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The AI Dilemma 

Pure Learning Pure Logic 



The AI Dilemma 

Pure Learning Pure Logic 

• Slow thinking: deliberative, cognitive,  

model-based, extrapolation 

• Amazing achievements until this day 
  

• “Pure logic is brittle” 
noise, uncertainty, incomplete knowledge, … 



The AI Dilemma 

Pure Learning Pure Logic 

• Fast thinking: instinctive, perceptive,  

model-free, interpolation 

• Amazing achievements recently 
  

• “Pure learning is brittle” 

  
 

fails to incorporate a sensible model of the world 

bias, algorithmic fairness, interpretability, explainability, adversarial attacks, 

unknown unknowns, calibration, verification, missing features, missing 

labels, data efficiency, shift in distribution, general robustness and safety 



So all hope is lost? 

Probabilistic World Models 

The FALSE AI Dilemma 

• Joint distribution P(X) 

• Wealth of representations: 

can be causal, relational, etc. 

• Knowledge + data 

• Reasoning + learning 



Pure Learning Pure Logic Probabilistic World Models 

A New Synthesis of  

Learning and Reasoning 

Tutorial on Probabilistic Circuits 

This afternoon: 2pm-6pm 

Sutton Center, 2nd floor  



Pure Learning Pure Logic Probabilistic World Models 

High-Level Probabilistic 

Representations 

Probabilistic Databases Meets  

Relational Embeddings: 

Symbolic Querying of Vector Spaces 

Modular Exact Inference for  

Discrete Probabilistic Programs 
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What we’d like to do… 



What we’d like to do… 

∃x Coauthor(Einstein,x)  ∧ Coauthor(Erdos,x) 



Einstein is in the Knowledge Graph 



Erdős is in the Knowledge Graph 



This guy is in the Knowledge Graph 

… and he published with both Einstein and Erdos! 



Desired Query Answer 

 

 Ernst Straus 

 

 Barack Obama, … 

 

 Justin Bieber, … 

1. Fuse uncertain 

information from web 
 

   ⇒ Embrace probability! 
  

2. Cannot come from 

labeled data 
 

   ⇒ Embrace query eval! 

 



? 

Cartoon Motivation 

 

Relational 

Embedding 

Vectors 

Curate 

Knowledge 

Graph 

Query  

in a  

DBMS 

∃x Coauthor(Einstein,x)   

     ∧Coauthor(Erdos,x) 

Many exceptions in StarAI and PDB communities, but, we need to embed… 



• Probabilistic database 

 

 

 

 

• Learned from the web, large text corpora, ontologies, 

etc., using statistical machine learning. 
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Probabilistic Databases 

x y P 

Erdos Renyi 0.6 

Einstein Pauli 0.7 

Obama Erdos 0.1 

S
c
ie

n
ti

s
t x P 

Erdos 0.9 

Einstein 0.8 

Pauli 0.6 

[VdB&Suciu’17] 



Probabilistic Databases Semantics 

[VdB&Suciu’17] 

• All possible databases: Ω = *𝜔1, … , 𝜔𝑛+ 

 

 

 

 

• Probabilistic database 𝑃 assigns a 

probability to each: 𝑃: Ω → ,0,1- 

• Probabilities sum to 1:  𝑃 𝜔 = 1𝜔∈Ω  
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Commercial Break 

• Survey book 
http://www.nowpublishers.com/article/Details/DBS-052 

 

• IJCAI 2016 tutorial 
http://web.cs.ucla.edu/~guyvdb/talks/IJCAI16-tutorial/ 

http://www.nowpublishers.com/article/Details/DBS-052
http://www.nowpublishers.com/article/Details/DBS-052
http://www.nowpublishers.com/article/Details/DBS-052
http://www.nowpublishers.com/article/Details/DBS-052
http://www.nowpublishers.com/article/Details/DBS-052
http://web.cs.ucla.edu/~guyvdb/talks/IJCAI16-tutorial/
http://web.cs.ucla.edu/~guyvdb/talks/IJCAI16-tutorial/
http://web.cs.ucla.edu/~guyvdb/talks/IJCAI16-tutorial/
http://web.cs.ucla.edu/~guyvdb/talks/IJCAI16-tutorial/
http://web.cs.ucla.edu/~guyvdb/talks/IJCAI16-tutorial/
http://web.cs.ucla.edu/~guyvdb/talks/IJCAI16-tutorial/


How to specify all these numbers? 

