Querying Advanced Probabilistic Models:

From Relational Embeddings to

Probabilistic Programs

Guy Van den Broeck

StarAI Workshop @ AAAI, Feb 7, 2020

The AI Dilemma

Pure Logic
Pure Learning

The AI Dilemma

Pure Logic

Pure Learning

- Slow thinking: deliberative, cognitive, model-based, extrapolation
- Amazing achievements until this day
- "Pure logic is brittle" noise, uncertainty, incomplete knowledge, ...

The AI Dilemma

Pure Logic

Pure Learning

- Fast thinking: instinctive, perceptive, model-free, interpolation
- Amazing achievements recently
- "Pure learning is brittle"
bias, algorithmic fairness, interpretability, explainability, adversarial attacks, unknown unknowns, calibration, verification, missing features, missing labels, data efficiency, shift in distribution, general robustness and safety
fails to incorporate a sensible model of the world

The FALSE AI Dilemma

So all hope is lost?

Probabilistic World Models

- Joint distribution $\mathrm{P}(\mathrm{X})$
- Wealth of representations: can be causal, relational, etc.
- Knowledge + data
- Reasoning + learning

Pure Logic

Probabilistic World Models Pure Learning

A New Synthesis of

 Learning and Reasoning

Tutorial on Probabilistic Circuits
This afternoon: 2pm-6pm
Sutton Center, 2nd floor

Pure Logic Probabilistic World Models Pure Learning

High-Level Probabilistic Representations

Probabilistic Databases Meets
Relational Embeddings:
Symbolic Querying of Vector Spaces
Modular Exact Inference for Discrete Probabilistic Programs

Has anyone published a paper with both Erdos and Einstein
All News Images Videos Shopping More v Search tools

About 82,400 results (0.73 seconds)

Erdős number - Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Erdős_number v Wikipedia * He published more papers during his lifetime (at least 1,525) than any other ... Anybody else's Frdős number is $k+1$ where k is the lowest Frdős number of any coauthor. .. Albert Einstein and Sheldon Lee Glashow have an Erdős number of 2. and mathematician Ruth Wviliams, both of whom have an Erdös number of 2 .

Erdős-Bacon number - Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Erdős-Bacon_number v Wikipedia * This article possibly contains previously unpublished synthesis of published ... Her paper gives her an Erdős number of 4, and a Bacon number of 2, both of ...

$\exists x$ Coauthor(Einstein,x) \wedge Coauthor(Erdos,x)

All News Images Videos Shopping More v Search tools

About 82,400 results (0.73 seconds)
Erdős number - Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Erdős_number v Wikipedia v He published more papers during his lifetime (at least 1,525) than any other ... Anybody else's Erdös number is $\mathrm{k}+1$ where k is the lowest Erdös number of any coauthor. ... Albert Einstein and Sheldon Lee Glashow have an Erdõs number of 2. ... and mathematician Ruth Williams, both of whom have an Erdös number of 2.

Erdős-Bacon number - Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Erdős-Bacon_number v Wikipedia * This article possibly contains previously unpublished synthesis of published ... Her paper gives her an Erdős number of 4, and a Bacon number of 2, both of ...

Einstein is in the Knowledge Graph

Albert Einstein

News

Images
Books
Videos
More
Search tools

About $82,800,000$ results (0.45 seconds)

The Official Licensing Site of Albert Einstein einstein.biz/

Welcome to the Official Licensing Site of Albert Einstein. Learn more about Albert Einstein and contact us today for any commercial licensing inquiries.

Albert Einstein - Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Albert_Einstein • Wikipedia * Albert Einstein (l'ainstain/; German: ['albeext 'ainftain] (listen); 14 March 1879-18 April 1955) was a German-born theoretical physicist.
Hans Albert Einstein - Mass-energy equivalence - Eduard Einstein - Elsa Einstein

Albert Einstein (@AlbertEinstein) | Twitter
https://twitter.com/AlbertEinstein

16 hours ago - View on Twitter
ICYMI, Albert Einstein knew a thing or two about being romantic. Learn about the love letters he wrote. guff.com/didnt-knoweinst...

