Peharz 2015; Zhao et al. 2016a]	bottom-up [Peharz et al. 2013]
	SGD [Sharir et al. 2016; Peharz et al. 2019]	hill climbing [Lowd et al. 2008, 2013; Peharz et al. 2014a]
	Bayesian [Jaini et al. 2016; Rashwan et al. 2016]	[Dennis et al. 2015; Liang et al. 2017a]
	[Zhao et al. 2016b; Trapp et al. 2019; Vergari et al. 2019]	random RAT-SPNs [Peharz et al. 2019] XCNet [Di Mauro et al. 2017]

$?$

?

Ensembles of probabilistic circuits

Single circuits might be not accurate enough or overfit training data...
Solution: ensembles of circuits!
\Rightarrow non-deterministic mixture models: another sum node!

$$
p(\mathbf{X})=\sum_{i=1}^{K} \lambda_{i} \mathcal{C}_{i}(\mathbf{X}), \quad \lambda_{i} \geq 0 \quad \sum_{i=1}^{K} \lambda_{i}=1
$$

Ensemble weights and components can be learned separately or jointly
■ EM or structural EM [Liang et al. 2017a]
■ bagging [Vergari et al. 2015; Rahman et al. 2016; Di Mauro et al. 2017]
\square boosting [Rahman et al. 2016]

Learning probabilistic circuits

	Parameters	Structure
Generative	deterministic closed-form MLE [Kisa et al. 2014b; Peharz et al. 2014a] non-deterministic EM [Poon et al. 2011; Peharz 2015; Zhao et al. 2016a] SGD [Sharir et al. 2016; Peharz et al. 2019] Bayesian [Jaini et al. 2016; Rashwan et al. 2016] [Zhao et al. 2016b; Trapp et al. 2019; Vergari et al. 2019]	greedy top-down [Gens et al. 2013; Rooshenas et al. 2014] [Rahman et al. 2014; Vergari et al. 2015] bottom-up [Peharz et al. 2013] hill climbing [Lowd et al. 2008, 2013; Peharz et al. 2014a] [Dennis et al. 2015; Liang et al. 2017a] random RAT-SPNs [Peharz et al. 2019] XCNet [Di Mauro et al. 2017]
¢	deterministic convex-opt MLE [Liang et al. 2019] non-deterministic EM [Rashwan et al. 2018] SGD [Gens et al. 2012; Sharir et al. 2016] [Peharz et al. 2019]	greedy top-down [Shao et al. 2019] hill climbing [Rooshenas et al. 2016]

Applications

1. what have been probabilistic circuits used for?
\Rightarrow computer vision, sop, speech, planning, ...
2. what are the current trends in tractable learning?
\Rightarrow hybrid models, probabilistic programming, ...
3. what are the current challenges?
\Rightarrow benchmarks, scaling, reasoning

Conclusions

EVI inference : density estimation

dataset	single models	ensembles	dataset	single models	ensembles
nltcs	-5.99 [ID-SPN]	-5.99 [LearnPSDDs]	dna	-79.88 [SPGM]	-80.07 [SPN-btb]
msnbc	-6.04 [Prometheus]	-6.04 [LearnPSDDs]	kosarek	-10.59 [Prometheus]	-10.52 [LearnPSDDs]
kdd	-2.12 [Prometheus]	-2.12 [LearnPSDDS]	msweb	-9.73 [ID-SPN]	-9.62 [xcnets]
plants	-12.54 [ID-SPN]	-11.84 [XCNets]	book	-34.14 [ID-SPN]	-33.82 [SPN-btb]
audio	-39.77 [BNP-SPN]	-39.39 [XCNets]	movie	-51.49 [Prometheus]	-50.34 [xCNets]
jester	-52.42 [BNP-SPN]	-51.29 [LearnPSDDs]	webkb	-151.84 [ID-SPN]	-149.20 [xcNets]
netflix	-56.36 [ID-SPN]	-55.71 [LearnPSDDs]	cr52	-83.35 [ID-SPN]	-81.87 [xCNets]
accidents	-26.89 [SPGM]	-29.10 [xCNets]	c20ng	-151.47 [ID-SPN]	-151.02 [xCNets]
retail	-10.85 [ID-SPN]	-10.72 [LearnPSDDs]	bbc	-248.5 [Prometheus]	-229.21 [xcnets]
pumbs*	-22.15 [SPGM]	-22.67 [SPN-btb]	ad	-15.40 [CNetXD]	-14.00 [xCNets]

Hybrid intractable + tractable EVI

VAEs as intractable input distributions, orchestrated by a circuit on top

\Rightarrow decomposing a joint ELBO: better lower-bounds than a single VAE \Rightarrow more expressive efficient and less data hungry

Tractable MAR: scene understanding

\Rightarrow making the AIR model faster and more accurate by using a PC
Stelzner et al., "Faster Attend-Infer-Repeat with Tractable Probabilistic Models", 2019
Kossen et al., "Structured Object-Aware Physics Prediction for Video Modeling and Planning", 2019

Tractable MAR: Robotics

Hierarchical planning robot executions

Scenes and maps decompose along circuit structures

Pronobis et al., "Learning Deep Generative Spatial Models for Mobile Robots", 2016
Pronobis et al., "Deep spatial affordance hierarchy: Spatial knowledge representation for planning in large-scale environments", 2017
Zheng et al., "Learning graph-structured sum-product networks for probabilistic semantic maps", 2018

MAP inference : image inpainting

Predicting arbitrary patches

given a single circuit
First SPN paper in 2011...