[VdB&Suciu’17] 

• Only specify marginals: 

 𝑃 𝐶𝑜𝑎𝑢𝑡ℎ𝑜𝑟 𝐴𝑙𝑖𝑐𝑒, 𝐵𝑜𝑏 =  0.23 

• Assume tuple-independence x y P 

A B p1 

A C p2 

B C p3 

Coauthor 

x y 

A B 

A C 

B C 
p1p2p3 

(1-p1)p2p3 
(1-p1)(1-p2)(1-p3) 

x y 

A C 

B C 

x y 

A B 

A C 

x y 

A B 

B C 

x y 

A B 

x y 

A C 
x y 

B C x y 



x y P 

A D q1 Y1 

A E q2 Y2 

B F q3 Y3 

B G q4 Y4 

B H q5 Y5 

x P 

A p1 X1 

B p2 X2 

C p3 X3 

P(Q) =  1-(1-q1)*(1-q2) p1*[                           ] 

1-(1-q3)*(1-q4)*(1-q5) p2*[                                     ] 

1- {1-                                    } * 

{1-                                               } 

Probabilistic Query Evaluation 

Q = ∃x∃y Scientist(x) ∧ Coauthor(x,y) 

Sc
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n
ti

st
 

C
o

au
th

o
r 



Lifted Inference Rules 

P(Q1 ∧ Q2) = P(Q1) P(Q2) 
P(Q1 ∨ Q2) =1 – (1– P(Q1)) (1–P(Q2)) 

P(∀z Q) = ΠA ∈Domain  P(Q[A/z]) 
P(∃z Q) = 1 – ΠA ∈Domain (1 – P(Q[A/z])) 

P(Q1 ∧ Q2) = P(Q1) + P(Q2) - P(Q1 ∨ Q2) 
P(Q1 ∨ Q2) = P(Q1) + P(Q2) - P(Q1 ∧ Q2) 

Preprocess Q (omitted),  
Then apply rules (some have preconditions) 

Decomposable ∧,∨ 

Decomposable ∃,∀ 

Inclusion/ 
exclusion 

P(¬Q) = 1 – P(Q) Negation 



Example Query Evaluation 

Q = ∃x ∃y Scientist(x) ∧ Coauthor(x,y) 

P(Q) =  1 - ΠA ∈ Domain (1 - P(Scientist(A) ∧ ∃y Coauthor(A,y)) 
  

Decomposable ∃-Rule 

Check independence: 

 Scientist(A) ∧ ∃y Coauthor(A,y) 

 Scientist(B) ∧ ∃y Coauthor(B,y) 
 

   = 1 - (1 - P(Scientist(A) ∧ ∃y Coauthor(A,y)) 

  x (1 - P(Scientist(B) ∧ ∃y Coauthor(B,y)) 

  x (1 - P(Scientist(C) ∧ ∃y Coauthor(C,y)) 

  x (1 - P(Scientist(D) ∧ ∃y Coauthor(D,y)) 

  x (1 - P(Scientist(E) ∧ ∃y Coauthor(E,y)) 

  x (1 - P(Scientist(F) ∧ ∃y Coauthor(F,y))  

      … 

Complexity PTIME 



Limitations 

H0 = ∀x∀y Smoker(x) ∨ Friend(x,y) ∨ Jogger(y) 

The decomposable ∀-rule: 

… does not apply:  
 

 H0[Alice/x] and H0[Bob/x] are dependent: 

 

  ∀y (Smoker(Alice) ∨ Friend(Alice,y) ∨ Jogger(y)) 

 

  ∀y (Smoker(Bob)  ∨ Friend(Bob,y)  ∨ Jogger(y)) 

Dependent 

Lifted inference sometimes fails. 

P(∀z Q) = ΠA ∈Domain  P(Q[A/z]) 



Are the Lifted Rules Complete? 

