
Querying Advanced
Probabilistic Models:

From Relational Embeddings to
Probabilistic Programs

Guy Van den Broeck

StarAI Workshop @ AAAI, Feb 7, 2020

Computer

Science

The AI Dilemma

Pure Learning Pure Logic

The AI Dilemma

Pure Learning Pure Logic

• Slow thinking: deliberative, cognitive,

model-based, extrapolation

• Amazing achievements until this day

• “Pure logic is brittle”
noise, uncertainty, incomplete knowledge, …

The AI Dilemma

Pure Learning Pure Logic

• Fast thinking: instinctive, perceptive,

model-free, interpolation

• Amazing achievements recently

• “Pure learning is brittle”

fails to incorporate a sensible model of the world

bias, algorithmic fairness, interpretability, explainability, adversarial attacks,

unknown unknowns, calibration, verification, missing features, missing

labels, data efficiency, shift in distribution, general robustness and safety

So all hope is lost?

Probabilistic World Models

The FALSE AI Dilemma

• Joint distribution P(X)

• Wealth of representations:

can be causal, relational, etc.

• Knowledge + data

• Reasoning + learning

Pure Learning Pure Logic Probabilistic World Models

A New Synthesis of

Learning and Reasoning

Tutorial on Probabilistic Circuits

This afternoon: 2pm-6pm

Sutton Center, 2nd floor

Pure Learning Pure Logic Probabilistic World Models

High-Level Probabilistic

Representations

Probabilistic Databases Meets

Relational Embeddings:

Symbolic Querying of Vector Spaces

Modular Exact Inference for

Discrete Probabilistic Programs

1

2

What we’d like to do…

What we’d like to do…

∃x Coauthor(Einstein,x) ∧ Coauthor(Erdos,x)

Einstein is in the Knowledge Graph

Erdős is in the Knowledge Graph

This guy is in the Knowledge Graph

… and he published with both Einstein and Erdos!

Desired Query Answer

 Ernst Straus

 Barack Obama, …

 Justin Bieber, …

1. Fuse uncertain

information from web

 ⇒ Embrace probability!

2. Cannot come from

labeled data

 ⇒ Embrace query eval!

?

Cartoon Motivation

Relational

Embedding

Vectors

Curate

Knowledge

Graph

Query

in a

DBMS

∃x Coauthor(Einstein,x)

 ∧Coauthor(Erdos,x)

Many exceptions in StarAI and PDB communities, but, we need to embed…

• Probabilistic database

• Learned from the web, large text corpora, ontologies,

etc., using statistical machine learning.

C
o

a
u

th
o

r

Probabilistic Databases

x y P

Erdos Renyi 0.6

Einstein Pauli 0.7

Obama Erdos 0.1

S
c
ie

n
ti

s
t x P

Erdos 0.9

Einstein 0.8

Pauli 0.6

[VdB&Suciu’17]

Probabilistic Databases Semantics

[VdB&Suciu’17]

• All possible databases: Ω = *𝜔1, … , 𝜔𝑛+

• Probabilistic database 𝑃 assigns a

probability to each: 𝑃: Ω → ,0,1-

• Probabilities sum to 1: 𝑃 𝜔 = 1𝜔∈Ω

x y

A B

A C

B C

x y

A C

B C

x y

A B

A C

x y

A B
x y

A C

x y

B C
x y

Commercial Break

• Survey book
http://www.nowpublishers.com/article/Details/DBS-052

• IJCAI 2016 tutorial
http://web.cs.ucla.edu/~guyvdb/talks/IJCAI16-tutorial/

http://www.nowpublishers.com/article/Details/DBS-052
http://www.nowpublishers.com/article/Details/DBS-052
http://www.nowpublishers.com/article/Details/DBS-052
http://www.nowpublishers.com/article/Details/DBS-052
http://www.nowpublishers.com/article/Details/DBS-052
http://web.cs.ucla.edu/~guyvdb/talks/IJCAI16-tutorial/
http://web.cs.ucla.edu/~guyvdb/talks/IJCAI16-tutorial/
http://web.cs.ucla.edu/~guyvdb/talks/IJCAI16-tutorial/
http://web.cs.ucla.edu/~guyvdb/talks/IJCAI16-tutorial/
http://web.cs.ucla.edu/~guyvdb/talks/IJCAI16-tutorial/
http://web.cs.ucla.edu/~guyvdb/talks/IJCAI16-tutorial/

How to specify all these numbers?