[^10]
MAP inference: image segmentation

Input Image

Semantic segmentation is MAP over joint pixel and label space
Even approximate MAP for non-deterministic circuits (SPNs) delivers good performances.
Rathke et al., "Locally adaptive probabilistic models for global segmentation of pathological oct scans", 2017
Yuan et al., "Modeling spatial layout for scene image understanding via a novel multiscale sum-product network", 2016
Friesen et al., "Submodular Sum-product Networks for Scene Understanding", 2016

MAP inference: Speech reconstruction

Probabilistic circuits to model the joint pdf of observables in HMMs (HMM-SPNs),
again leveraging tractable inference: MAR and MAP

(a) Original full bandwidth

(b) Reconstruction HMM-LP

(c) Reconstruction HMM-GMM

(d) Reconstruction HMM-SPN

State-of-the-art high frequency reconstruction (MAP inference)
Peharz et al., "Modeling speech with sum-product networks: Application to bandwidth extension", 2014
Zohrer et al., "Representation learning for single-channel source separation and bandwidth extension", 2015

MAP inference: Sequence Iabeling

$P\left(w_{i} \mid w_{i-1}, \ldots, w_{i-N}\right)$

Ratajczak et al., "Sum-Product Networks for Structured Prediction: Context-Specific Deep Conditional Random Fields", 2014
Ratajczak et al., "Sum-Product Networks for Sequence Labeling", 2018
Cheng et al., "Language modeling with Sum-Product Networks", 2014

MAP and MMAP : activity recognition

Exploiting part-based decomposability along pixels and time (frames).

Amer et al., "Sum Product Networks for Activity Recognition", 2015
Wang et al., "Hierarchical spatial sum-product networks for action recognition in still images", 2016
Chiradeep Roy et al., "Explainable Activity Recognition in Videos using Dynamic Cutset Networks", 2019

ADV inference: expected predictions

Reasoning about the output of a classifier or regressor \boldsymbol{f} given a distribution \boldsymbol{p} over the input features

> missing values at test time
> exploratory classifier analysis

$$
\underset{\mathbf{x}^{m} \sim p_{\theta}\left(\mathbf{x}^{m} \mid \mathbf{x}^{o}\right)}{\mathbb{E}}\left[f_{\phi}^{k}\left(\mathbf{x}^{m}, \mathbf{x}^{o}\right)\right]
$$

Closed form moments for \boldsymbol{f} and \boldsymbol{p} as structured decomposable circuits with same v-tree

ADV inference: preference learning

Preferences and rankings as logical constraints

Structured decomposable circuits for inference over structured spaces

SOTA on modeling densities over rankings

[^11]
ADV inference: routing

Decomposing complex (conditional) probability

Probabilistic programming

```
x = flip( ( }1\mathrm{ );
if(x) {
    y = flip( (02)
    } else {
        y = x
    }
```

Line 5

Line 2

Lines 2-6

Line 1

Lines 1-6

Chavira et al., "Compiling relational Bayesian networks for exact inference", 2006 Holtzen et al., "Symbolic Exact Inference for Discrete Probabilistic Programs", 2019 De Raedt et al.; Riguzzi; Fierens et al.; Vlasselaer et al., "ProbLog: A Probabilistic Prolog and Its Application in Link Discovery."; "A top down interpreter for LPAD and CP-logic"; "Inference and Learning in Probabilistic Logic Programs using Weighted Boolean Formulas"; "Anytime Inference in Probabilistic Logic Programs with Tp-compilation", 2007; 2007; 2015; 2015
Olteanu et al.; Van den Broeck et al., "Using OBDDs for efficient query evaluation on probabilistic databases"; Query Processing on Probabilistic Data: A Survey, 2008; 2017
Vlasselaer et al., "Exploiting Local and Repeated Structure in Dynamic Bayesian Networks", 2016

and more...

fault prediction [Nath et al. 2016]
computational psychology [Joshi et al. 2018]
biology [Butz et al. 2018]
low-energy prediction [Galindez Olascoaga et al. 2019; Shah et al. 2019]
calibration of analog/RF circuits [Andraud et al. 2018]
stochastic constraint optimization [Latour et al. 2017]
neuro-symbolic learning [Xu et al. 2018]
probabilistic and symbolic reasoning integration [Li 2015]
relational learning [Broeck et al. 2011; Domingos et al. 2012; Broeck 2013; Nath et al. 2014, 2015;
Niepert et al. 2015; Van Haaren et al. 2015]

takeaway \#1 tractability is a spectrum

takeaway \#2: you can be both tractable and expressive

takeaway \#3: probabilistic circuits are a foundation for tractable inference and learning

Challenge \#\#

hybridizing tractable and intractable models

Hybridize probabilistic inference:

tractable models inside intractable loops
and intractable small boxes glued by tractable inference!