Albert Einstein

Theoretical Physicist
Albert Einstein was a German-born theoretical physicist. He developed the general theory of relativity, one of the two pillars of modern physics. Einstein's work is also known for its influence on the philosophy of science. Wikipedia

Born: March 14, 1879, Ulm, Germany
Died: April 18, 1955, Princeton, NJ
Influenced by: Isaac Newton, Mahatma Gandhi, More
Children: Eduard Einstein, Lieserl Einstein, Hans Albert Einstein
Spouse: Elsa Einstein (m. 1919-1936), Mileva Marić (m. 1903-1919)

Erdős is in the Knowledge Graph

Paul Erdos

About 333,000 results (0.35 seconds)

Paul Erdős - Wikipedia, the free encyclopedia
https://en.wikipedia.org/wiki/Paul_Erdős v Wikipedia *
Paul Erdős was a Hungarian Jewish mathematician. He was one of the most prolific mathematicians of the 20th century. He was known both for his social ..
Fan Chung - Ronald Graham - Béla Bollobás - Category:Paul Erdős
The Man Who Loved Only Numbers - The New York Times https://www.nytimes.com/books/.../hoffman-man.ht... V The New York Times * Paul Erdös was one of those very special geniuses, the kind who comes along only once in a very long while yet he chose, quite consciously I am sure, to share ...

Paul Erdos | Hungarian mathematician | Britannica.com

 www.britannica.com/biography/Paul-Erdos v Encyclopaedia Britannica Paul Erdös, (born March 26, 1913, Budapest, Hungary-died September 20, 1996, Warsaw, Poland), Hungarian "freelance" mathematician (known for his work ...Paul Erdős - University of St Andrews
www-groups.dcs.st-and.ac.uk/~history/Biographies/Erdos.html v Paul Erdös came from a Jewish family (the original family name being Engländer) although neither of his parents observed the Jewish religion. Paul's father ...
${ }^{\text {[PDF] }}$ Paul Erdős Mathematical Genius, Human - UnTruth.org www.untruth.org/~josh/math/Paul\ Erdös\ bio-rev2.pdf v by J Hill - 2004 - Related articles

Paul Erdős

Mathematician
Paul Erdős was a Hungarian Jewish mathematician. He was one of the most prolific mathematicians of the 20th century. He was known both for his social practice of mathematics and for his eccentric lifestyle. Wikipedia

Born: March 26, 1913, Budapest, Hungary
Died: September 20, 1996, Warsaw, Poland
Education: Eötvös Loránd University (1934)
Books: Probabilistic Methods in Combinatorics, More
Notable students: Béla Bollobás, Alexander Soifer, George B. Purdy, Incanh Krickal

This guy is in the Knowledge Graph

```
Ernst Straus
& Q
All Images News Maps Videos More \({ }^{7}\) Search tools
About 349,000 results ( 0.37 seconds)
Ernst G. Straus - Wikipedia, the free encyclopedia
https://en.wikipedia.org/wiki/Ernst_G._Straus v Wikipedia *
Ernst Gabor Straus (February 25, 1922 - July 12, 1983) was a German-American
mathematician who helped found the theories of Euclidean Ramsey theory ...
Straus biography - University of St Andrews
www-groups.dcs.st-and.ac.uk/~history/Biographies/Straus.html
Ernst Straus's mother was Rahel Goitein who had the distinction of being one of the first women medical students officially studying at a German university.
```

Ernst G. Straus

```
Mathematician
Ernst Gabor Straus was a German-American mathematician who helped found the theories of Euclidean Ramsey theory and of the arithmetic properties of analytic functions. Wikipedia
Born: February 25, 1922, Munich, Germany
Died: July 12, 1983, Los Angeles, CA
Residence: United States of America
... and he published with both Einstein and Erdos!
```


Desired Query Answer

Ernst Straus

Barack Obama, ...

Justin Bieber, ...

1. Fuse uncertain information from web
\Rightarrow Embrace probability!
2. Cannot come from labeled data
\Rightarrow Embrace query eval!

Cartoon Motivation

Many exceptions in StarAI and PDB communities, but, we need to embed...

Probabilistic Databases

Has anyone published a paper with both Erdos and Einstein

- Probabilistic database

	X	P
	Erdos	0.9
	Einstein	0.8
	Pauli	0.6

- Learned from the web, large text corpora, ontologies, etc., using statistical machine learning.

Probabilistic Databases Semantics

- All possible databases: $\Omega=\left\{\omega_{1}, \ldots, \omega_{n}\right\}$

- Probabilistic database P assigns a probability to each: $P: \Omega \rightarrow[0,1]$
- Probabilities sum to $1: \sum_{\omega \in \Omega} P(\omega)=1$

Commercial Break

Foundations and Trends ${ }^{\circledR}$ in
 Databases

7:3-4

Query Processing on Probabilistic Data
 A Survey
 Guy Van den Broeck and Dan Suciu

- Survey book
- IJCAI 2016 tutorial
http://web.cs.ucla.edu/~guyvdb/talks/IJCAI16-tutorial/

How to specify all these numbers?