[VdB&Suciu’17]

• Only specify marginals:

 𝑃 𝐶𝑜𝑎𝑢𝑡ℎ𝑜𝑟 𝐴𝑙𝑖𝑐𝑒, 𝐵𝑜𝑏 = 0.23

• Assume tuple-independence x y P

A B p1

A C p2

B C p3

Coauthor

x y

A B

A C

B C
p1p2p3

(1-p1)p2p3
(1-p1)(1-p2)(1-p3)

x y

A C

B C

x y

A B

A C

x y

A B

B C

x y

A B

x y

A C
x y

B C x y

x y P

A D q1 Y1

A E q2 Y2

B F q3 Y3

B G q4 Y4

B H q5 Y5

x P

A p1 X1

B p2 X2

C p3 X3

P(Q) = 1-(1-q1)*(1-q2) p1*[]

1-(1-q3)*(1-q4)*(1-q5) p2*[]

1- {1- } *

{1- }

Probabilistic Query Evaluation

Q = ∃x∃y Scientist(x) ∧ Coauthor(x,y)

Sc
ie

n
ti

st

C
o

au
th

o
r

Lifted Inference Rules

P(Q1 ∧ Q2) = P(Q1) P(Q2)
P(Q1 ∨ Q2) =1 – (1– P(Q1)) (1–P(Q2))

P(∀z Q) = ΠA ∈Domain P(Q[A/z])
P(∃z Q) = 1 – ΠA ∈Domain (1 – P(Q[A/z]))

P(Q1 ∧ Q2) = P(Q1) + P(Q2) - P(Q1 ∨ Q2)
P(Q1 ∨ Q2) = P(Q1) + P(Q2) - P(Q1 ∧ Q2)

Preprocess Q (omitted),
Then apply rules (some have preconditions)

Decomposable ∧,∨

Decomposable ∃,∀

Inclusion/
exclusion

P(¬Q) = 1 – P(Q) Negation

Example Query Evaluation

Q = ∃x ∃y Scientist(x) ∧ Coauthor(x,y)

P(Q) = 1 - ΠA ∈ Domain (1 - P(Scientist(A) ∧ ∃y Coauthor(A,y))

Decomposable ∃-Rule

Check independence:

 Scientist(A) ∧ ∃y Coauthor(A,y)

 Scientist(B) ∧ ∃y Coauthor(B,y)

 = 1 - (1 - P(Scientist(A) ∧ ∃y Coauthor(A,y))

 x (1 - P(Scientist(B) ∧ ∃y Coauthor(B,y))

 x (1 - P(Scientist(C) ∧ ∃y Coauthor(C,y))

 x (1 - P(Scientist(D) ∧ ∃y Coauthor(D,y))

 x (1 - P(Scientist(E) ∧ ∃y Coauthor(E,y))

 x (1 - P(Scientist(F) ∧ ∃y Coauthor(F,y))

 …

Complexity PTIME

Limitations

H0 = ∀x∀y Smoker(x) ∨ Friend(x,y) ∨ Jogger(y)

The decomposable ∀-rule:

… does not apply:

 H0[Alice/x] and H0[Bob/x] are dependent:

 ∀y (Smoker(Alice) ∨ Friend(Alice,y) ∨ Jogger(y))

 ∀y (Smoker(Bob) ∨ Friend(Bob,y) ∨ Jogger(y))

Dependent

Lifted inference sometimes fails.

P(∀z Q) = ΠA ∈Domain P(Q[A/z])

Are the Lifted Rules Complete?

Dichotomy Theorem for Unions of

Conjunction Queries / Monotone CNF

• If lifted rules succeed, then PTIME query

• If lifted rules fail, then query is #P-hard

Lifted rules are complete for UCQ!

[Dalvi and Suciu;JACM’11]

The Good, Bad, Ugly

• We understand querying very well!