Challenge: :2

scaling tractable learning

Learn tractable models
on millions of datapoints
and thousands of features
in tractable time!

Challenge:\#3

advanced and automated reasoning

Move beyond single probabilistic queries towards fully automated reasoning!

more Iinks

github.com/arranger1044/awesome-spn

Libraries

Juice.jl a library for advanced logical and probabilistic inference with circuits in Julia

Libra structure learning algorithms in OCaml
libra.cs.uoregon.edu

Can your VAE

 inpaint any pixel patch?
Can your Flow

 flawles deal with missing values?Can you obtain callibrated uncertainties from your GAN?

t !

 tractable probabilistic

 tractable probabilistic inference meeting!

 inference meeting!}

[^12]
References I

\oplus Cooper, Gregory F(1990). "The computational complexity of probabilistic inference using Bayesian belief networks". In: Artificial intelligence 42.2-3, pp. 393-405.
\oplus Dagum, Paul and Michael Luby (1993). "Approximating probabilistic inference in Bayesian belief networks is NP-hard". In: Artificial intelligence 60.1, pp. 141-153.
$\oplus \quad$ Zhang, Nevin Lianwen and David Poole (1994). "A simple approach to Bayesian network computations". In: Proceedings of the Biennial Conference-Canadian Society for Computational Studies of Intelligence, pp. 171-178.
\oplus Roth, Dan (1996). "On the hardness of approximate reasoning". In: Artificial Intelligence 82.1-2, pp. 273-302.
\oplus Dechter, Rina (1998). "Bucket elimination: A unifying framework for probabilistic inference". In: Learning in graphical models. Springer, pp. 75-104.
\oplus Dasgupta, Sanjoy (1999). "Learning polytrees". In: Proceedings of the Fifteenth conference on Uncertainty in artificial intelligence. Morgan Kaufmann Publishers Inc., pp. 134-141.
(1) Meilă, Marina and Michael I. Jordan (2000). "Learning with mixtures of trees". In: Journal of Machine Learning Research 1, pp. 1-48.
\oplus Bach, Francis R. and Michael I. Jordan (2001). "Thin Junction Trees". In: Advances in Neural Information Processing Systems 14. MIT Press, pp. 569-576.
\oplus Darwiche, Adnan (2001). "Recursive conditioning". In: Artificial Intelligence 126.1-2, pp. 5-41.
\oplus Yedidia, Jonathan S, William T Freeman, and Yair Weiss (2001). "Generalized belief propagation". In: Advances in neural information processing systems, pp. 689-695.
\oplus Chickering, Max (2002). "The WinMine Toolkit". In: Microsoft, Redmond.
\oplus Darwiche, Adnan and Pierre Marquis (2002). "A knowledge compilation map". In: Journal of Artificial Intelligence Research 17, pp. 229-264.

References II

\oplus Dechter, Rina, Kalev Kask, and Robert Mateescu (2002). "Iterative join-graph propagation". In: Proceedings of the Eighteenth conference on Uncertainty in artificial intelligence. Morgan Kaufmann Publishers Inc., pp. 128-136.
\oplus Darwiche, Adnan (2003). "A Differential Approach to Inference in Bayesian Networks". In: J.ACM.
\oplus Sang, Tian, Paul Beame, and Henry A Kautz (2005). "Performing Bayesian inference by weighted model counting". In: AAAI. Vol. 5, pp. 475-481.
\oplus Chavira, Mark, Adnan Darwiche, and Manfred Jaeger (2006). "Compiling relational Bayesian networks for exact inference". In: International Journal of Approximate Reasoning 42.1-2, pp. 4-20.
\oplus Park, James D and Adnan Darwiche (2006). "Complexity results and approximation strategies for MAP explanations". In: Journal of Artificial Intelligence Research 21, pp. 101-133.
\oplus De Raedt, Luc, Angelika Kimmig, and Hannu Toivonen (2007). "ProbLog: A Probabilistic Prolog and Its Application in Link Discovery.". In: IJCAI. Vol. 7. Hyderabad, pp. 2462-2467.
\oplus Dechter, Rina and Robert Mateescu (2007). "AND/OR search spaces for graphical models". In: Artificial intelligence 171.2-3, pp. 73-106.
\oplus Kulesza, A. and F. Pereira (2007). "Structured Learning with Approximate Inference". In: Advances in Neural Information Processing Systems 20. MIT Press, pp. 785-792.
$\oplus \quad$ Riguzzi, Fabrizio (2007). "A top down interpreter for LPAD and CP-logic". In: Congress of the Italian Association for Artificial Intelligence. Springer, pp. 109-120.
\oplus Lowd, Daniel and Pedro Domingos (2008). "Learning Arithmetic Circuits". In: Proceedings of the Twenty-Fourth Conference on Uncertainty in Artificial Intelligence. UAl'08. Helsinki, Finland: AUAI Press, pp. 383-392. ISBN: 0-9749039-4-9. URL: http://dl . acm. org/citation.cfm?id=3023476.3023522.

