Towards a New Synthesis of Reasoning and Learning

Guy Van den Broeck

UC Berkeley EECS Feb 11, 2019

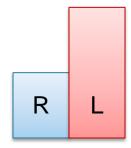
Outline: Reasoning ∩ Learning

1. Deep Learning with Symbolic Knowledge

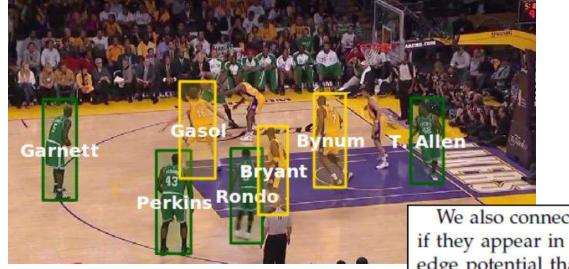
2. Probabilistic and Logistic Circuits

3. High-Level Probabilistic Reasoning

Deep Learning with Symbolic Knowledge



Motivation: Vision



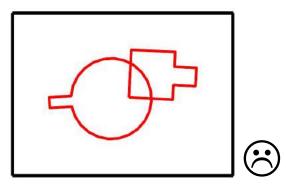
We also connect all pairs of identity nodes $y_{t,i}$ and $y_{t,j}$ if they appear in the same time *t*. We then introduce an edge potential that enforces mutual exclusion:

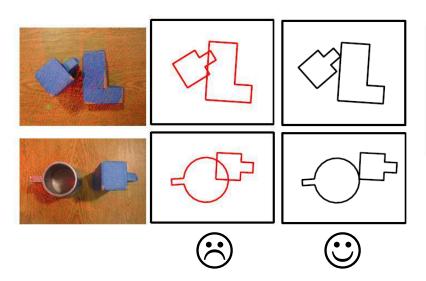
$$\psi_{\text{mutex}}(y_{t,i}, y_{t,j}) = \begin{cases} 1 & \text{if } y_{t,i} \neq y_{t,j} \\ 0 & \text{otherwise} \end{cases}$$
(5)

This potential specifies the constraint that a player can be appear only *once* in a frame. For example, if the *i*-th detection $y_{t,i}$ has been assign to Bryant, $y_{t,j}$ cannot have the same identity because Bryant is impossible to appear twice in a frame.

[Lu, W. L., Ting, J. A., Little, J. J., & Murphy, K. P. (2013). Learning to track and identify players from broadcast sports videos.]

Motivation: Robotics





The method developed in this paper can be used in a broad variety of semantic mapping and object manipulation tasks, providing an efficient and effective way to incorporate collision constraints into a recursive state estimator, obtaining optimal or near-optimal solutions.

Motivation: Language

- Non-local dependencies:
 "At least one verb in each sentence"
- Sentence compression *"If a modifier is kept, its subject is also kept"*

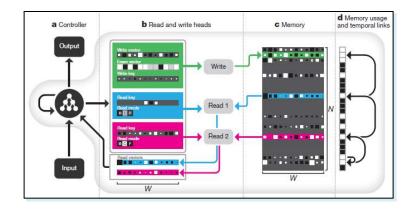
... and many more!

	Citations
Start	The citation must start with author or editor.
AppearsOnce	Each field must be a consecutive list of words, and can appear at most once in a citation.
Punctuation	State transitions must occur on punctuation marks.
BookJournal	The words proc, journal, proceed- ings, ACM are JOURNAL or BOOKTITLE.
100	1.1.1
TechReport	The words <i>tech</i> , <i>technical</i> are <i>TECH_REPORT</i> .
Title	Quotations can appear only in titles.
Location	The words CA, Australia, NY are LOCATION.

[Chang, M., Ratinov, L., & Roth, D. (2008). Constraints as prior knowledge], [Ganchev, K., Gillenwater, J., & Taskar, B. (2010). Posterior regularization for structured latent variable models]

Motivation: Deep Learning

New Stechnology space Physics Health Earth Humans Life TOPICS EVENTS JOBS Indertement Meet The People Shaping The Future Of Energy: Reinventing Energy Summit - 25 November in London Home News 1 Technology Deep Mind's AI has learned to navigate the Tube using memory Composition of the Tube us

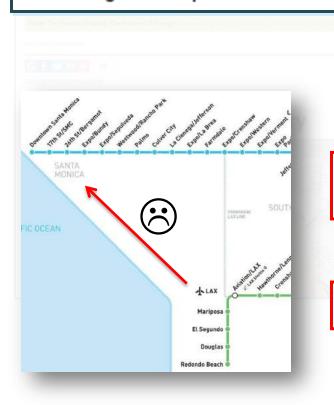


[Graves, A., Wayne, G., Reynolds, M., Harley, T., Danihelka, I., Grabska-Barwińska, A., et al.. (2016). Hybrid computing using a neural network with dynamic external memory. *Nature*, *538*(7626), 471-476.]

