Tractable Learning in Structured Probability Spaces

Guy Van den Broeck

UCLA

SymInfOpt
Feb 5, 2017

References

Probabilistic Sentential Decision Diagrams
Doga Kisa, Guy Van den Broeck, Arthur Choi and Adnan DarwicheKR, 2014
Learning with Massive Logical Constraints
Doga Kisa, Guy Van den Broeck, Arthur Choi and Adnan DarwicheICML 2014 workshop
Tractable Learning for Structured Probability Spaces
Arthur Choi, Guy Van den Broeck and Adnan DarwicheIJCAI, 2015
Tractable Learning for Complex Probability QueriesJessa Bekker, Jesse Davis, Arthur Choi, Adnan Darwiche, Guy Van den Broeck.NIPS, 2015
Structured Features in Naive Bayes ClassifiersArthur Choi, Nazgol Tavabi and Adnan Darwiche
AAAI, 2016
Tractable Operations on Arithmetic CircuitsJason Shen, Arthur Choi and Adnan DarwicheNIPS, 2016

Structured probability spaces?

Running Example

Courses:

- Logic (L)
- Knowledge Representation (K)
- Probability (P)
- Artificial Intelligence (A)

Data

L	K	P	A	Students
0	0	1	0	6
0	0	1	1	54
0	1	1	1	10
1	0	0	0	5
1	0	1	0	1
1	0	1	1	0
1	1	0	0	17
1	1	1	0	4
1	1	1	1	3

Running Example

Courses:

- Logic (L)
- Knowledge Representation (K)
- Probability (P)
- Artificial Intelligence (A)

Constraints

- Must take at least one of Probability or Logic.
- Probability is a prerequisite for AI.
- The prerequisites for KR is either AI or Logic.

Data

L	K	P	A	Students
0	0	1	0	6
0	0	1	1	54
0	1	1	1	10
1	0	0	0	5
1	0	1	0	1
1	0	1	1	0
1	1	0	0	17
1	1	1	0	4
1	1	1	1	3

Probability Space

unstructured

L	K	P	A
0	0	0	0
0	0	0	1
0	0	1	0
0	0	1	1
0	1	0	0
0	1	0	1
0	1	1	0
0	1	1	1
1	0	0	0
1	0	0	1
1	0	1	0
1	0	1	1
1	1	0	0
1	1	0	1
1	1	1	0
1	1	1	1

Structured Probability Space

unstructured

L	K	P	A
0	0	0	0
0	0	0	1
0	0	1	0
0	0	1	1
0	1	0	0
0	1	0	1
0	1	1	0
0	1	1	1
1	0	0	0
1	0	0	1
1	0	1	0
1	0	1	1
1	1	0	0
1	1	0	1
1	1	1	0
1	1	1	1

structured

L	K	P	A
0	0	0	0
0	0	0	1
0	0	1	0
0	0	1	1
0	1	0	0
0	1	0	1
0	1	1	0
0	1	1	1
1	0	0	0
1	0	0	1
1	0	1	0
1	0	1	1
1	1	0	0
1	1	0	1
1	1	1	0
1	1	1	1

Learning with Constraints

Data

Constraints

Learn

Statistical Model
 (Distribution)

(Background Knowledge)
(Physics)

Learning with Constraints

Data

Constraints
(Background Knowledge)
(Physics)

Learn a statistical model that assigns zero probability
to instantiations that violate the constraints.

Example: Video

[Lu, W. L., Ting, J. A., Little, J. J., \& Murphy, K. P. (2013). Learning to track and identify players from broadcast sports videos.]

Example: Video

We also connect all pairs of identity nodes $y_{t, i}$ and $y_{t, j}$ if they appear in the same time t. We then introduce an edge potential that enforces mutual exclusion:

$$
\psi_{\text {mutex }}\left(y_{t, i}, y_{t, j}\right)= \begin{cases}1 & \text { if } y_{t, i} \neq y_{t, j} \tag{5}\\ 0 & \text { otherwise }\end{cases}
$$

This potential specifies the constraint that a player can be appear only once in a frame. For example, if the i-th detection $y_{t, i}$ has been assign to Bryant, $y_{t, j}$ cannot have the same identity because Bryant is impossible to appear twice in a frame.
[Lu, W. L., Ting, J. A., Little, J. J., \& Murphy, K. P. (2013). Learning to track and identify players from broadcast sports videos.]