References III

\oplus Olteanu, Dan and Jiewen Huang (2008). "Using OBDDs for efficient query evaluation on probabilistic databases". In: International Conference on Scalable Uncertainty Management. Springer, pp. 326-340
\oplus Koller, Daphne and Nir Friedman (2009). Probabilistic Graphical Models: Principles and Techniques. MIT Press.
\oplus Choi, Arthur and Adnan Darwiche (2010). "Relax, compensate and then recover". In: JSAI International Symposium on Artificial Intelligence. Springer, pp. 167-180.
\oplus Lowd, Daniel and Pedro Domingos (2010). "Approximate inference by compilation to arithmetic circuits". In: Advances in Neural Information Processing Systems, pp. 1477-1485.
\oplus Broeck, Guy Van den et al. (2011). "Lifted probabilistic inference by first-order knowledge compilation". In: Proceedings of the Twenty-Second international joint conference on Artificial Intelligence. AAAI Press/International Joint Conferences on Artificial Intelligence; Menlo ..., pp. 2178-2185.
(1) Campos, Cassio Polpo de (2011). "New complexity results for MAP in Bayesian networks". In: IJCAI. Vol. 11, pp. 2100-2106.
(1) Larochelle, Hugo and lain Murray (2011). "The Neural Autoregressive Distribution Estimator". In: International Conference on Artificial Intelligence and Statistics, pp. 29-37.
\oplus Poon, Hoifung and Pedro Domingos (2011). "Sum-Product Networks: a New Deep Architecture". In: UAI 2011.
\oplus Sontag, David, Amir Globerson, and Tommi Jaakkola (2011). "Introduction to dual decomposition for inference". In: Optimization for Machine Learning 1, pp. 219-254.
\oplus Domingos, Pedro and William Austin Webb (2012). "A tractable first-order probabilistic logic". In: Twenty-Sixth AAAI Conference on Artificial Intelligence.
\oplus Gens, Robert and Pedro Domingos (2012). "Discriminative Learning of Sum-Product Networks". In: Advances in Neural Information Processing Systems 25, pp. 3239-3247.

References IV

\oplus Broeck, Guy Van den (2013). "Lifted inference and learning in statistical relational models". PhD thesis. Ph. D. Dissertation, KU Leuven.

\oplus Gens, Robert and Pedro Domingos (2013). "Learning the Structure of Sum-Product Networks". In: Proceedings of the ICML 2013, pp. 873-880.
\oplus Lowd, Daniel and Amirmohammad Rooshenas (2013). "Learning Markov Networks With Arithmetic Circuits". In: Proceedings of the 16 th International Conference on Artificial Intelligence and Statistics. Vol. 31. JMLR Workshop Proceedings, pp. 406-414.
\oplus Peharz, Robert, Bernhard Geiger, and Franz Pernkopf (2013). "Greedy Part-Wise Learning of Sum-Product Networks". In: ECML-PKDD 2013.
\oplus Cheng, Wei-Chen et al. (2014). "Language modeling with Sum-Product Networks". In: INTERSPEECH 2014, pp. 2098-2102.
\oplus Goodfellow, lan et al. (2014). "Generative adversarial nets". In: Advances in neural information processing systems, pp. 2672-2680.
\oplus Kingma, Diederik P and Max Welling (2014). "Auto-Encoding Variational Bayes". In: Proceedings of the 2nd International Conference on Learning Representations (ICLR). 2014.
\oplus Kisa, Doga et al. (July 2014a). "Probabilistic sentential decision diagrams". In: Proceedings of the 14th International Conference on Principles of Knowledge Representation and Reasoning (KR). Vienna, Austria.
$\oplus \quad-\quad$ July 2014b). "Probabilistic sentential decision diagrams". In: Proceedings of the 14th International Conference on Principles of Knowledge Representation and Reasoning (KR). Vienna, Austria. URL: http://starai.cs.ucla.edu/papers/KisaKR14.pdf.
\oplus Martens, James and Venkatesh Medabalimi (2014). "On the Expressive Efficiency of Sum Product Networks". In: CoRR abs/1411.7717.
\oplus Nath, Aniruddh and Pedro Domingos (2014). "Learning Tractable Statistical Relational Models". In: Workshop on Learning Tractable Probabilistic Models, ICML 2014.