Motivation: Deep Learning

Mount

DeepMind's latest technique uses external memory to solve tasks that require logic and reasoning — a step toward more human-like Al.



[Graves, A., Wayne, G., Reynolds, M., Harley, T., Danihelka, I., Grabska-Barwińska, A., et al.. (2016). Hybrid computing using a neural network with dynamic external memory. *Nature*, *538*(7626), 471-476.]

Learning with Symbolic Knowledge

L	Κ	Р	А	Students
0	0	1	0	6
0	0	1	1	54
0	1	1	1	10
1	0	0	0	5
1	0	1	0	1
1	0	1	1	0
1	1	0	0	17
1	1	1	0	4
1	1	1	1	3 /

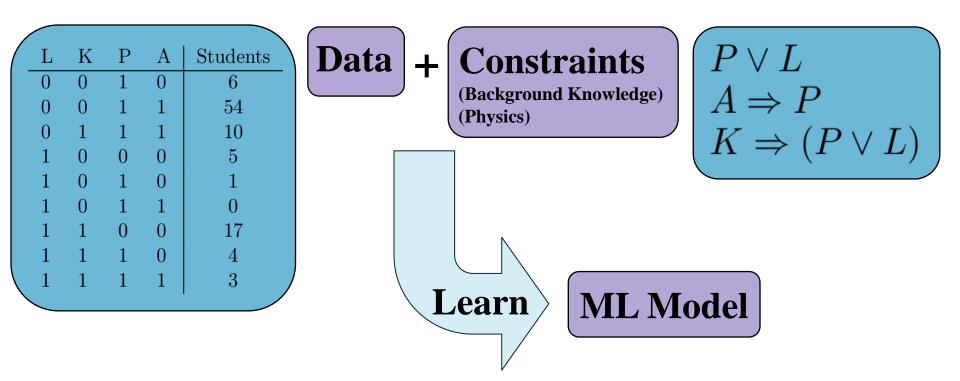
Data + Con

Constraints (Background Knowledge) (Physics)

$$P \lor L$$
$$A \Rightarrow P$$
$$K \Rightarrow (P \lor L)$$

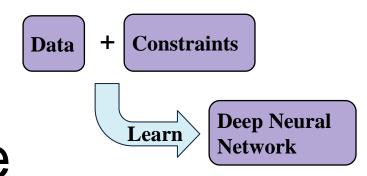
- Must take at least one of Probability (P) or Logic (L).
- 2. Probability (\mathbf{P}) is a prerequisite for AI (\mathbf{A}) .
- The prerequisites for KR (K) is either AI (A) or Logic (L).

Learning with Symbolic Knowledge



Today's machine learning tools don't take knowledge as input! 😕

Deep Learning with Symbolic Knowledge



Neural Network

Output is probability vector **p**, not Boolean logic!

Semantic Loss

<u>Q</u>: How close is output **p** to satisfying constraint α ? <u>Answer</u>: Semantic loss function $L(\alpha, \mathbf{p})$

- Axioms, for example:
 - If **p** is Boolean then $L(\mathbf{p},\mathbf{p}) = 0$
 - If α implies β then $L(\alpha, \mathbf{p}) \ge L(\beta, \mathbf{p})$ (α more strict)
- Implied Properties:
 SEMANTIC

 Loss!
 - If α is equivalent to β then $L(\alpha, \mathbf{p}) = L(\beta, \mathbf{p})$
 - If **p** is Boolean and satisfies α then $L(\alpha, \mathbf{p}) = 0$

Semantic Loss: Definition

<u>Theorem</u>: Axioms imply unique semantic loss:

$$L^{s}(\alpha, p) \propto -\log \sum_{\mathbf{x} \models \alpha} \prod_{i:\mathbf{x} \models X_{i}} p_{i} \prod_{i:\mathbf{x} \models \neg X_{i}} (1 - p_{i})$$
Probability of getting state **x** after flipping coins with probabilities **p**
Probability of satisfying α after flipping coins with probabilities **p**