Example: Language

- Non-local dependencies:

At least one verb in each sentence

Example: Language

- Non-local dependencies:

At least one verb in each sentence

- Sentence compression

If a modifier is kept, its subject is also kept

Example: Language

- Non-local dependencies: At least one verb in each sentence
- Sentence compression If a modifier is kept, its subject is also kept
- Information extraction

Citations		
Start	The citation must start with author or editor.	
AppearsOnce	Each field must be a consecutive list of words, and can appear at most once in a citation.	
Punctuation	State transitions must occur on punctuation marks.	
BookJournal	The words proc, journal, proceed- ings, ACM are JOURNAL or BOOKTITLE.	
\ldots	The words tech, technical are TECH_REPORT.	
TechReport		
Title	Quotations can appear only in titles. Location The words CA, Australia, NY are LOCATION.	

[Chang, M., Ratinov, L., \& Roth, D. (2008). Constraints as prior knowledge],..., [Chang, M. W., Ratinov, L., \& Roth, D. (2012). Structured learning with constrained conditional models.], [https://en.wikipedia.org/wiki/Constrained_conditional_model]

Example: Language

- Non-local dependencies: At least one verb in each sentence
- Sentence compression If a modifier is kept, its subject is also kept
- Information extraction
- Semantic role labeling
- ... and many more!

Citations	
Start	The citation must start with author or editor.
AppearsOnce	Each field must be a consecutive list of words, and can appear at most once in a citation.
Punctuation	State transitions must occur on punctuation marks.
BookJournal	The words proc, journal, proceedings, $A C M$ are JOURNAL or BOOKTITLE.
\ldots	\ldots
TechReport	The words tech, technical are TECH_REPORT.
Title	Quotations can appear only in titles.
Location	The words CA, Australia, $N Y$ are LOCATION.

[Chang, M., Ratinov, L., \& Roth, D. (2008). Constraints as prior knowledge],..., [Chang, M. W., Ratinov, L., \& Roth, D. (2012). Structured learning with constrained conditional models.], [https://en.wikipedia.org/wiki/Constrained_conditional_model]

\&uery Mode - [C:Docum

adaptkind

sensor

- SensorCurrent_w0
- readCurrentLo
readCurrentHi
-- SensorTouch_c0
-...readOpen
....readClosed
G-․Sensorvoltage_w0
-...readVoltageLo
readVoltageHi
command
-.Command_c0
cmdOpen
......CodClose
health
\pm Health_b0
\pm Health_c 0
\pm Health_lo
+ SensorGurrentHealth_*
+ + SensorTouchHealth_c 0
+ SensorVoltageHealth_v
current
© Current_b0
+ Current_co
\dagger Current_10
Đ-Gurrent_w0
aux
\dagger OpenOrClosed co
\pm OpenOrClosed_w0
+- Operational_bo
+ Operational_10
Đ-ToBattery_bo
†- ToBattery_c0
\dagger ToBattery_lo
+ ToBattery_w

Bayesian network synthesized from specs of power system (NASA Ames): Has many constraints ($0 / 1$ parameters) due to domain "physics"

Example: Deep Learning

[Graves, A., Wayne, G., Reynolds, M., Harley, T., Danihelka, I., Grabska-Barwińska, A., et al.. (2016). Hybrid computing using a neural network with dynamic external memory. Nature, 538(7626), 471-476.]

Example: Deep Learning

Example: Deep Learning

optimal planner recalculating a shortest path to the end node. To ensure that the network always moved to a valid node, the output distribution was renormalized over the set of possible triples outgoing from the current node. The performance

Example: Deep Learning

optimal planner recalculating a shortest path to the end node. To ensure that the network always moved to a valid node, the output distribution was renormalized over the set of possible triples outgoing from the current node. The performance
it also received input triples during the answer phase, indicating the actions chosen on the previous time-step. This makes the problem a 'structured prediction'

What are people doing now?

- Ignore constraints
- Handcraft into models
- Use specialized distributions
- Find non-structured encoding

- Try to learn constraints
- Hack your way around

What are people doing now?