- Only specify marginals:

$$
P(\text { Coauthor }(\text { Alice }, \text { Bob }))=0.23
$$

Coauthor

- Assume tuple-independence

Probabilistic Query Evaluation

$Q=\exists x \exists y \operatorname{Scientist}(x) \wedge$ Coauthor (x, y)

$$
\begin{aligned}
P(Q)=1- & \left\{1-p_{1}^{*}\left[1-\left(1-q_{1}\right)^{*}\left(1-q_{2}\right)\right]\right\}^{*} \\
& \left\{1-p_{2}^{*}\left[1-\left(1-q_{3}\right)^{*}\left(1-q_{4}\right)^{*}\left(1-q_{5}\right)\right]\right\}
\end{aligned}
$$

\pm	X	P
$\stackrel{\stackrel{\pi}{0}}{\underline{0}}$	A	p_{1}
	B	p_{2}
	C	p_{3}

Lifted Inference Rules

Preprocess Q (omitted),
Then apply rules (some have preconditions)

$$
P(-Q)=1-P(Q)
$$

Negation

$$
\begin{aligned}
& P(Q 1 \wedge Q 2)=P(Q 1) P(Q 2) \\
& P(Q 1 \vee Q 2)=1-(1-P(Q 1))(1-P(Q 2))
\end{aligned}
$$

Decomposable \wedge, \vee

$$
\begin{aligned}
& P(\forall z Q)=\Pi_{A \in \operatorname{Domain}} P(Q[A / z]) \\
& P(\exists z Q)=1-\Pi_{A \in \operatorname{Domain}}(1-P(Q[A / z]))
\end{aligned}
$$

$$
\begin{aligned}
& P\left(Q 1 \wedge Q_{2}\right)=P(Q 1)+P\left(Q_{2}\right)-P\left(Q 1 \vee Q_{2}\right) \\
& P\left(Q 1 \vee Q_{2}\right)=P(Q 1)+P\left(Q_{2}\right)-P\left(Q_{1} \wedge Q_{2}\right)
\end{aligned}
$$

Inclusion/ exclusion

Example Query Evaluation

$Q=\exists x \exists y \operatorname{Scientist}(x) \wedge$ Coauthor(x, y)

$P(Q)=1-\Pi_{A \in \operatorname{Domain}}(1-P($ Scientist $(A) \wedge \exists y$ Coauthor $(A, y))$
Check independence: Scientist(A) $\wedge \exists y$ Coauthor(A, y) Scientist(B) $\wedge \exists y$ Coauthor(B,y)
$=1-(1-\mathrm{P}($ Scientist(A) $\wedge \exists y \operatorname{Coauthor}(\mathrm{~A}, \mathrm{y}))$
$x(1-P(S c i e n t i s t(B) \wedge \exists y \operatorname{Coauthor}(B, y))$
$x(1-P($ Scientist $(C) \wedge \exists y$ Coauthor(C,y))
$\mathrm{x}(1-\mathrm{P}($ Scientist(D) $\wedge \exists y$ Coauthor(D,y))
$x(1-P(S c i e n t i s t(E) \wedge \exists y$ Coauthor(E,y))
$x(1-\mathrm{P}($ Scientist $(F) \wedge \exists y \operatorname{Coauthor}(F, y))$

Complexity PTIME

Limitations

$H_{0}=\forall x \forall y \operatorname{Smoker}(x) \vee \operatorname{Friend}(x, y) \vee \operatorname{Jogger}(y)$

The decomposable \forall-rule: $P(\forall z Q)=\Pi_{A \in \operatorname{Domain}} P(Q[A / z])$
... does not apply:
$\mathrm{H}_{0}[$ Alice $/ \mathrm{x}]$ and $\mathrm{H}_{0}[\mathrm{Bob} / \mathrm{x}]$ are dependent:

Dependent

$\forall y($ Smoker(Alice) $\vee \quad$ Friend(Alice, y$) \vee \quad$ Jogger(y))
$\forall y(S m o k e r(B o b) ~ \vee \quad F r i e n d(B o b, y) \vee \quad J o g g e r(y))$

Lifted inference sometimes fails.

Are the Lifted Rules Complete?

Dichotomy Theorem for Unions of
Conjunction Queries / Monotone CNF

- If lifted rules succeed, then PTIME query
- If lifted rules fail, then query is \#P-hard

Lifted rules are complete for UCQ!

The Good, Bad, Ugly

- We understand querying very well! ©
- and it is often efficient (a rare property!)
- but often also highly intractable $\operatorname{Ba}^{\circ}$
- Tuple-independence is limiting unless reducing from a more expressive model $\cdot:$
Can reduce from MLNs but then intractable...
- Where do probabilities come from? : : :

An unspecified "statistical model"

Throwing Relational Embedding Models Over the Wall

- Associate vector with
- each relation R
- each entity A, B, ...
- Score S(head, relation, tail)

(based on Euclidian, cosine, ...)