Simple Example: Exactly-One

- Data must have some label We agree this must be one of the 10 digits:
- Exactly-one constraint \rightarrow For 3 classes: $\begin{cases} x_1 \\ \neg x \\ \neg x \end{cases}$
- Semantic loss:

$$\begin{cases}
x_1 \lor x_2 \lor x_3 \\
\neg x_1 \lor \neg x_2 \\
\neg x_2 \lor \neg x_3 \\
\neg x_1 \lor \neg x_3
\end{cases}$$

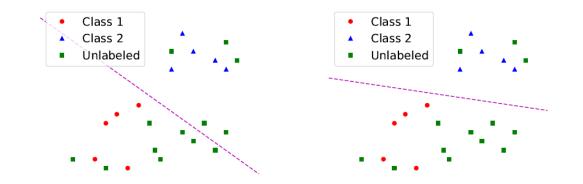
L^s(exactly-one, p)
$$\propto -\log \sum_{i=1}^{n} p_i \prod_{j=1, j \neq i}^{n} (1 - p_j)$$

Only $x_i = 1$ after flipping coins

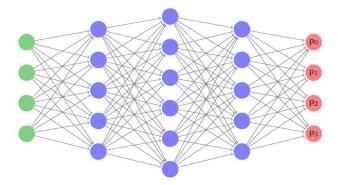
Exactly one true x after flipping coins

Semi-Supervised Learning

 Intuition: Unlabeled data must have some label Cf. entropy minimization, manifold learning



• Minimize exactly-one semantic loss on unlabeled data



Train with *existing loss* + *w* · *semantic loss*

MNIST Experiment

Accuracy % with # of used labels	100	1000	ALL
AtlasRBF (Pitelis et al., 2014) Deep Generative (Kingma et al., 2014) Virtual Adversarial (Miyato et al., 2016) Ladder Net (Rasmus et al., 2015)	91.9 (±0.95) 96.67(±0.14) 97.67 98.94 (±0.37)	96.32 (±0.12) 97.60 (±0.02) 98.64 99.16 (±0.08)	98.69 99.04 99.36 99.43 (±0.02)
Baseline: MLP, Gaussian Noise Baseline: Self-Training Baseline: MLP with Entropy Regularizer	78.46 (±1.94) 72.55 (±4.21) 96.27 (±0.64)	94.26 (±0.31) 87.43 (±3.07) 98.32 (±0.34)	99.34 (±0.08) 99.37 (±0.12)
MLP with Semantic Loss	98.38 (±0.51)	98.78 (±0.17)	99.36 (±0.02)

Competitive with state of the art in semi-supervised deep learning

FASHION Experiment

Accuracy % with # of used labels	100	500	1000	ALL
Ladder Net (Rasmus et al., 2015)	81.46 (±0.64)	85.18 (±0.27)	86.48 (±0.15)	90.46
Baseline: MLP, Gaussian Noise MLP with Semantic Loss	69.45 (±2.03) 86.74 (±0.71)	78.12 (±1.41) 89.49 (±0.24)	80.94 (±0.84) 89.67 (±0.09)	89.87 89.81
Outp	erforms Lad	der Nets!		

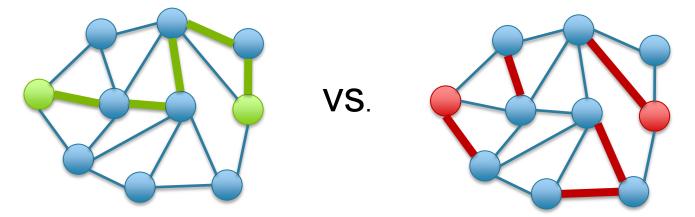
Same conclusion on CIFAR10

Accuracy % with # of used labels	4000	ALL
CNN Baseline in Ladder Net	$76.67 (\pm 0.61)$	90.73
Ladder Net (Rasmus et al., 2015)	79.60 (±0.47)	
Baseline: CNN, Whitening, Cropping	77.13	90.96
CNN with Semantic Loss	81.79	90.92

But what about real constraints?

• Path constraint

cf. Nature paper



- Example: 4x4 grids
 2²⁴ = 184 paths + 16,777,032 non-paths
- Easily encoded as logical constraints ③

[Nishino et al., Choi et al.]

How to Compute Semantic Loss?