– and it is often efficient (a rare property!)

– but often also highly intractable

• Tuple-independence is limiting unless

reducing from a more expressive model

Can reduce from MLNs but then intractable…

• Where do probabilities come from?

An unspecified “statistical model”

Throwing Relational

Embedding Models

Over the Wall

• Associate vector with

– each relation R

– each entity A, B, …

• Score S(head, relation, tail)

(based on Euclidian, cosine, …)

x y S

A B .6

A C -.1

B C .4

C
o

a
u

th
o

r

Interpret scores as probabilities

High score ~ prob 1 ; Low score ~ prob 0

x y P

A B 0.9

A C 0.1

B C 0.5

x y S

A B .6

A C -.1

B C .4

C
o

a
u

th
o

r

C
o

a
u

th
o

r

Throwing Relational

Embedding Models

Over the Wall

The Good, Bad, Ugly

• Where do probabilities come from?

We finally know the “statistical model”!

Both capture marginals: a good match

• We still understand querying very well!

but it is often highly intractable

• Tuple-independence is limiting

Relational embedding models do not attempt to

capture dependencies in link prediction

A Second Attempt

• Let’s simplify drastically!

• Assume each relation has the form

𝑅 𝑥, 𝑦 ⇔ 𝑇𝑅 ∧ 𝐸(𝑥) ∧ 𝐸(𝑦)

• That is, there are latent relations

– 𝑇∗ to decide which relations can be true

– 𝐸 to decide which entities participate

x y P

A B 0.9

A C 0.1

B C 0.5

C
o

a
u

th
o

r

~ ,

P

0.2

T

x P

A 0.2

B 0.5

C 0.3
E

Can this do link prediction?

• Predict Coauthor(Alice,Bob)

• Rewrite query using

𝑅 𝑥, 𝑦 ⇔ 𝑇𝑅 ∧ 𝐸(𝑥) ∧ 𝐸(𝑦)

• Apply standard lifted inference rules

• P(Coauthor(Alice,Bob)) = 0.3 ⋅ 0.2 ⋅ 0.5

x y P

A B ?

C
o

a
u

th
o

r

~ ,
P

0.3

T

x P

A 0.2

B 0.5

C 0.3

E

The Good, Bad, Ugly

• Where do probabilities come from?

We finally know the “statistical model”!

• We still understand querying very well!

By rewriting 𝑅 into 𝐸 and 𝑇𝑅, every UCQ query

becomes tractable!

• Tuples sharing entities or relation symbols

depend one each other

• The model is not very expressive

A Third Attempt

• Mixture models of the second attempt

𝑅 𝑥, 𝑦 ⇔ 𝑇𝑅 ∧ 𝐸(𝑥) ∧ 𝐸(𝑦)

Now, there are latent relations 𝑇𝑅 and 𝐸 for

each mixture component

• The Good:

– Still a clear statistical model

– Every UCQ query is still tractable

– Still captures tuple dependencies

– Mixture can approximate any distribution

Can this do link prediction?

• Predict Coauthor(Alice,Bob) in each

mixture component

– 𝑃1(Coauthor(Alice,Bob)) = 0.3 ⋅ 0.2 ⋅ 0.5

– 𝑃2(Coauthor(Alice,Bob)) = 0.9 ⋅ 0.1 ⋅ 0.6

– Etc.

• Probability in mixture of d components

 𝑃(Coauthor(Alice,Bob))

=
1

𝑑
0.3 ⋅ 0.2 ⋅ 0.5 +

1

𝑑
0.9 ⋅ 0.1 ⋅ 0.6 + ⋯

How good is this?

Does it look familiar?

 𝑃(Coauthor(Alice,Bob))

=
1

𝑑
0.3 ⋅ 0.2 ⋅ 0.5 +

1

𝑑
0.9 ⋅ 0.1 ⋅ 0.6 + ⋯

How good is this?

• At link prediction: same as DistMult

• At queries on bio dataset [Hamilton]

Competitive,

while having a consistent underlying distribution

Ask Tal at his poster!

How expressive is this?