- Ignore constraints
- Handcraft into models
- Use specialized distributions
- Find non-structured encoding
- Try to learn constraints
- Hack your way around

Accuracy?
Specialized skill ?
Intractable inference?
Intractable learning?
Waste parameters?
Risk predicting out of space ?
you are on your own :

Structured Probability Spaces

- Everywhere in ML!
- Configuration problems, inventory, video, text, deep learning
- Planning and diagnosis (physics)
- Causal models: cooking scenarios (interpreting videos)
- Combinatorial objects: parse trees, rankings, directed acyclic graphs, trees, simple paths, game traces, etc.

Structured Probability Spaces

- Everywhere in ML!
- Configuration problems, inventory, video, text, deep learning
- Planning and diagnosis (physics)
- Causal models: cooking scenarios (interpreting videos)
- Combinatorial objects: parse trees, rankings, directed acyclic graphs, trees, simple paths, game traces, etc.
- Some representations: constrained conditional models, mixed networks, probabilistic logics.

Structured Probability Spaces

- Everywhere in ML!
- Configuration problems, inventory, video, text, deep learning
- Planning and diagnosis (physics)
- Causal models: cooking scenarios (interpreting videos)
- Combinatorial objects: parse trees, rankings, directed acyclic graphs, trees, simple paths, game traces, etc.
- Some representations: constrained conditional models, mixed networks, probabilistic logics.

No statistical ML boxes out there that take constraints as input! :

Structured Probability Spaces

- Everywhere in ML!
- Configuration problems, inventory, video, text, deep learning
- Planning and diagnosis (physics)
- Causal models: cooking scenarios (interpreting videos)
- Combinatorial objects: parse trees, rankings, directed acyclic graphs, trees, simple paths, game traces, etc.
- Some representations: constrained conditional models, mixed networks, probabilistic logics.

No statistical ML boxes out there that take constraints as input! :

Goal: Constraints as important as data! General purpose!

Specification Language: Logic

Structured Probability Space

unstructured

L	K	P	A
0	0	0	0
0	0	0	1
0	0	1	0
0	0	1	1
0	1	0	0
0	1	0	1
0	1	1	0
0	1	1	1
1	0	0	0
1	0	0	1
1	0	1	0
1	0	1	1
1	1	0	0
1	1	0	1
1	1	1	0
1	1	1	1

structured

L	K	P	A
0	0	0	0
0	0	0	1
0	0	1	0
0	0	1	1
0	1	0	0
0	1	0	1
0	1	1	0
0	1	1	1
1	0	0	0
1	0	0	1
1	0	1	0
1	0	1	1
1	1	0	0
1	1	0	1
1	1	1	0
1	1	1	1

Boolean Constraints

unstructured			
L	K	P	A
0	0	0	0
0	0	0	1
0	0	1	0
0	0	1	1
0	1	0	0
0	1	0	1
0	1	1	0
0	1	1	1
1	0	0	0
1	0	0	1
1	0	1	0
1	0	1	1
1	1	0	0
1	1	0	1
1	1	1	0
1	1	1	1

Combinatorial Objects: Rankings

rank	sushi	rank	sushi
1	fatty tuna	1	shrimp
2	sea urchin	2	sea urchin
3	salmon roe	3	salmon roe
4	shrimp	4	fatty tuna
5	tuna	5	tuna
6	squid	6	squid
7	tuna roll	7	tuna roll
8	see eel	8	see eel
9	egg	9	egg
10	cucumber roll	10	cucumber roll

10 items:
3,628,800
rankings

20 items:
2,432,902,008,176,640,000
rankings

Combinatorial Objects: Rankings

rank	sushi	rank	sushi
1	fatty tuna	1	shrimp
2	sea urchin	2	sea urchin
3	salmon roe	3	salmon roe
4	shrimp	4	fatty tuna
5	tuna	5	tuna
6	squid	6	squid
7	tuna roll	7	tuna roll
8	see eel	8	see eel
9	egg	9	egg
10	cucumber roll	10	cucumber roll

$A_{i j}$ item \boldsymbol{i} at position \boldsymbol{j} (n items require n^{2} Boolean variables)