• In general: #P-hard ⊗

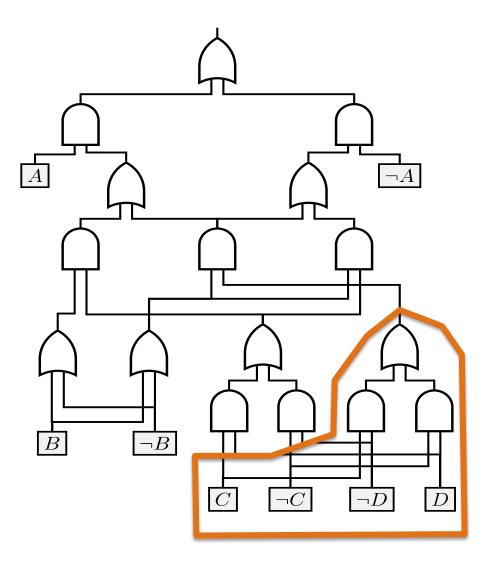
$$\mathrm{L}^{\mathrm{s}}(\alpha, \mathsf{p}) \propto -\log \sum_{\mathbf{x} \models \alpha} \prod_{i: \mathbf{x} \models X_{i}} \mathsf{p}_{i} \prod_{i: \mathbf{x} \models \neg X_{i}} (1 - \mathsf{p}_{i})$$

Reasoning Tool: Logical Circuits

Representation of logical sentences:

 $(C \land \neg D) \lor (\neg C \land D)$

C XOR D



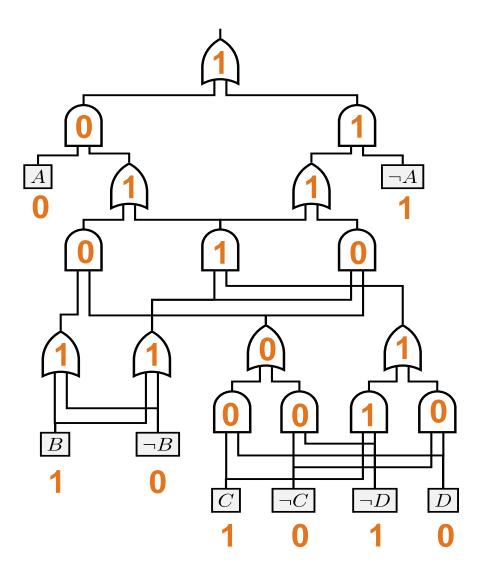
Reasoning Tool: Logical Circuits

Representation of logical sentences:

Input:

A	B	C	D
0	1	1	0

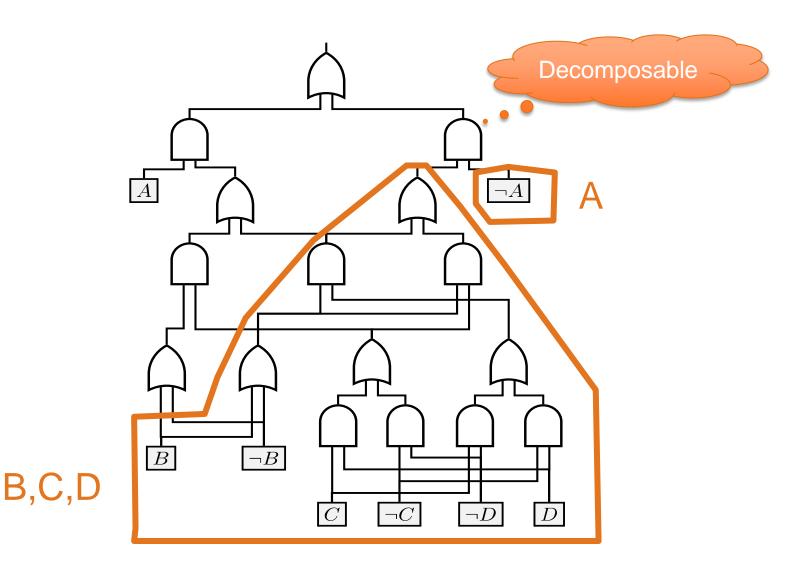
Bottom-up Evaluation



Tractable for Logical Inference

- Is there a solution? (SAT)
 - SAT($\alpha \lor \beta$) iff SAT(α) or SAT(β) (*always*)
 - $-SAT(\alpha \land \beta)$ iff **???**