Method	Entity Embedding	Relation Embedding	Triple Score		
TransE (Bordes et al., 2013)	$v_{h}, v_{t} \in \mathbb{R}^{d}$	$v_{R} \in \mathbb{R}^{d}$	$\left\\|v_{h}+v_{R}-v_{t}\right\\|$		
DistMult (Yang et al., 2014)	$v_{h}, v_{t} \in \mathbb{R}^{d}$	$v_{R} \in \mathbb{R}^{d}$	$\left\langle v_{h}, v_{R}, v_{t}\right\rangle$		
Rescal (Nickel et al., 2011)	$v_{h}, v_{t} \in \mathbb{R}^{d}$	$v_{R} \in \mathbb{R}^{d \times d}$	$v_{h}^{T} v_{R} v_{t}$		
ComplEx (Trouillon et al., 2016)	$v_{h}, v_{t} \in \mathbb{C}^{d}$	$v_{R} \in \mathbb{C}^{d}$	$\operatorname{Re}\left(\left\langle v_{h}, v_{R}, \bar{v}_{t}\right\rangle\right)$		

Throwing Relational Embedding Models Over the Wall

Interpret scores as probabilities
High score ~ prob 1 ; Low score ~prob 0

ㅎ	X	y	S
艺	A	B	. 6
ס0	A	C	-. 1
	B	C	. 4

	x	y	P
	A	B	0.9
80	A	C	0.1
	B	C	0.5

The Good, Bad, Ugly

- Where do probabilities come from? We finally know the "statistical model"! © Both capture marginals: a good match
- We still understand querying very well! but it is often highly intractable :
- Tuple-independence is limiting $: *$ Relational embedding models do not attempt to capture dependencies in link prediction

A Second Attempt

- Let's simplify drastically!
- Assume each relation has the form

$$
R(x, y) \Leftrightarrow T_{R} \wedge E(x) \wedge E(y)
$$

- That is, there are latent relations $-T_{*}$ to decide which relations can be true - E to decide which entities participate

Can this do link prediction?

- Predict Coauthor(Alice,Bob)

- Rewrite query using

$$
R(x, y) \Leftrightarrow T_{R} \wedge E(x) \wedge E(y)
$$

- Apply standard lifted inference rules
- $\mathrm{P}($ Coauthor(Alice,Bob) $)=0.3 \cdot 0.2 \cdot 0.5$

The Good, Bad, Ugly

-Where do probabilities come from? We finally know the "statistical model"! ©

- We still understand querying very well! © By rewriting R into E and T_{R}, every UCQ query becomes tractable! $\cdot() \cdot(\cdot) \cdot($
- Tuples sharing entities or relation symbols depend one each other
- The model is not very expressive $: \underset{ }{*}$

A Third Attempt

- Mixture models of the second attempt

$$
R(x, y) \Leftrightarrow T_{R} \wedge E(x) \wedge E(y)
$$

Now, there are latent relations T_{R} and E for each mixture component

- The Good: :
- Still a clear statistical model
- Every UCQ query is still tractable
- Still captures tuple dependencies
- Mixture can approximate any distribution

Can this do link prediction?

- Predict Coauthor(Alice,Bob) in each mixture component
$-P_{1}($ Coauthor(Alice,Bob $\left.)\right)=0.3 \cdot 0.2 \cdot 0.5$
$-P_{2}($ Coauthor $($ Alice,Bob $))=0.9 \cdot 0.1 \cdot 0.6$
- Etc.
- Probability in mixture of d components $P($ Coauthor(Alice,Bob))

$$
=\frac{1}{d} 0.3 \cdot 0.2 \cdot 0.5+\frac{1}{d} 0.9 \cdot 0.1 \cdot 0.6+\cdots
$$

How good is this?

Does it look familiar?

 $P($ Coauthor(Alice,Bob))$$
=\frac{1}{d} 0.3 \cdot 0.2 \cdot 0.5+\frac{1}{d} 0.9 \cdot 0.1 \cdot 0.6+\cdots
$$

Method	Entity Embedding	Relation Embedding	Triple Score	
TransE (Bordes et al., 2013)	$v_{h}, v_{t} \in \mathbb{R}^{d}$	$v_{R} \in \mathbb{R}^{d}$	$\\| v_{h}$	
DistMult (Yang et al., 2014)	$v_{h}, v_{t} \in \mathbb{R}^{d}$	$v_{R} \in \mathbb{R}^{d}$	$\left\langle v_{h}, v_{R}, v_{t}\right\rangle$	
Rescal (Nickel et al., 2011)	$v_{h}, v_{t} \in \mathbb{R}^{d}$	$v_{R} \in \mathbb{R}^{d \times d}$	$T_{h} \bar{n}_{t}$	
ComplEx (Trouillon et al., 2016)	$v_{h}, v_{t} \in \mathbb{C}^{d}$	$v_{R} \in \mathbb{C}^{d}$	$\operatorname{Re}\left(\left\langle v_{h}, v_{R}, \overline{\left.\left.v_{t}\right\rangle\right)}\right.\right.$	

How good is this?