Combinatorial Objects: Rankings

rank	sushi	rank	sushi
1	fatty tuna		1
2	sea urchin	2	shrimp
3	salmon roe	3	sea urchin
4	shrimp	4	fattyon roe tuna
5	tuna	5	tuna
6	squid	6	squid
7	tuna roll	7	tuna roll
8	see eel	8	see eel
9	egg	9	egg
10	cucumber roll	10	cucumber roll

> $A_{i j}$ item i at position j (n items require n^{2} Boolean variables)

An item may be assigned to more than one position

A position may contain more than one item

Encoding Rankings in Logic

$A_{i j}:$ item i at position j

	pos 1	pos 2	pos 3	pos 4
item 1	A_{11}	A_{12}	A_{13}	A_{14}
item 2	A_{21}	A_{22}	A_{23}	A_{24}
item 3	A_{31}	A_{32}	A_{33}	A_{34}
item 4	A_{41}	A_{42}	A_{43}	A_{44}

Encoding Rankings in Logic

$A_{i j}:$ item i at position j

	pos 1	pos 2	pos 3	pos 4
item 1	A_{11}	A_{12}	A_{13}	A_{14}
item 2	A_{21}	A_{22}	A_{23}	A_{24}
item 3	A_{31}	A_{32}	A_{33}	A_{34}
item 4	A_{41}	A_{42}	A_{43}	A_{44}

constraint: each item i assigned to a unique position (n constraints)

$$
\bigvee_{j} A_{i j} \wedge\left(\bigwedge_{k \neq j} \neg A_{i k}\right)
$$

Encoding Rankings in Logic

$A_{i j}:$ item i at position j

	pos 1	pos 2	pos 3	pos 4
item 1	A_{11}	A_{12}	A_{13}	A_{14}
item 2	A_{21}	A_{22}	A_{23}	A_{24}
item 3	A_{31}	A_{32}	A_{33}	A_{34}
item 4	A_{41}	A_{42}	A_{43}	A_{44}

constraint: each item i assigned to a unique position (n constraints)

$$
\bigvee_{j} A_{i j} \wedge\left(\bigwedge_{k \neq j} \neg A_{i k}\right)
$$

constraint: each position j assigned a unique item (n constraints)

$$
\bigvee_{i} A_{i j} \wedge\left(\bigwedge_{k \neq i} \neg A_{k j}\right)
$$

Encoding Rankings in Logic

$A_{i j}:$ item i at position j

	pos 1	pos 2	pos 3	pos 4
item 1	A_{11}	A_{12}	A_{13}	A_{14}
item 2	A_{21}	A_{22}	A_{23}	A_{24}
item 3	A_{31}	A_{32}	A_{33}	A_{34}
item 4	A_{41}	A_{42}	A_{43}	A_{44}

constraint: each item i assigned to a unique position (n constraints)

$$
\bigvee_{j} A_{i j} \wedge\left(\bigwedge_{k \neq j} \neg A_{i k}\right)
$$

constraint: each position j assigned a unique item (n constraints)

$$
\bigvee_{i} A_{i j} \wedge\left(\bigwedge_{k \neq i} \neg A_{k j}\right)
$$

total constraints $2 n$
unstructured space $2^{n^{2}}$
structured space n !

Structured Space for Paths

Structured Space for Paths

Good variable assignment (represents route)

Structured Space for Paths

Good variable assignment (represents route)

184

Bad variable assignment (does not represent route)

16,777,032

Structured Space for Paths

Good variable assignment (represents route)

184

Bad variable assignment (does not represent route)

16,777,032

Space easily encoded in logical constraints ©

Structured Space for Paths

Good variable assignment (represents route)

184

Bad variable assignment (does not represent route)

16,777,032

Space easily encoded in logical constraints ©

Unstructured probability space: $184+16,777,032=2^{24}$

Undirected Graphs (Unstructured)

"Deep Architecture"

Logic + Probability

Logical Circuits

Property: Decomposability

Property: Decomposability

Property: Determinism

Sentential Decision Diagram (SDD)

Sentential Decision Diagram (SDD)

Sentential Decision Diagram (SDD)

Tractable for Logical Inference

- Is structured space empty? (SAT)
- Count size of structured space (\#SAT)
- Check equivalence of spaces