References V

\oplus Peharz, Robert, Robert Gens, and Pedro Domingos (2014a). "Learning Selective Sum-Product Networks". In: Workshop on Learning Tractable Probabilistic Models. LTPM.
(1) Peharz, Robert et al. (2014b). "Modeling speech with sum-product networks: Application to bandwidth extension". In: ICASSP2014.
\oplus Rahman, Tahrima, Prasanna Kothalkar, and Vibhav Gogate (2014). "Cutset Networks: A Simple, Tractable, and Scalable Approach for Improving the Accuracy of Chow-Liu Trees". In: Machine Learning and Knowledge Discovery in Databases. Vol. 8725. LNCS. Springer, pp. 630-645.
\oplus Ratajczak, Martin, S Tschiatschek, and F Pernkopf (2014). "Sum-Product Networks for Structured Prediction: Context-Specific Deep Conditional Random Fields". In: Proc Workshop on Learning Tractable Probabilistic Models 1, pp. 1-10.
\oplus Rezende, Danilo Jimenez, Shakir Mohamed, and Daan Wierstra (2014). "Stochastic backprop. and approximate inference in deep generative models". In: arXiv preprint arXiv:1401.4082.
$\oplus \quad$ Rooshenas, Amirmohammad and Daniel Lowd (2014). "Learning Sum-Product Networks with Direct and Indirect Variable Interactions". In: Proceedings of ICML 2014.
\oplus Amer, Mohamed and Sinisa Todorovic (2015). "Sum Product Networks for Activity Recognition". In: Pattern Analysis and Machine Intelligence, IEEE Transactions on.
\oplus Bekker, Jessa et al. (2015). "Tractable Learning for Complex Probability Queries". In: Advances in Neural Information Processing Systems 28 (NIPS).
$\oplus \quad$ Burda, Yuri, Roger Grosse, and Ruslan Salakhutdinov (2015). "Importance weighted autoencoders". In: arXiv preprint arXiv:1509.00519.
\oplus Choi, Arthur, Guy Van den Broeck, and Adnan Darwiche (2015). "Tractable learning for structured probability spaces: A case study in learning preference distributions". In: Twenty-Fourth International Joint Conference on Artificial Intelligence (IJCAI).

References VI

\bigoplus Dennis, Aaron and Dan Ventura (2015). "Greedy Structure Search for Sum-product Networks". In: IJCAI'15. Buenos Aires, Argentina: AAAI Press, pp. 932-938. ISBN 978-1-57735-738-4.
 pp. 358-401. ISSN: 1475-3081. DOI: 10.1017/S1471068414000076. URL: http://starai.cs.ucla.edu/papers/FierensTPLP15.pdf.
\bigoplus Germain, Mathieu et al. (2015). "MADE: Masked Autoencoder for Distribution Estimation". In: CoRR abs/1502.03509.
$\oplus \quad$ Li, Weizhuo (2015). "Combining sum-product network and noisy-or model for ontology matching.". In: OM, pp. 35-39.
$\oplus \quad$ Nath, Aniruddh and Pedro Domingos (2015). "Learning Relational Sum-Product Networks". In: Proceedings of the AAAI Conference on Artificial Intelligence.
\bigoplus Niepert, Mathias and Pedro Domingos (2015). "Learning and inference in tractable probabilistic knowledge bases". In: AUAI Press.
\bigoplus Peharz, Robert (2015). "Foundations of Sum-Product Networks for Probabilistic Modeling". PhD thesis. Graz University of Technology, SPSC.
$\bigoplus \quad$ Peharz, Robert et al. (2015). "On Theoretical Properties of Sum-Product Networks". In: The Journal of Machine Learning Research.
\bigoplus Van Haaren, Jan et al. (2015). "Lifted Generative Learning of Markov Logic Networks". In: Machine Learning 103.1, pp. 27-55. DOI: 10. 1007/s10994-015-5532-x.

 (IJCAI). URL: http://starai.cs.ucla.edu/papers/VlasselaerIJCAI15.pdf.