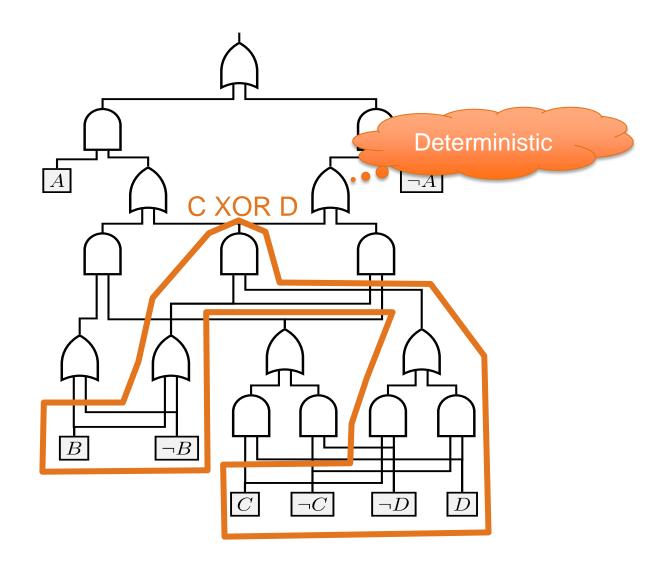
Decomposable Circuits



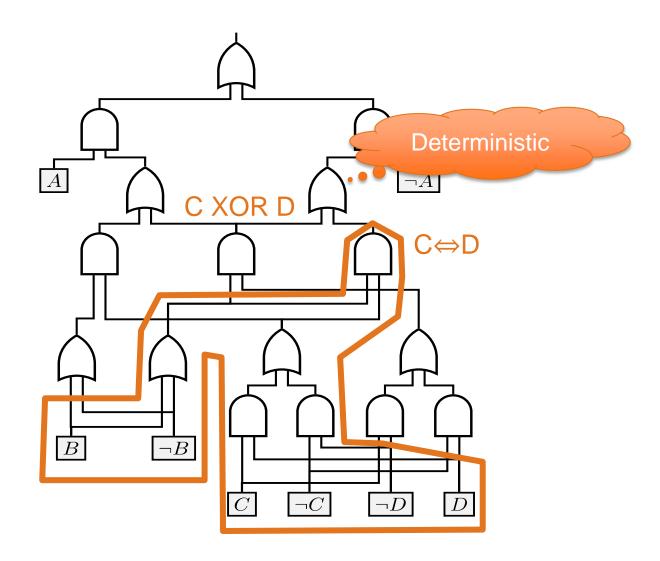
Tractable for Logical Inference

- Is there a solution? (SAT)
 - SAT($\alpha \lor \beta$) iff SAT(α) or SAT(β) (*always*)
 - SAT($\alpha \land \beta$) iff SAT(α) and SAT(β) (decomposable)
- How many solutions are there? (#SAT)
- Complexity linear in circuit size ③

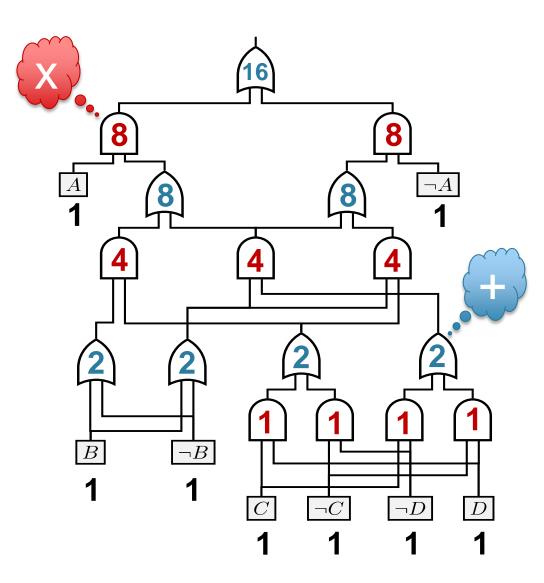
Deterministic Circuits



Deterministic Circuits



How many solutions are there? (#SAT)

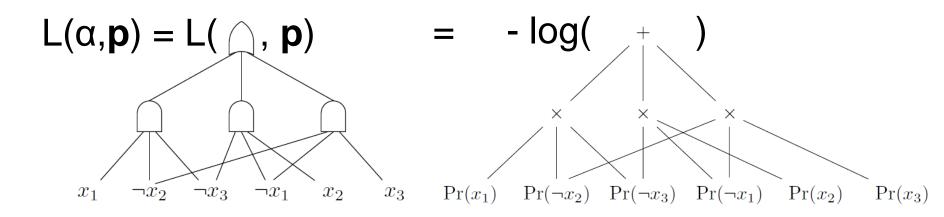


Tractable for Logical Inference

- Is there a solution? (SAT)
- How many solutions are there? (#SAT)
 ... and much more ...
- Complexity linear in circuit size ③
- Compilation into circuit by
 - $-\downarrow$ exhaustive SAT solver
 - ↑ conjoin/disjoin/negate

How to Compute Semantic Loss?