- At link prediction: same as DistMult
- At queries on bio dataset [Hamilton]

Competitive,
while having a consistent underlying distribution Ask Tal at his poster!

Method	AUC	APR
Bilinear	79.2	78.6
DistMult	86.7	87.5
TransE	78.3	81.6
TractOR-pos	75.0	84.5
TractOR	82.8	86.3

How expressive is this?

```
\mp@subsup{Q}{1}{}(t)=R(a,t)
    \mp@subsup{Q}{2}{}(t)= \existsx.R(a,x)
    \mp@subsup{Q}{3}{}(t)= \existsx.R(a,x)\wedgeS(x,t)
    \mp@subsup{Q}{4}{}(t)= \existsx,y.R(a,x)\wedgeS(x,y)\wedgeT(y,t)
    \mp@subsup{Q}{5}{}}(t)=R(a,t)\wedgeS(b,t
    \mp@subsup{Q}{6}{}(t)=
    \mp@subsup{Q}{7}{\prime}}(t)=\existsx.R(a,x)\wedgeS(x,t
        \vee\existsy.R(a,y)\wedgeT(y,t)
    Q & (t) = \existsx.R(a,x)\wedgeS(x,t)\wedgeT(b,t)
    \mp@subsup{Q}{9}{}(t)}=\quad\existsx\cdotR(a,x)\wedgeS(b,x)\wedgeT(x,t
    \mp@subsup{Q}{10}{}}(t)=\exists\mp@subsup{x}{1}{},\mp@subsup{y}{1}{}\cdotR(a,\mp@subsup{x}{1}{})\wedgeS(\mp@subsup{x}{1}{},\mp@subsup{y}{1}{}
        \exists\exists\mp@subsup{x}{2}{},\mp@subsup{y}{2}{}.S(\mp@subsup{x}{2}{},\mp@subsup{y}{2}{})\wedgeT(\mp@subsup{y}{2}{},t)
\mp@subsup{\textrm{Q}}{11}{}(t)=\quad\existsx,y,z\cdotR(a,x)\wedgeS(x,y)\wedgeT(y,z)
```


GQE baseline are graph queries translated to linear algebra by Hamilton et al [2018]

First Conclusions

- We can give probabilistic database semantics to relational embedding models
- Gives more meaningful query results
- By doing some solve some annoyances of the theoretical PDB framework
- Tuple dependence
- Clear connection to learning
- While everything stays tractable
- And the intractable becomes tractable
- Enables much more (train on Q, consistency)

What are probabilistic programs?

$\begin{aligned} & \text { x ~ flip(0.5); } \\ & \text { y ~ flip(0.7); } \end{aligned}$	means "flip a coin, and output true with probability $1 / 2^{\prime \prime}$
$\begin{aligned} & z:=x\| \| y ; \\ & \text { if(z) }\{ \end{aligned}$	Standard programming language constructs
\} observe(z)	means "reject this execution if z is not true"

Why Probabilistic Programming?

- PPLs are proliferating

Venture, Church

ProbLog, PRISM, LPADs, CPLogic, ICL, PHA, etc.

- They have many compelling benefits
- Specify a probability model in a familiar language
- Expressive and concise
- Cleanly separates model from inference

The Challenge of PPL Inference

Most popular inference algorithms are black box

- Treat program as a map from inputs to outputs

(black-box variational, Hamiltonian MC)
- Simplifying assumptions: differentiability, continuity
- Little to no effort to exploit program structure
(automatic differentiation aside)
- Approximate inference ${ }^{*}$

Why Discrete Models?

1. Real programs have inherently discrete structure (e.g. if-statements)
2. Discrete structure is inherent in many domains (graphs, text/topic models, ranking, etc.)
3. Many existing PPLs assume smooth and differentiable densities and do not handle these programs correctly.

Discrete probabilistic programming is the important unsolved open problem!