  

Dichotomy Theorem for Unions of 

Conjunction Queries / Monotone CNF 

• If lifted rules succeed, then PTIME query 

• If lifted rules fail, then query is #P-hard 

Lifted rules are complete for UCQ! 

[Dalvi and Suciu;JACM’11] 



The Good, Bad, Ugly 

• We understand querying very well!  

– and it is often efficient (a rare property!) 

– but often also highly intractable  

• Tuple-independence is limiting unless 

reducing from a more expressive model  

Can reduce from MLNs but then intractable… 

• Where do probabilities come from?   

An unspecified “statistical model” 



Throwing Relational  

Embedding Models 

Over the Wall 

• Associate vector with  

– each relation R 

– each entity A, B, … 

• Score S(head, relation, tail) 

(based on Euclidian, cosine, …) 

 

 

 

 

x y S 

A B .6 

A C -.1 

B C .4 

C
o
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u
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Interpret scores as probabilities 

High score ~ prob 1 ; Low score  ~ prob 0 

 

 

 

 

 

 

x y P 

A B 0.9 

A C 0.1 

B C 0.5 

x y S 

A B .6 

A C -.1 

B C .4 

C
o

a
u

th
o

r 

C
o

a
u

th
o

r 

Throwing Relational  

Embedding Models 

Over the Wall 



The Good, Bad, Ugly 

• Where do probabilities come from? 

We finally know the “statistical model”!  

Both capture marginals: a good match 

• We still understand querying very well!  

but it is often highly intractable  

• Tuple-independence is limiting   

Relational embedding models do not attempt to 

capture dependencies in link prediction 



A Second Attempt 

• Let’s simplify drastically! 

• Assume each relation has the form 

𝑅 𝑥, 𝑦 ⇔ 𝑇𝑅 ∧ 𝐸(𝑥) ∧ 𝐸(𝑦) 

• That is, there are latent relations 

– 𝑇∗ to decide which relations can be true 

– 𝐸 to decide which entities participate 

x y P 

A B 0.9 

A C 0.1 

B C 0.5 

C
o

a
u

th
o

r 

~                , 

P 

0.2 

T
 

x P 

A 0.2 

B 0.5 

C 0.3 
E

 



Can this do link prediction? 

• Predict Coauthor(Alice,Bob) 

 

 

 

 

• Rewrite query using  

𝑅 𝑥, 𝑦 ⇔ 𝑇𝑅 ∧ 𝐸(𝑥) ∧ 𝐸(𝑦) 

• Apply standard lifted inference rules 

• P(Coauthor(Alice,Bob)) =  0.3 ⋅ 0.2 ⋅ 0.5 

x y P 

A B ? 

C
o

a
u

th
o

r 

~                , 
P 

0.3 

T
 

x P 

A 0.2 

B 0.5 

C 0.3 

E
 



The Good, Bad, Ugly 

• Where do probabilities come from? 

We finally know the “statistical model”!  

• We still understand querying very well!  

By rewriting 𝑅 into 𝐸 and 𝑇𝑅, every UCQ query 

becomes tractable!      

• Tuples sharing entities or relation symbols 

depend one each other 

• The model is not very expressive  



A Third Attempt 

• Mixture models of the second attempt 

𝑅 𝑥, 𝑦 ⇔ 𝑇𝑅 ∧ 𝐸(𝑥) ∧ 𝐸(𝑦) 

Now, there are latent relations 𝑇𝑅 and 𝐸 for 

each mixture component 

• The Good:  

– Still a clear statistical model 

– Every UCQ query is still tractable 

– Still captures tuple dependencies 

– Mixture can approximate any distribution 

 



Can this do link prediction? 

• Predict Coauthor(Alice,Bob) in each 

mixture component 

– 𝑃1(Coauthor(Alice,Bob)) =  0.3 ⋅ 0.2 ⋅ 0.5 

– 𝑃2(Coauthor(Alice,Bob)) =  0.9 ⋅ 0.1 ⋅ 0.6 

– Etc. 

• Probability in mixture of d components 

 𝑃(Coauthor(Alice,Bob))  

=
1

𝑑
0.3 ⋅ 0.2 ⋅ 0.5 +

1

𝑑
0.9 ⋅ 0.1 ⋅ 0.6 + ⋯ 

 



How good is this? 