GQE baseline are graph queries

translated to linear algebra

by Hamilton et al [2018]

First Conclusions

• We can give probabilistic database semantics
to relational embedding models

– Gives more meaningful query results

• By doing some solve some annoyances of
the theoretical PDB framework

– Tuple dependence

– Clear connection to learning

– While everything stays tractable

– And the intractable becomes tractable

• Enables much more (train on Q, consistency)

What are probabilistic programs?

means “flip a coin, and
output true with probability ½”

x ∼ flip(0.5);
y ∼ flip(0.7);
z := x || y;
if(z) {
 …
}
observe(z);

means “reject this execution if
z is not true”

Standard programming
language constructs

Why Probabilistic Programming?

• PPLs are proliferating

• They have many compelling benefits
• Specify a probability model in a familiar language

• Expressive and concise

• Cleanly separates model from inference

Pyro
Venture, Church

Stan

Figaro

ProbLog, PRISM, LPADs, CPLogic, ICL, PHA, etc.

HackPPL

The Challenge of PPL Inference

Most popular inference algorithms are black box

– Treat program as a map from inputs to outputs

 (black-box variational, Hamiltonian MC)

– Simplifying assumptions: differentiability, continuity

– Little to no effort to exploit program structure

 (automatic differentiation aside)

– Approximate inference

Stan
Pyro

Why Discrete Models?

1. Real programs have inherently discrete

structure (e.g. if-statements)

2. Discrete structure is inherent in many domains

 (graphs, text/topic models, ranking, etc.)

3. Many existing PPLs assume smooth and

differentiable densities and do not handle

these programs correctly.

Discrete probabilistic programming is

the important unsolved open problem!

Prob. Logic Programming vs. PPL

• What is easy for PLP is hard for PPL at

large (discrete inference, semantics)

• What is easy for PPL at large is hard for

PLP (continues densities, scaling up)

• This community has a lot to contribute.

• What I will present is heavily inspired by

the StarAI community’s work

Frequency Analyzer

for a Caesar cipher in Dice

Example Dice Program

in Network Verification

Semantics

• The program state is a map from

variables to values, denoted 𝜎

• The goal of our semantics is to

associate

– statements in the syntax with

– a probability distribution on states

• Notation: semantic brackets [[s]]

Sampling Semantics

• The simplest way to give a semantics to our
language is to run the program infinite times

• The probability distribution of the program is
defined as the long run average of how often it
ends in a particular state

Draw samples

𝝈

x=true

x=false

x=true

x=false

x ∼ flip(0.5);

Semantics of

𝜔1 𝜔2

𝜔3 𝜔4

0.5*0.7 = 0.35 0.5*0.7 = 0.35

0.5*0.3 = 0.15 0.5*0.3 = 0.15

x = true
y = true

x = false
y = false

x = false
y = true

x = true
y = false

x ∼ flip(0.5);
y ∼ flip(0.7);

Semantics of

𝜔1 𝜔2

𝜔3 𝜔4

0.5*0.7 = 0.35 0.5*0.7 = 0.35

0.5*0.3 = 0.15 0.5*0.3 = 0.15

x = true
y = true

x = false
y = false

x = false
y = true

x = true
y = false

x ∼ flip(0.5);
y ∼ flip(0.7);
observe(x || y);

Semantics: Throw away all
executions that do not

satisfy the condition x || y.

REJECTION SAMPLING
SEMANTICS

Rejection Sampling Semantics

• Extremely general: you only need to be able to run the

program to implement a rejection-sampling semantics
• This how most AI researchers think about the meaning of

their programs (?)

• “Procedural”: the meaning of the program is whatever it

executes to …not entirely satisfying…
• A sample is a full execution: a global property that makes it

harder to think modularly about local meaning of code

Next: the gold standard in programming languages
denotational semantics

Denotational Semantics

• Idea: We don’t have to run a flip statement to know
what its distribution is

• For some input state 𝜎 and output state 𝜎′, we can
directly compute the probability of transitioning
from 𝜎 to 𝜎′ upon executing a flip statement:

𝝈

x=true
Run x ~ flip(0.4) on 𝜎

𝝈′

x=true
Pr = 0.4

𝝈′

x=false
Pr = 0.6

We can avoid having to
think about sampling!