Tractable for Logical Inference

- Is structured space empty? (SAT)
- Count size of structured space (\#SAT)
- Check equivalence of spaces

Algorithms linear in circuit size $)$
(pass up, pass down, similar to backprop)

Tractable for Logical Inference

- Is structured space empty? (SAT)
- Count size of structured space (\#SAT)
- Check equivalence of spaces

Algorithms linear in circuit size $)$ (pass up, pass down, similar to backprop)

```
SCIENCE + TECHNOLOGY
```

Artificial intelligence framework developed by UCLA professor now powers Toyota websites

Adnan Darwiche's invention helps consumers customize their vehicles online

PSDD: Probabilistic SDD

PSDD: Probabilistic SDD

Input: L, K, P, A

PSDD: Probabilistic SDD

Input: L, K, P, A

PSDD: Probabilistic SDD

Input: L, K, P, A
$\operatorname{Pr}(L, K, P, A)=0.3 \times 1.0 \times 0.8 \times 0.4 \times 0.25=0.024$

PSDD nodes induce

PSDD nodes induce

Can read probabilistic independences off the circuit structure

Tractable for Probabilistic Inference

- MAP inference: Find most-likely assignment (otherwise NP-complete)
- Computing conditional probabilities $\operatorname{Pr}(x \mid y)$ (otherwise PP-complete)
- Sample from $\operatorname{Pr}(x \mid y)$

Tractable for Probabilistic Inference

- MAP inference: Find most-likely assignment (otherwise NP-complete)
- Computing conditional probabilities $\operatorname{Pr}(x \mid y)$ (otherwise PP-complete)
- Sample from $\operatorname{Pr}(x \mid y)$

Algorithms linear in circuit size $)$
(pass up, pass down, similar to backprop)

PSDDs are Arithmetic Circuits

[Darwiche, JACM 2003]

PSDDs are Arithmetic Circuits

[Darwiche, JACM 2003]

PSDD

Known in the ML literature as SPNs UAI 2011, NIPS 2012 best paper awards
[ICML 2014]
(SPNs equivalent to ACs)

Learning PSDDs

Logic + Probability + ML

Parameters are Interpretable

Parameters are Interpretable

Parameters are Interpretable

Parameters are Interpretable

Learning Algorithms

- Parameter learning:

Closed form max likelihood from complete data
One pass over data to estimate $\operatorname{Pr}(x \mid y)$

Learning Algorithms

- Parameter learning:

Closed form max likelihood from complete data
One pass over data to estimate $\operatorname{Pr}(x \mid y)$

- Structure learning:
- Compile constraints to SDD (naive)

Use SAT solver technology

Learning Algorithms

- Parameter learning:

Closed form max likelihood from complete data
One pass over data to estimate $\operatorname{Pr}(\mathrm{x} \mid \mathrm{y})$

- Structure learning:
- Compile constraints to SDD (naive)

Use SAT solver technology

- Search for structure to fit data (ongoing work)

Learning Preference Distributions

Learning Preference Distributions

This is the naive approach, without real structure learning!

What happens if you ignore constraints?

Structured Naïve Bayes Classifier

Attribute with 362,880 values (possible game traces)

Structured Naïve Bayes Classifier

Attribute with 789,360,053,252 values (routes in 8×8 grid) Ongoing work: learn anomalies from Uber data

Structured datasets and queries

Incomplete Data

a classical complete dataset			
id	X	Y	z
1	x_{1}	y_{2}	z_{1}
2	x_{2}	y_{1}	z_{2}
3	x_{2}	y_{1}	z_{2}
4	x_{1}	y_{1}	z_{1}
5	x_{1}	y_{2}	z_{2}

Incomplete Data

a classical complete dataset			
id	X	Y	z
1	x_{1}	y_{2}	z_{1}
2	x_{2}	y_{1}	z_{2}
3	x_{2}	y_{1}	z_{2}
4	x_{1}	y_{1}	z_{1}
5	x_{1}	y_{2}	z_{2}

a classical			
incomplete dataset			

EM algorithm (on PSDDs)