Prob. Logic Programming vs. PPL

- What is easy for PLP is hard for PPL at large (discrete inference, semantics)
- What is easy for PPL at large is hard for PLP (continues densities, scaling up)
- This community has a lot to contribute.
- What I will present is heavily inspired by the StarAI community's work

Frequency Analyzer for a Caesar cipher in Dice

```
1 fun EncryptChar(key:int, obs:char):Bool {
2 let randomChar = ChooseChar() in
3 let ciphertext = (randomChar + key) % 26 in
4 let _ = observe ciphertext = obs in
true}
6 let k = UniformInt(0, 25) in
7 let _ = EncryptChar(k, 'H') in...
8 let _ = EncryptChar(k, 'D') in k
```


Example Dice Program in Network Verification

(a) Network diagram.

```
fun diamond(s (sool):Bool {
    let route = flip1 0.5 in
    let s}\mp@subsup{s}{2}{}=\mathrm{ if route then s1 else F in
    let s3 = if route then F else s}\mp@subsup{s}{1}{}\mathrm{ in
    let drop = flip 2 0.0001 in
    s
diamond(diamond(diamond(T)))
```

(b) Probabilistic program defining the network.

(c) Summary of diamond.
(d) BDD for the program.

Semantics

- The program state is a map from variables to values, denoted σ
- The goal of our semantics is to associate
-statements in the syntax with
-a probability distribution on states
- Notation: semantic brackets [[s]]

Sampling Semantics

- The simplest way to give a semantics to our language is to run the program infinite times

- The probability distribution of the program is defined as the long run average of how often it ends in a particular state

Semantics of
 x ~ flip(0.5); y ~ flip(0.7);

$$
\begin{gathered}
\begin{array}{c}
x=\text { true } \\
y=\text { true }
\end{array} \\
\omega_{1} \\
0.5 * 0.7=0.35 \\
\begin{array}{l}
x=\text { false } \\
y=\text { false }
\end{array} \\
\omega_{3} \\
0.5 * 0.3=0.15
\end{gathered}
$$

$$
\begin{aligned}
& x=\text { false } \\
& y=\text { true } \\
& \omega_{2}
\end{aligned}
$$

$$
0.5 * 0.7=0.35
$$

$$
\begin{aligned}
& \begin{array}{l}
x=\text { true } \\
y=\text { false }
\end{array} \\
& \omega_{4} \\
& 0.5 * 0.3=0.15
\end{aligned}
$$

Semantics of
 $x \sim$ flip(0.5); y ~ flip(0.7); observe(x || y);

$$
\begin{array}{|l|r|}
\hline x=\text { true } \\
y=\text { true }
\end{array} \quad \text { Semantics: Throw away all } e
$$

$$
\omega_{1}
$$

executions that do not $0.5 * 0.7=0$. satisfy the condition $\mathrm{x}|\mid$
$=$ tais REJECTION SAMPLING SEMANTICS

Rejection Sampling Semantics

- Extremely general: you only need to be able to run the program to implement a rejection-sampling semantics
- This how most Al researchers think about the meaning of their programs (?)
©
- "Procedural": the meaning of the program is whatever it executes to ...not entirely satisfying...
- A sample is a full execution: a global property that makes it harder to think modularly about local meaning of code

Next: the gold standard in programming languages denotational semantics

Denotational Semantics

- Idea: We don't have to run a flip statement to know what its distribution is
- For some input state σ and output state σ^{\prime}, we can directly compute the probability of transitioning from σ to σ^{\prime} upon executing a flip statement:

Run $x \sim$ flip (0.4) on σ

Denotational Semantics of Flip

Idea: Directly define the probability of transitioning upon executing each statement
Call this its denotation, written $\llbracket \mathrm{s} \rrbracket$

Formal Denotational Semantics

$$
\begin{gather*}
\llbracket v \rrbracket \triangleq \delta(v) \tag{1}\\
\llbracket \mathrm{fst}\left(v_{1}, v_{2}\right) \rrbracket \triangleq \delta\left(v_{1}\right) \tag{2}\\
\llbracket \text { snd }\left(v_{1}, v_{2}\right) \rrbracket \triangleq \delta\left(v_{2}\right) \tag{3}\\
\llbracket \text { if } v \text { then } \mathrm{e}_{1} \text { else } \mathrm{e}_{2} \rrbracket \triangleq \begin{cases}\llbracket \mathrm{e}_{1} \rrbracket & \text { if } v=\mathrm{T} \\
\llbracket \mathrm{e}_{2} \rrbracket & \text { if } v=\mathrm{F} \\
0 & \text { otherwise }\end{cases} \tag{4}\\
\llbracket \mathrm{flip} r \rrbracket(v) \triangleq \begin{cases}r & \text { if } v=\mathrm{T} \\
1-r & \text { if } v=\mathrm{F} \\
0 & \text { otherwise }\end{cases} \tag{5}\\
\llbracket \text { observe } v_{1} \rrbracket(v) \triangleq \begin{cases}1 & \text { if } v_{1}=\mathrm{T} \text { and } v=\mathrm{T}, \\
0 & \text { otherwise }\end{cases} \\
\llbracket x(v) \rrbracket \triangleq T(x)(v) \tag{7}
\end{gather*}
$$

The Challenge of PPL Inference

- Probabilistic inference is \#P-hard
- Implies there is likely no universal solution
- In practice inference is often feasible
- Often relies on conditional independence
- Manifests as graph properties
- Why exact?