References VII

\oplus Zhao, Han, Mazen Melibari, and Pascal Poupart (2015). "On the Relationship between Sum-Product Networks and Bayesian Networks". In: ICML.
\oplus Zohrer, Matthias, Robert Peharz, and Franz Pernkopf (2015). "Representation learning for single-channel source separation and bandwidth extension". In: Audio, Speech, and Language Processing, IEEE/ACM Transactions on 23.12, pp. 2398-2409.
\oplus Cohen, Nadav, Or Sharir, and Amnon Shashua (2016). "On the expressive power of deep learning: A tensor analysis". In: Conference on Learning Theory, pp. 698-728.
\oplus Friesen, Abram L and Pedro Domingos (2016). "Submodular Sum-product Networks for Scene Understanding". In:
\oplus Jaini, Priyank et al. (2016). "Online Algorithms for Sum-Product Networks with Continuous Variables". In: Probabilistic Graphical Models - Eighth International Conference, PGM 2016, Lugano, Switzerland, September 6-9, 2016. Proceedings, pp. 228-239. URL: http://jmlr.org/proceedings/papers/v52/jaini16.html.
\oplus Nath, Aniruddh and Pedro M. Domingos (2016). "Learning Tractable Probabilistic Models for Fault Localization". In: CoRR abs/1507.01698. URL: http://arxiv.org/abs/1507.01698.
\oplus Oord, Aaron van den, Nal Kalchbrenner, and Koray Kavukcuoglu (2016). "Pixel recurrent neural networks". In: arXiv preprint arXiv:1601.06759.
\oplus Oztok, Umut, Arthur Choi, and Adnan Darwiche (2016). "Solving PP-PP-complete problems using knowledge compilation". In: Fifteenth International Conference on the Principles of Knowledge Representation and Reasoning.
\oplus Peharz, Robert et al. (2016). "On the Latent Variable Interpretation in Sum-Product Networks". In: IEEE Transactions on Pattern Analysis and Machine Intelligence PP, Issue 99. URL: http://arxiv.org/abs/1601.06180.
\oplus Pronobis, A. and R. P. N. Rao (2016). "Learning Deep Generative Spatial Models for Mobile Robots". In: ArXiv e-prints. arXiv: 1610. 02627 [cs . RO] .

References VIII

\oplus Rahman, Tahrima and Vibhav Gogate (2016). "Learning Ensembles of Cutset Networks". In: Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence. AAAl'16. Phoenix, Arizona: AAAI Press, pp. 3301-3307. URL: http://dl.acm.org/citation.cfm?id=3016100.3016365.
\oplus Rashwan, Abdullah, Han Zhao, and Pascal Poupart (2016). "Online and Distributed Bayesian Moment Matching for Parameter Learning in Sum-Product Networks". In: Proceedings of the 19th International Conference on Artificial Intelligence and Statistics, pp. 1469-1477.
\oplus Rooshenas, Amirmohammad and Daniel Lowd (2016). "Discriminative Structure Learning of Arithmetic Circuits". In: Proceedings of the 19th International Conference on Artificial Intelligence and Statistics, pp. 1506-1514.
\oplus Sguerra, Bruno Massoni and Fabio G Cozman (2016). "Image classification using sum-product networks for autonomous flight of micro aerial vehicles". In: 2016 5th Brazilian Conference on Intelligent Systems (BRACIS). IEEE, pp. 139-144.
\oplus Sharir, Or et al. (2016). "Tractable generative convolutional arithmetic circuits". In: arXiv preprint arXiv:1610.04167.
\oplus Shen, Yujia, Arthur Choi, and Adnan Darwiche (2016). "Tractable Operations for Arithmetic Circuits of Probabilistic Models". In: Advances in Neural Information Processing Systems 29: Annual Conference on Neural Information Processing Systems 2016, December 5-10, 2016, Barcelona, Spain, pp. 3936-3944.
$\oplus \quad$ Vlasselaer, Jonas et al. (Mar. 2016). "Exploiting Local and Repeated Structure in Dynamic Bayesian Networks". In: Artificial Intelligence 232, pp. 43 -53. ISSN: 0004-3702. DOI: 10.1016/j.artint.2015.12.001.
\oplus Wang, Jinghua and Gang Wang (2016). "Hierarchical spatial sum-product networks for action recognition in still images". In: IEEE Transactions on Circuits and Systems for Video Technology 28.1, pp. 90-100.
\oplus Yuan, Zehuan et al. (2016). "Modeling spatial layout for scene image understanding via a novel multiscale sum-product network". In: Expert Systems with Applications 63, pp. 231-240, 1

References IX

\oplus Zhao, Han, Pascal Poupart, and Geoffrey J Gordon (2016a). "A Unified Approach for Learning the Parameters of Sum-Product Networks". In: Advances in Neural Information Processing Systems 29. Ed. by D. D. Lee et al. Curran Associates, Inc., pp. 433-441.
\oplus Zhao, Han et al. (2016b). "Collapsed Variational Inference for Sum-Product Networks". In: In Proceedings of the 33rd International Conference on Machine Learning. Vol. 48.
\oplus Alemi, Alexander A et al. (2017). "Fixing a broken ELBO". In: arXiv preprint arXiv:1711.00464.
\oplus Choi, YooJung, Adnan Darwiche, and Guy Van den Broeck (2017). "Optimal feature selection for decision robustness in Bayesian networks". In: Proceedings of the 26th International Joint Conference on Artificial Intelligence (IJCAI).
\oplus Conaty, Diarmaid, Denis Deratani Mauá, and Cassio Polpo de Campos (2017). "Approximation Complexity of Maximum A Posteriori Inference in Sum-Product Networks". In: Proceedings of the Thirty-Third Conference on Uncertainty in Artificial Intelligence. Ed. by Gal Elidan and Kristian Kersting. AUAI Press, pp. 322-331.
\oplus Di Mauro, Nicola et al. (2017). "Fast and Accurate Density Estimation with Extremely Randomized Cutset Networks". In: ECML-PKDD 2017.
\oplus Latour, Anna et al. (Aug. 2017). "Combining Stochastic Constraint Optimization and Probabilistic Programming: From Knowledge Compilation to Constraint Solving". In: Proceedings of the 23rd International Conference on Principles and Practice of Constraint Programming (CP). DOI: 10.1007/978-3-319-66158-2_32.
\oplus Liang, Yitao, Jessa Bekker, and Guy Van den Broeck (2017a). "Learning the structure of probabilistic sentential decision diagrams". In: Proceedings of the 33rd Conference on Uncertainty in Artificial Intelligence (UAI).
\oplus Liang, Yitao and Guy Van den Broeck (Aug. 2017b). "Towards Compact Interpretable Models: Shrinking of Learned Probabilistic Sentential Decision Diagrams". In: IJCAI 2017 Workshop on Explainable Artificial Intelligence (XAI). URL: http://starai. cs.ucla.edu/papers/LiangXAI17.pdf.