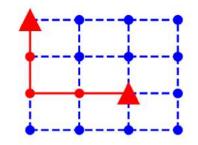
- In general: #P-hard ⊗
- With a logical circuit for α : Linear \bigcirc
- Example: exactly-one constraint:

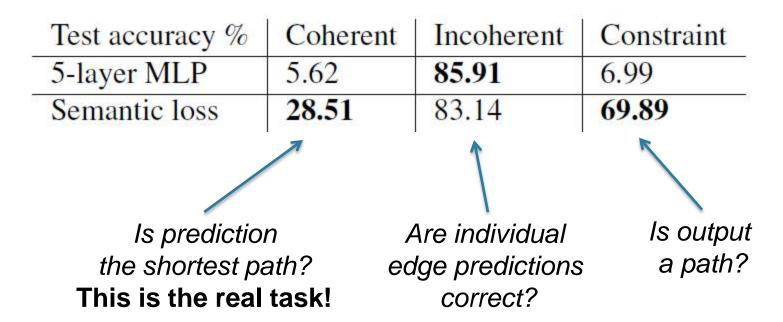


• Why? Decomposability and determinism!

Predict Shortest Paths

Add semantic loss for path constraint



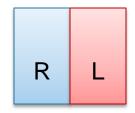


(same conclusion for predicting sushi preferences, see paper)

Conclusions 1

- Knowledge is (hidden) everywhere in ML
- Semantic loss makes logic differentiable
- Performs well semi-supervised
- Requires hard reasoning in general
 - Reasoning can be encapsulated in a circuit
 - No overhead during learning
- Performs well on structured prediction
- A little bit of reasoning goes a long way!

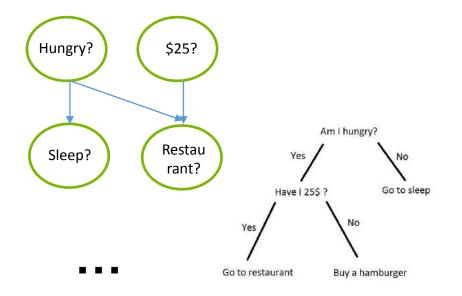
Probabilistic and Logistic Circuits



A False Dilemma?

Classical AI Methods

Neural Networks

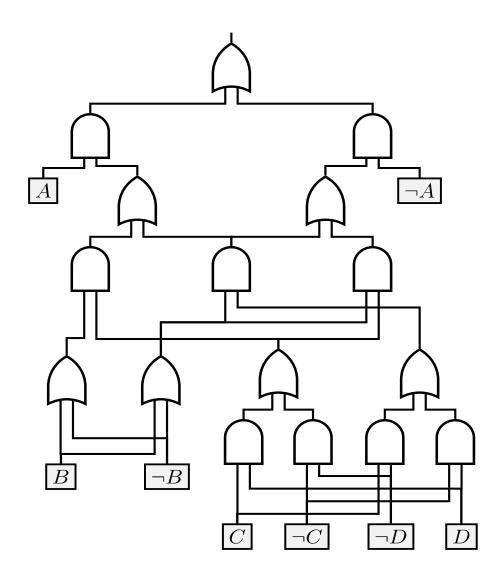


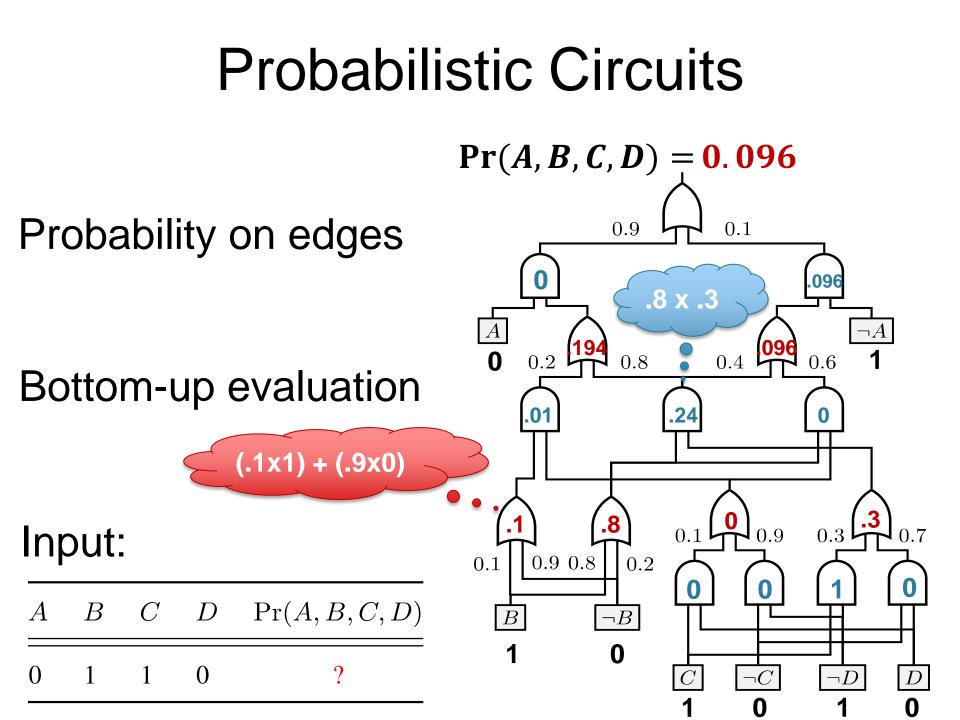
Convolution Convolution Fully connected Fully connected . 0 ٥