1. No error propagation

2. Approximations are intractable in theory as well
3. Approximates are known to mislead learners
4. Core of effective approximation techniques
5. Unaffected by low-probability observations

Techniques for exact inference

$\begin{array}{l|c|c|}$\cline { 2 - 3 } \& $\begin{array}{c}\text { Graphical Model } \\
\text { Compilation } \\
\text { (Figaro, Infer.Net) }\end{array} & \begin{array}{c}\text { Symbolic compilation } \\
\text { (Our work) }\end{array} \\
\text { Exploits independence } \\
\text { to decompose inference? }\end{array} \quad$ No \(\left.\begin{array}{c}Path Enumeration

(WebPPL, Psi)\end{array}\right]\)| Yes |
| :---: |

Keeps program structure?

Our Approach: Symbolic Compilation \& WMC

Our Approach: Symbolic Compilation \& WMC

$$
\mathrm{x}:=\mathrm{flip}(0.4) \text {; }
$$

l	$w(l)$
f_{1}	0.4
$\overline{f_{1}}$	0.6

$$
\operatorname{WMC}(\varphi, w)=\sum_{m \vDash \varphi} \prod_{l \in m} w(l)
$$

$$
\operatorname{WMC}\left(\left(x^{\prime} \Leftrightarrow f_{1}\right) \wedge x \wedge x^{\prime}, w\right) ?
$$

- A single model: $\mathrm{m}=x^{\prime} \wedge x \wedge f_{1}$
- $w\left(x^{\prime}\right) * w(x) * w\left(f_{1}\right)=0.4$

Provably Correct Compilation

$$
\begin{align*}
& \frac{\vdash v: \tau}{\Gamma \vdash v: \tau \rightsquigarrow\left(F_{\mathrm{r}}(v), \emptyset\right)} \quad \text { (C-VALuE) } \\
& \frac{\Gamma(x)=\tau}{\Gamma \vdash x: \tau \rightsquigarrow(\mathbf{r} \stackrel{\tau}{\Longleftrightarrow} \mathbf{x}, \emptyset)} \tag{C-FLIP}\\
& \frac{\Gamma(x)=\tau_{1} \times \tau_{2}}{\Gamma \vdash \mathrm{fst} x: \tau_{1} \rightsquigarrow\left(\mathrm{r} \stackrel{\tau_{1}}{\Longleftrightarrow} \mathbf{x}_{l}, \emptyset\right)} \tag{C-Fst}\\
& \text { (C-Ident) } \\
& \frac{\Gamma\left(x_{1}\right)=\tau_{1} \quad \Gamma\left(x_{2}\right)=\tau_{2}}{\Gamma \vdash\left(x_{1}, x_{2}\right): \tau_{1} \times \tau_{2} \rightsquigarrow\left(\mathbf{r}_{l} \stackrel{\tau_{1}}{\Longleftrightarrow} \mathbf{x}_{1} \wedge \mathbf{r}_{r} \stackrel{\tau_{2}}{\Longleftrightarrow} \mathbf{x}_{2}, \emptyset\right)}(\mathrm{C}-\mathrm{TUP}) \\
& \Gamma \vdash \mathrm{e}_{1}: \tau_{1} \rightsquigarrow\left(\varphi_{1}, w_{1}\right) \\
& \frac{\Gamma \cup\left\{x: \tau_{1}\right\} \vdash \mathrm{e}_{2}: \tau_{2} \rightsquigarrow\left(\varphi_{2}, w_{2}\right)}{\Gamma \vdash \operatorname{let} x: \tau_{1}=\mathrm{e}_{1} \text { in } \mathrm{e}_{2}: \tau_{2} \rightsquigarrow} \quad(\mathrm{C}-\mathrm{LET}) \\
& \left(\exists \mathrm{x} \cdot\left(\varphi_{1}\left[\mathrm{r} \stackrel{\tau_{1}}{\longmapsto} \mathrm{x}\right] \wedge \varphi_{2}\right), w_{1} \uplus w_{2}\right)
\end{align*}
$$