References X

\oplus Pronobis, Andrzej, Francesco Riccio, and Rajesh PN Rao (2017). "Deep spatial affordance hierarchy: Spatial knowledge representation for planning in large-scale environments". In: ICAPS 2017 Workshop on Planning and Robotics, Pittsburgh, PA, USA.
\oplus Rathke, Fabian, Mattia Desana, and Christoph Schnörr (2017). "Locally adaptive probabilistic models for global segmentation of pathological oct scans". In: International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer, pp. 177-184.
\oplus Salimans, Tim et al. (2017). "PixeICNN++: Improving the PixeICNN with discretized logistic mixture likelihood and other modifications". In: arXiv preprint arXiv:1701.05517.
\oplus Shen, Yujia, Arthur Choi, and Adnan Darwiche (2017). "A Tractable Probabilistic Model for Subset Selection.". In: UAI.
$\oplus \quad$ Van den Broeck, Guy and Dan Suciu (Aug. 2017). Query Processing on Probabilistic Data: A Survey. Foundations and Trends in Databases. Now Publishers. DOI: 10.1561/1900000052. URL: http://starai.cs.ucla.edu/papers/VdBFTDB17.pdf.
\oplus Andraud, Martin et al. (2018). "On the use of Bayesian Networks for Resource-Efficient Self-Calibration of Analog/RF ICs". In: 2018 IEEE International Test Conference (ITC). IEEE, pp. 1-10.
\oplus Butz, Cory J et al. (2018). "Efficient Examination of Soil Bacteria Using Probabilistic Graphical Models". In: International Conference on Industrial, Engineering and Other Applications of Applied Intelligent Systems. Springer, pp. 315-326.
\oplus Choi, YooJung and Guy Van den Broeck (2018). "On robust trimming of Bayesian network classifiers". In: arXiv preprint arXiv:1805.11243.
\oplus Friedman, Tal and Guy Van den Broeck (Dec. 2018). "Approximate Knowledge Compilation by Online Collapsed Importance Sampling". In: Advances in Neural Information Processing Systems 31 (NeurIPS). URL: http://starai.cs.ucla.edu/papers/FriedmanNeurIPS18.pdf.

References XI

 Systems.
 Probabilistic Graphical Models, pp. 356-367.
\bigoplus Ratajczak, Martin, Sebastian Tschiatschek, and Franz Pernkopf (2018). "Sum-Product Networks for Sequence Labeling". In: arXiv preprint arXiv:1807.02324.

 Artificial Intelligence.
$\oplus \quad$ Chiradeep Roy, Tahrima Rahman and Vibhav Gogate (2019). "Explainable Activity Recognition in Videos using Dynamic Cutset Networks". In: TPM2019.
\bigoplus Dai, Bin and David Wipf (2019). "Diagnosing and enhancing vae models". In: arXiv preprint arXiv:1903.05789.
 Modeling (TPM). URL: http://starai.cs.ucla.edu/papers/GalindezTPM19.pdf.
\bigoplus Ghosh, Partha et al. (2019). "From variational to deterministic autoencoders". In: arXiv preprint arXiv:1903.12436.