Incomplete Data

a classical				
complete dataset				
id	X	Y	z	
1	x_{1}	y_{2}	z_{1}	
2	x_{2}	y_{1}	z_{2}	
3	x_{2}	y_{1}	z_{2}	
4	x_{1}	y_{1}	z_{1}	
2	x_{1}	y_{2}	z_{2}	

closed-form
(maximum-likelihood estimates are unique)
a classical
incomplete dataset

id	X	Y	Z
1	x_{1}	y_{2}	$?$
2	x_{2}	y_{1}	$?$
3	$?$	$?$	z_{2}
4	$?$	y_{1}	z_{1}
5	x_{1}	y_{2}	z_{2}

EM algorithm (on PSDDs)
a new type of incomplete dataset

id	X	Y
1	$X \equiv Z$	
2	x_{2} and $\left(y_{2}\right.$ or $\left.z_{2}\right)$	
3	$x_{2} \Rightarrow y_{1}$	
4	$X \oplus Y \oplus Z \equiv 1$	
5	x_{1} and y_{2} and z_{2}	

Missed in the ML literature

Structured Datasets

a classical complete dataset (e.g., total rankings)

id	$1^{\text {st }}$ sushi	$2^{\text {nd }}$ sushi	$3^{\text {rd }}$ sushi	\ldots
1	fatty tuna	sea urchin	salmon roe	\ldots
2	fatty tuna	tuna	shrimp	\ldots
3	tuna	tuna roll	sea eel	\ldots
4	fatty tuna	salmon roe	tuna	\ldots
5	egg	squid	shrimp	\ldots

a classical incomplete dataset
(e.g., top-k rankings)

id	$1^{\text {st }}$ sushi	$2^{\text {nd }}$ sushi	$3^{\text {rd }}$ sushi	\ldots
1	fatty tuna	sea urchin	$\boldsymbol{?}$	\ldots
2	fatty tuna	$\boldsymbol{?}$	$\boldsymbol{?}$	\ldots
3	tuna	tuna roll	$\boldsymbol{?}$	\ldots
4	fatty	salmon		
tuna	roe	$\boldsymbol{?}$	\ldots	
5	egg	$\boldsymbol{?}$	$\boldsymbol{?}$	\ldots

Structured Datasets

a classical complete dataset (e.g., total rankings)

id	$1^{\text {st }}$ sushi	$2^{\text {nd }}$ sushi	$3^{\text {rd }}$ sushi	\ldots
1	fatty tuna	sea urchin	salmon roe	\ldots
2	fatty tuna	tuna	shrimp	\ldots
3	tuna	tuna roll	sea eel	\ldots
4	fatty	salmon	tuna	\ldots
5	tuna	egg	squid	shrimp
	\ldots			

a new type of incomplete dataset (e.g., partial rankings)

id	$\begin{gathered} 1^{\text {st }} \\ \text { sushi } \end{gathered}$	$\begin{gathered} 2^{\text {nd }} \\ \text { sushi } \end{gathered}$	$\begin{gathered} 3^{\text {rd }} \\ \text { sushi } \end{gathered}$	
1	(fatty tuna > sea urchin) and (tuna > sea eel)			\ldots
2	(fatty tuna is $1^{\text {st) }}$) and (salmon roe > egg)			..
3	tuna $>$ squid			\ldots
4	egg is last			\ldots
5	egg $>$ squid $>$ shrimp			\ldots

(represents constraints on possible total rankings)

Learning from Incomplete Data

- Movielens Dataset:
- 3,900 movies, 6,040 users, 1 m ratings
- take ratings from 64 most rated movies
- ratings 1-5 converted to pairwise prefs.
- PSDD for partial rankings
- 4 tiers
- 18,711 parameters
movies by expected tier

rank	movie
1	The Godfather
2	The Usual Suspects
3	Casablanca
4	The Shawshank Redemption
5	Schindler's List
6	One Flew Over the Cuckoo's Nest
7	The Godfather: Part II
8	Monty Python and the Holy Grail
9	Raiders of the Lost Ark
10	Star Wars IV: A New Hope