Does it look familiar? 

 𝑃(Coauthor(Alice,Bob))  

=
1

𝑑
0.3 ⋅ 0.2 ⋅ 0.5 +

1

𝑑
0.9 ⋅ 0.1 ⋅ 0.6 + ⋯ 



How good is this? 

• At link prediction: same as DistMult 

• At queries on bio dataset [Hamilton] 

Competitive,  

while having a consistent underlying distribution 

Ask Tal at his poster! 



How expressive is this? 

GQE baseline are graph queries  

translated to linear algebra  

by Hamilton et al [2018] 



First Conclusions 

• We can give probabilistic database semantics 
to relational embedding models 

– Gives more meaningful query results 

• By doing some solve some annoyances of 
the theoretical PDB framework 

– Tuple dependence 

– Clear connection to learning 

– While everything stays tractable 

– And the intractable becomes tractable 

• Enables much more (train on Q, consistency)  



What are probabilistic programs? 

means “flip a coin, and  
output true with probability ½” 

x ∼ flip(0.5); 
y ∼ flip(0.7); 
z := x || y; 
if(z) {  
 … 
} 
observe(z); 

means “reject this execution if 
z is not true” 

Standard programming 
language constructs  



Why Probabilistic Programming? 

• PPLs are  proliferating 

 

 

 

 

• They have many compelling benefits 
• Specify a probability model in a familiar language 

• Expressive and concise 

• Cleanly separates model from inference 

Pyro 
Venture, Church 

Stan 

Figaro 

ProbLog, PRISM, LPADs, CPLogic, ICL, PHA, etc. 

HackPPL 



The Challenge of PPL Inference 

Most popular inference algorithms are black box 

– Treat program as a map from inputs to outputs 

 

 

 

     (black-box variational, Hamiltonian MC) 

– Simplifying assumptions: differentiability, continuity 

– Little to no effort to exploit program structure   

            (automatic differentiation aside) 

– Approximate inference  

Stan 
Pyro 



Why Discrete Models? 

1. Real programs have inherently discrete 

structure (e.g. if-statements) 

 

2. Discrete structure is inherent in many domains 

 (graphs, text/topic models, ranking, etc.) 

 

3. Many existing PPLs assume smooth and 

differentiable densities and do not handle 

these programs correctly. 
  

Discrete probabilistic programming is  

the important unsolved open problem! 

 



Prob. Logic Programming vs. PPL 

• What is easy for PLP is hard for PPL at 

large (discrete inference, semantics) 

• What is easy for PPL at large is hard for 

PLP (continues densities, scaling up) 

 

• This community has a lot to contribute. 

• What I will present is heavily inspired by 

the StarAI community’s work 

 

 



Frequency Analyzer  

for a Caesar cipher in Dice 



Example Dice Program  

in Network Verification 



Semantics 

• The program state is a map from 

variables to values, denoted 𝜎 

• The goal of our semantics is to 

associate 

– statements in the syntax with  

– a probability distribution on states 

• Notation: semantic brackets [[s]] 



Sampling Semantics 

• The simplest way to give a semantics to our 
language is to run the program infinite times 

 

 

 

 

 

• The probability distribution of the program is 
defined as the long run average of how often it 
ends in a particular state 

Draw samples 

𝝈 

x=true 

x=false 

x=true 

x=false 

x ∼ flip(0.5); 



Semantics of 

𝜔1 𝜔2 

𝜔3 𝜔4 

0.5*0.7 = 0.35 0.5*0.7 = 0.35 

0.5*0.3 = 0.15 0.5*0.3 = 0.15 

x = true 
y = true 

x = false 
y = false 

x = false 
y = true 

x = true 
y = false 

x ∼ flip(0.5); 
y ∼ flip(0.7); 



Semantics of 

𝜔1 𝜔2 

𝜔3 𝜔4 

0.5*0.7 = 0.35 0.5*0.7 = 0.35 

0.5*0.3 = 0.15 0.5*0.3 = 0.15 

x = true 
y = true 

x = false 
y = false 

x = false 
y = true 

x = true 
y = false 

x ∼ flip(0.5); 
y ∼ flip(0.7); 
observe(x || y); 

Semantics: Throw away all 
executions that do not 

satisfy the condition x || y. 
 