References XII

\oplus Holtzen, Steven, Todd Millstein, and Guy Van den Broeck (2019). "Symbolic Exact Inference for Discrete Probabilistic Programs". In: arXiv preprint arXiv:1904.02079.
\oplus Khosravi, Pasha et al. (2019a). "On Tractable Computation of Expected Predictions". In: Advances in Neural Information Processing Systems, pp. 11167-11178.
\oplus Khosravi, Pasha et al. (2019b). "What to Expect of Classifiers? Reasoning about Logistic Regression with Missing Features". In: arXiv preprint arXiv:1903.01620.
\oplus Khosravi, Pasha et al. (2019c). "What to Expect of Classifiers? Reasoning about Logistic Regression with Missing Features". In: Proceedings of the 28 th International Joint Conference on Artificial Intelligence (IJCAI).
\oplus Kossen, Jannik et al. (2019). "Structured Object-Aware Physics Prediction for Video Modeling and Planning". In: arXiv preprint arXiv:1910.02425.
\oplus Liang, Yitao and Guy Van den Broeck (2019). "Learning Logistic Circuits". In: Proceedings of the 33rd Conference on Artificial Intelligence (AAAI).
\oplus Peharz, Robert et al. (2019). "Random Sum-Product Networks: A Simple and Effective Approach to Probabilistic Deep Learning". In: Uncertainty in Artificial Intelligence.
(1) Shah, Nimish et al. (2019). "ProbLP: A framework for low-precision probabilistic inference". In: Proceedings of the 56th Annual Design Automation Conference 2019. ACM, p. 190.
\oplus Shao, Xiaoting et al. (2019). "Conditional Sum-Product Networks: Imposing Structure on Deep Probabilistic Architectures". In: arXiv preprint arXiv:1905.08550.
\oplus Shen, Yujia et al. (2019). "Structured Bayesian Networks: From Inference to Learning with Routes". In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence (AAAI).
\oplus Shih, Andy et al. (2019). "Smoothing Structured Decomposable Circuits". In: arXiv preprint arXiv:1906.00311.

References XIII

\oplus Stelzner, Karl, Robert Peharz, and Kristian Kersting (2019). "Faster Attend-Infer-Repeat with Tractable Probabilistic Models". In: Proceedings of the 36th International Conference on Machine Learning. Ed. by Kamalika Chaudhuri and Ruslan Salakhutdinov. Vol. 97. Proceedings of Machine Learning Research. Long Beach, California, USA: PMLR, pp. 5966-5975. URL: http://proceedings.mlr.press/v97/stelzner19a.html.
\oplus Tan, Ping Liang and Robert Peharz (2019). "Hierarchical Decompositional Mixtures of Variational Autoencoders". In: Proceedings of the 36th International Conference on Machine Learning. Ed. by Kamalika Chaudhuri and Ruslan Salakhutdinov. Vol. 97. Proceedings of Machine Learning Research. Long Beach, California, USA: PMLR, pp. 6115-6124. URL: http://proceedings.mlr.press/v97/tan19b.html.
$\oplus \quad$ Trapp, Martin et al. (2019). "Bayesian Learning of Sum-Product Networks". In: Advances in neural information processing systems (NeurIPS).
$\oplus \quad$ Vergari, Antonio et al. (2019). "Automatic Bayesian density analysis". In: Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 33, pp. 5207-5215.

[^0]: Rezende et al., "Stochastic backprop. and approximate inference in deep generative models", 2014 Kingma et al., "Auto-Encoding Variational Bayes", 2014

[^1]: Cohen et al., "On the expressive power of deep learning: A tensor analysis", 2016
 Martens et al., "On the Expressive Efficiency of Sum Product Networks", 2014

[^2]: Cohen et al., "On the expressive power of deep learning: A tensor analysis", 2016
 Martens et al., "On the Expressive Efficiency of Sum Product Networks", 2014

[^3]: © fineartamerica.com

[^4]: Gens et al., "Learning the Structure of Sum-Product Networks", 2013
 peharz2018probabilistic, peharz2018probabilistic, peharz2018probabilistic

[^5]: Kisa et al., "Probabilistic sentential decision diagrams", 2014
 Peharz et al., "Learning Selective Sum-Product Networks", 2014
 Liang et al., "Learning Logistic Circuits", 2019

[^6]: Kisa et al., "Probabilistic sentential decision diagrams", 2014
 Peharz et al., "Learning Selective Sum-Product Networks", 2014
 Liang et al., "Learning Logistic Circuits", 2019

[^7]: Kisa et al., "Probabilistic sentential decision diagrams", 2014
 Peharz et al., "Learning Selective Sum-Product Networks", 2014
 Liang et al., "Learning Logistic Circuits", 2019

[^8]: Kisa et al., "Probabilistic sentential decision diagrams", 2014
 Peharz et al., "Learning Selective Sum-Product Networks", 2014
 Liang et al., "Learning Logistic Circuits", 2019

[^9]: Peharz et al., "Random Sum-Product Networks: A Simple and Effective Approach to Probabilistic Deep Learning", 2019

[^10]: Poon et al., "Sum-Product Networks: a New Deep Architecture", 2011
 Sguerra et al., "Image classification using sum-product networks for autonomous flight of micro aerial vehicles", 2016

[^11]: Choi et al.," "Tractable learning for structured probability spaces: A case study in learning preference distributions", 2015
 Shen et al., "A Tractable Probabilistic Model for Subset Selection.", 2017

[^12]: sites.google.com/view/tprime2019