PSDD Sizes

items	tier size	Size		
n	k	SDD	Structured Space	Unstructured Space
8	2	443	840	$1.84 \cdot 10^{19}$
27	3	4,114	$1.18 \cdot 10^{9}$	$2.82 \cdot 10^{219}$
64	4	23,497	$3.56 \cdot 10^{18}$	$1.04 \cdot 10^{1233}$
125	5	94,616	$3.45 \cdot 10^{31}$	$3.92 \cdot 10^{4703}$
216	6	297,295	$1.57 \cdot 10^{48}$	$7.16 \cdot 10^{14044}$
343	7	781,918	$4.57 \cdot 10^{68}$	$7.55 \cdot 10^{35415}$

Structured Queries

rank	movie
1	Star Wars V: The Empire Strikes Back
2	Star Wars IV: A New Hope
3	The Godfather
4	The Shawshank Redemption
5	The Usual Suspects

Structured Queries

- no other Star Wars movie in top-5
- at least one comedy in top-5

rank	movie
1	Star Wars V: The Empire Strikes Back
2	Star Wars IV: A New Hope
3	The Godfather
4	The Shawshank Redemption
5	The Usual Suspects

Structured Queries

rank	movie
1	Star Wars V: The Empire Strikes Back
2	Star Wars IV: A New Hope
3	The Godfather
4	The Shawshank Redemption
5	The Usual Suspects

- no other Star Wars movie in top-5
- at least one comedy in top-5

rank	movie
1	Star Wars V: The Empire Strikes Back
2	American Beauty
3	The Godfather
4	The Usual Suspects
5	The Shawshank Redemption

Structured Queries

rank	movie
1	Star Wars V: The Empire Strikes Back
2	Star Wars IV: A New Hope
3	The Godfather
4	The Shawshank Redemption
5	The Usual Suspects

- no other Star Wars movie in top-5
- at least one comedy in top-5

rank	movie
1	Star Wars V: The Empire Strikes Back
2	American Beauty
3	The Godfather
4	The Usual Suspects
5	The Shawshank Redemption

diversified recommendations via logical constraints

Conclusions

- Structured spaces are everywhere :)
- Roles of Boolean constraints in ML
- Domain constraints and combinatorial objects (structured probability space)
- Incomplete examples (structured datasets)
- Questions and evidence (structured queries)
- Learn distributions over combinatorial objects
- Strong properties for inference and learning: Probabilistic sentential decision diagram (PSDD)

Conclusions

References

Probabilistic Sentential Decision Diagrams
Doga Kisa, Guy Van den Broeck, Arthur Choi and Adnan DarwicheKR, 2014
Learning with Massive Logical Constraints
Doga Kisa, Guy Van den Broeck, Arthur Choi and Adnan DarwicheICML 2014 workshop
Tractable Learning for Structured Probability Spaces
Arthur Choi, Guy Van den Broeck and Adnan DarwicheIJCAI, 2015
Tractable Learning for Complex Probability QueriesJessa Bekker, Jesse Davis, Arthur Choi, Adnan Darwiche, Guy Van den Broeck.NIPS, 2015
Structured Features in Naive Bayes ClassifiersArthur Choi, Nazgol Tavabi and Adnan Darwiche
AAAI, 2016
Tractable Operations on Arithmetic CircuitsJason Shen, Arthur Choi and Adnan DarwicheNIPS, 2016

Questions?

PSDD with 15,000 nodes

Compiling PGMs into PSDDs

Compiling PGMs into PSDDs

$$
\operatorname{Pr}(A, B, C, D, E)=\Theta_{A} \Theta_{B} \Theta_{C \mid A B} \Theta_{D \mid B} \Theta_{E / C D}
$$

Compiling PGMs into PSDDs

$$
\operatorname{Pr}(A, B, C, D, E)=\Theta_{A} \Theta_{B} \Theta_{C / A B} \Theta_{D / B} \Theta_{E / C D}
$$

$P_{S D D}^{A}$

Compiling PGMs into PSDDs

$$
\operatorname{Pr}(A, B, C, D, E)=\Theta_{A} \Theta_{B} \Theta_{C / A B} \Theta_{D / B} \Theta_{E / C D}
$$

$P_{S D D}^{A}$

PSDD_{B}

Sparse tables [Larkin \& Decther 2003], ADDs [Bahar, et al. 1993], AOMDDs [Mateescu, et al., 2008], PDGs [Jaeger, 2004]