REJECTION SAMPLING 
SEMANTICS 



Rejection Sampling Semantics 

 
• Extremely general: you only need to be able to run the 

program to implement a rejection-sampling semantics 
• This how most AI researchers think about the meaning of 

their programs (?) 

 
• “Procedural”: the meaning of the program is whatever it 

executes to …not entirely satisfying… 
• A sample is a full execution: a global property that makes it 

harder to think modularly about local meaning of code 
 

 
 

Next: the gold standard in programming languages  
denotational semantics 



Denotational Semantics 

• Idea: We don’t have to run a flip statement to know 
what its distribution is 

• For some input state 𝜎 and output state 𝜎′, we can 
directly compute the probability of transitioning 
from 𝜎 to 𝜎′ upon executing a flip statement: 

 
 
 

𝝈 

x=true 
Run x ~ flip(0.4) on 𝜎 

𝝈′ 

x=true 
Pr = 0.4 

𝝈′ 

x=false 
Pr = 0.6 

We can avoid having to  
think about sampling! 



Denotational Semantics of Flip 

Idea: Directly define the probability of transitioning 
upon executing each statement 

Call this its denotation, written 

Semantic 
bracket: 

associate 
semantics 

with syntax 

Output 
state 

Input State 

Assign x to false in the 
state 𝜎 



Formal Denotational Semantics 



The Challenge of PPL Inference 

• Probabilistic inference is #P-hard 

– Implies there is likely no universal solution 

• In practice inference is often feasible 

– Often relies on conditional independence 

– Manifests as graph properties 

• Why exact? 
1. No error propagation 

2. Approximations are intractable in theory as well 

3. Approximates are known to mislead learners 

4. Core of effective approximation techniques 

5. Unaffected by low-probability observations 

 



Techniques for exact inference 

 

Graphical Model 

Compilation  

(Figaro, Infer.Net) 

 

 

Symbolic compilation 

(Our work) 

 

 

 

Path Enumeration 

(WebPPL, Psi) 

 

Keeps program structure? 

Exploits independence 

to decompose inference? 

Yes 

Yes No 

No 



Our Approach: 
Symbolic Compilation & WMC  

 

 Probabilistic 
Program 

Symbolic 
Compilation 

Weighted 
Boolean 
Formula 

WMC 
Query 
Result 

Binary 
Decision 
Diagram 

Exploits 
Independence 

Retains Program 
Structure 



Our Approach: 
Symbolic Compilation & WMC 

 

 

 

Probabilistic 
Program 

Symbolic 
Compilation 

Weighted 
Boolean 
Formula 

WMC 
Query 
Result 

x := flip(0.4); 

𝑥′ ⇔ 𝑓1  

𝒍 𝒘 𝒍  

𝑓1 0.4 

𝑓1  0.6 

WMC 𝜑,𝑤 =   𝑤 𝑙 .

𝑙∈𝑚𝑚⊨𝜑

 

WMC 𝑥′ ⇔ 𝑓1 ∧ 𝑥 ∧ 𝑥
′, 𝑤 ? 

• A single model: m = 𝑥′ ∧ 𝑥 ∧ 𝑓1 
 

• 𝑤 𝑥′ ∗ 𝑤 𝑥 ∗ 𝑤 𝑓1 = 0.4 



Provably Correct Compilation 



Benchmarks 



Benchmarks 



Second Conclusions 

• New state-of-the-art system for discrete 

probabilistic programs 

• Exact inference yet very scalable 

• Provably correct 

• Modular compilation-based inference 

• Try Dice out: 

https://github.com/SHoltzen/dice 

 

https://github.com/SHoltzen/dice


Third Conclusions 

Programming Languages Artificial Intelligence 

Probabilistic  

Predicate Abstraction 

Knowledge Compilation 

Fun  with 

Discrete Structure 



Final Conclusions 

Pure Learning Pure Logic Probabilistic World Models 

Bring high-level 

representations, general 

knowledge, and 

efficient high-level reasoning 

to probabilistic models 
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