Clear Modeling Assumption Well-understood "Black Box" Empirical performance

Inspiration: Probabilistic Circuits

Can we turn logic circuits into a statistical model?





Properties, Properties, Properties!

- Read conditional independencies from structure
- Interpretable parameters (XAI) (conditional probabilities of logical sentences)
- Closed-form parameter learning
- Efficient reasoning

- MAP inference: most-likely assignment to x given y (otherwise NP-hard)
- Computing conditional probabilities Pr(x|y) (otherwise #P-hard)
- Algorithms linear in circuit size 🙂

Discrete Density Estimation

Datasets	Var	LearnPSDD Ensemble	Best-to-Date		
NLTCS	16	-5.99^{\dagger}	-6.00		
MSNBC	17	-6.04^{\dagger}	-6.04^{\dagger}		
KDD	64	-2.11^{\dagger}	-2.12		
Plants	69	-13.02	-11.99^{\dagger}		
Audio	100	-39.94	-39.49^{\dagger}		
Jester	100	-51.29	-41.11^{\dagger}		
Netflix	100	-55.71^{\dagger}	-55.84		
Accidents	111	-30.16	-24.87^{\dagger}		
Retail	135	-10.72^{\dagger}	-10.78		
Pumsb-Star	163	-26.12	-22.40^{\dagger}		
DNA	180	-88.01	-80.03^{\dagger}		
Kosarek	190	-10.52^{\dagger}	-10.54		
MSWeb	294	-9.89	-9.22^{\dagger}		
Book	500	-34.97	-30.18^{\dagger}		
EachMovie	500	-58.01	-51.14^{\dagger}		
WebKB	839	-161.09	-150.10^{\dagger}		
Reuters-52	889	-89.61	-80.66^{\dagger}		
20NewsGrp.	910	-155.97	-150.88^{\dagger}		
BBC	1058	-253.19	-233.26^{\dagger}		
AD	1556	-31.78	-14.36^{\dagger}		

Q: "Help! I need to learn a discrete probability distribution..." A: Learn probabilistic circuits!

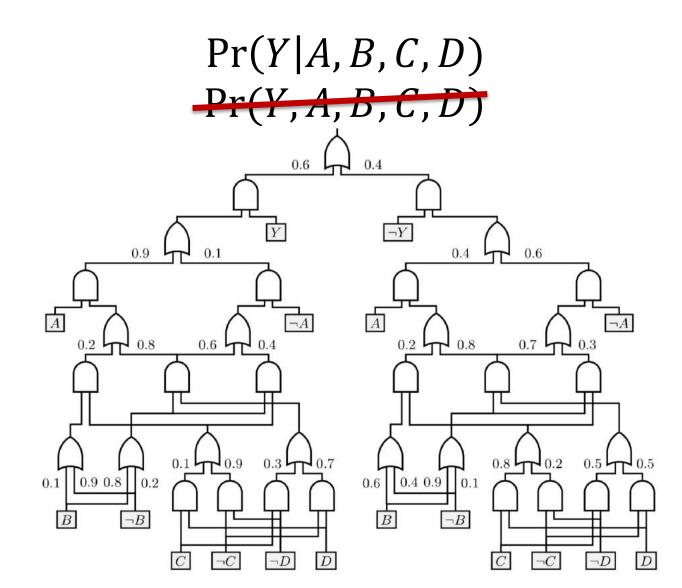
Strongly outperforms

- Bayesian network learners
- Markov network learners

LearnPSDD state of the art on 6 datasets! Competitive with SPN learners

(State of the art for approximate inference in discrete factor graphs)