fresh f
$\overline{\Gamma \vdash \mathrm{flip} r: \text { Bool } \rightsquigarrow(\mathrm{r} \Leftrightarrow \mathbf{f},(\mathbf{f} \mapsto r, \overline{\mathrm{f}} \mapsto 1-r))}$
$\Gamma \vdash g: \operatorname{Bool} \rightsquigarrow\left(\varphi_{g}, \emptyset\right)$
$\Gamma \vdash \mathrm{e}_{T}: \tau \rightsquigarrow\left(\varphi_{T}, w_{T}\right) \quad \Gamma \vdash \mathrm{e}_{E}: \tau \rightsquigarrow\left(\varphi_{E}, w_{E}\right)$
$\Gamma \vdash$ if g then e_{T} else $\mathrm{e}_{E}: \tau \rightsquigarrow$
$\left(\left(\left(\varphi_{g} \mid F_{\mathrm{r}}(\mathrm{~T})\right) \wedge \varphi_{T}\right) \vee\left(\left(\varphi_{g} \mid F_{\mathrm{r}}(\mathrm{~F})\right) \wedge \varphi_{E}\right), w_{T} \uplus w_{E}\right)$
$\Gamma \vdash g: \operatorname{Bool} \rightsquigarrow(\varphi, \emptyset)$
$\overline{\Gamma \vdash \text { observe } g: \text { Bool } \rightsquigarrow(\varphi \wedge \mathbf{r}, \emptyset)}$
$\Phi\left(x_{1}\right)=\left(\mathbf{x}_{\arg }, \varphi, w\right) \quad \Gamma\left(x_{1}\right)=\tau_{1} \rightarrow \tau_{2}$
$\Gamma\left(x_{2}\right)=\tau_{1} \quad\left(\varphi^{\prime}, w^{\prime}\right)=\operatorname{RefreshFlips}(\varphi, w)$
$\left.\xrightarrow\left[{\Gamma \vdash x_{1}\left(x_{2}\right): \tau_{2} \rightsquigarrow\left(\varphi^{\prime}\left[\mathbf{x}_{\text {arg }} \stackrel{\tau_{1}}{\longmapsto} \mathbf{x}_{2}\right], w^{\prime}\right.}\right)\right]{\text { 为 }}$

Benchmarks

Benchmarks

\#	Benchmark	\# Paths	Default Psi	DP Psi	Dice	BDD Size
1	Grass	$10^{2.41}$	154	64	1.06	15
2	Burglar Alarm	$10^{1.98}$	152	10	1.06	11
3	Coin Bias	$10^{0.60}$	49	26	0.993	
4	Noisy Or	$10^{4.21}$	744	153	1.11	35
5	Evidence1	$10^{0.90}$	48	32	1.05	5
6	Evidence2	$10^{0.90}$			1.07	6
7	Murder Mystery	$10^{1.20}$	70	29	1.03	6
8	Digit Recognition	$10^{237.70}$	$3.6 \cdot 10^{5}$	4539	70.29	7896
9	Cancer [43]	$10^{3.06}$	455	85	1.22	46
10	Alarm [3]	$10^{36.01}$	x	x	1058.265	437658
11	Hailfinder [1]	$10^{76.26}$	x	x	5529.999	213745
12	Survey	$10^{4.14}$			1.184	116
13	Insurance [4]	$10^{40.92}$	x	x	847.514	232111
14	Hepar2 [52]	$10^{69.45}$	x	x	204.067	54860
15	Pigs	$10^{492.86}$			465.597	265379
16	Water	$10^{54.50}$			138.966	68352
17	Munin	$10^{1610.98}$			$2.62 \cdot 10^{5}$	22830303

Second Conclusions

- New state-of-the-art system for discrete probabilistic programs
- Exact inference yet very scalable
- Provably correct
- Modular compilation-based inference
- Try Dice out:
https://github.com/SHoltzen/dice

Third Conclusions

Programming Languages Artificial Intelligence

Final Conclusions

Pure Logic Probabilistic World Models Pure Learning

Bring high-level
representations, general
knowledge, and
efficient high-level reasoning
to probabilistic models

References

> Tal Friedman and Guy Van den Broeck. Probabilistic Databases Meets Relational Embeddings: Symbolic Querying of Vector Spaces (coming soon)
> Steven Holtzen, Todd Millstein and Guy Van den Broeck. Symbolic Exact Inference for Discrete Probabilistic Programs, In Proceedings of the ICML Workshop on Tractable Probabilistic Modeling (TPM), 2019.
> Steven Holtzen, Guy Van den Broeck and Todd Millstein. Sound Abstraction and Decomposition of Probabilistic Programs, In Proceedings of the 35th International Conference on Machine Learning (ICML), 2018.
> Steven Holtzen, Todd Millstein and Guy Van den Broeck. Probabilistic Program Abstractions, In Proceedings of the 33rd Conference on Uncertainty in Artificial Intelligence (UAI), 2017.
> https://github.com/SHoltzen/dice
...with slides stolen from Steven Holtzen and Tal Friedman.

Thanks