Denotational Semantics of Flip

Idea: Directly define the probability of transitioning
upon executing each statement

Call this its denotation, written

Semantic
bracket:

associate
semantics

with syntax

Output
state

Input State

Assign x to false in the
state 𝜎

Formal Denotational Semantics

The Challenge of PPL Inference

• Probabilistic inference is #P-hard

– Implies there is likely no universal solution

• In practice inference is often feasible

– Often relies on conditional independence

– Manifests as graph properties

• Why exact?
1. No error propagation

2. Approximations are intractable in theory as well

3. Approximates are known to mislead learners

4. Core of effective approximation techniques

5. Unaffected by low-probability observations

Techniques for exact inference

Graphical Model

Compilation

(Figaro, Infer.Net)

Symbolic compilation

(Our work)

Path Enumeration

(WebPPL, Psi)

Keeps program structure?

Exploits independence

to decompose inference?

Yes

Yes No

No

Our Approach:
Symbolic Compilation & WMC

 Probabilistic
Program

Symbolic
Compilation

Weighted
Boolean
Formula

WMC
Query
Result

Binary
Decision
Diagram

Exploits
Independence

Retains Program
Structure

Our Approach:
Symbolic Compilation & WMC

Probabilistic
Program

Symbolic
Compilation

Weighted
Boolean
Formula

WMC
Query
Result

x := flip(0.4);

𝑥′ ⇔ 𝑓1

𝒍 𝒘 𝒍

𝑓1 0.4

𝑓1 0.6

WMC 𝜑,𝑤 = 𝑤 𝑙 .

𝑙∈𝑚𝑚⊨𝜑

WMC 𝑥′ ⇔ 𝑓1 ∧ 𝑥 ∧ 𝑥
′, 𝑤 ?

• A single model: m = 𝑥′ ∧ 𝑥 ∧ 𝑓1

• 𝑤 𝑥′ ∗ 𝑤 𝑥 ∗ 𝑤 𝑓1 = 0.4

Provably Correct Compilation

Benchmarks

Benchmarks

Second Conclusions

• New state-of-the-art system for discrete

probabilistic programs

• Exact inference yet very scalable

• Provably correct

• Modular compilation-based inference

• Try Dice out:

https://github.com/SHoltzen/dice

https://github.com/SHoltzen/dice

Third Conclusions

Programming Languages Artificial Intelligence

Probabilistic

Predicate Abstraction

Knowledge Compilation

Fun with

Discrete Structure

Final Conclusions

Pure Learning Pure Logic Probabilistic World Models

Bring high-level

representations, general

knowledge, and

efficient high-level reasoning

to probabilistic models

References

…with slides stolen from Steven Holtzen and Tal Friedman.

 Tal Friedman and Guy Van den Broeck. Probabilistic Databases Meets

Relational Embeddings: Symbolic Querying of Vector Spaces

(coming soon)

 Steven Holtzen, Todd Millstein and Guy Van den Broeck. Symbolic

Exact Inference for Discrete Probabilistic Programs, In Proceedings of the

ICML Workshop on Tractable Probabilistic Modeling (TPM), 2019.

 Steven Holtzen, Guy Van den Broeck and Todd Millstein. Sound

Abstraction and Decomposition of Probabilistic Programs, In Proceedings

of the 35th International Conference on Machine Learning (ICML), 2018.

 Steven Holtzen, Todd Millstein and Guy Van den Broeck. Probabilistic

Program Abstractions, In Proceedings of the 33rd Conference on

Uncertainty in Artificial Intelligence (UAI), 2017.

 https://github.com/SHoltzen/dice

http://starai.cs.ucla.edu/papers/HoltzenTPM19.pdf
http://starai.cs.ucla.edu/papers/HoltzenTPM19.pdf
http://starai.cs.ucla.edu/papers/HoltzenICML18.pdf
http://starai.cs.ucla.edu/papers/HoltzenICML18.pdf
http://starai.cs.ucla.edu/papers/HoltzenUAI17.pdf
http://starai.cs.ucla.edu/papers/HoltzenUAI17.pdf
https://github.com/SHoltzen/dice

Thanks