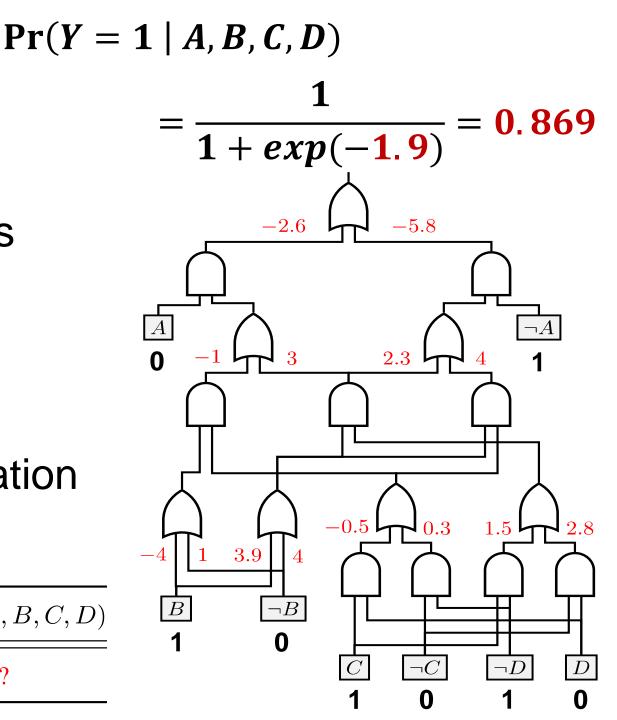
But what if I only want to classify Y?



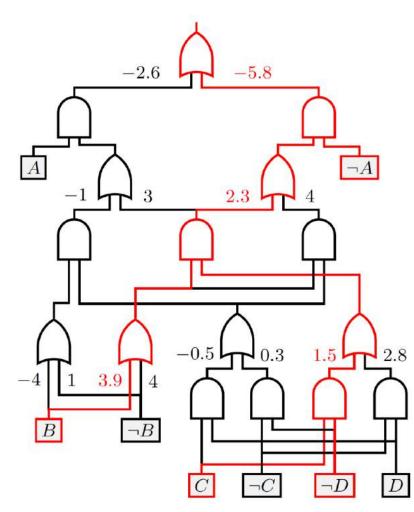
Logistic Circuits

- Weights on edges
- Logistic function on output weight
- Bottom-up evaluation Input:

A	B	C	D	$\Pr(Y \mid A, B, C, D)$
0	1	1	0	?

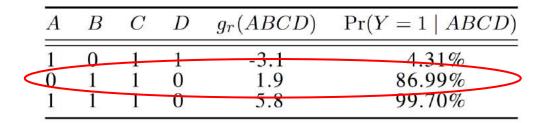


Alternative Semantics

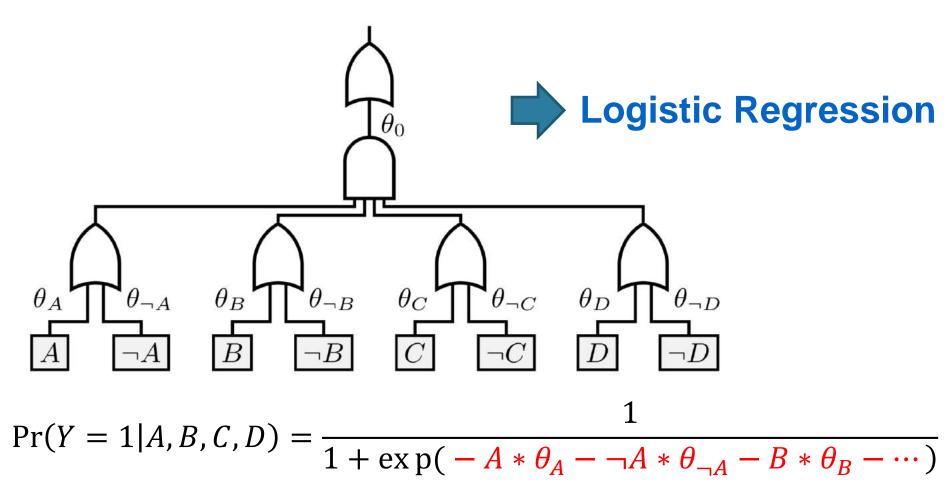


Represents Pr(Y | A, B, C, D)

- Take all 'hot' wires
- Sum their weights
- Push through logistic function



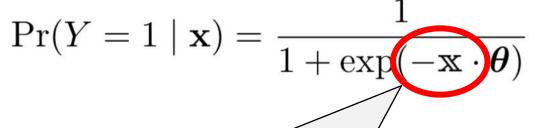
Special Case: Logistic Regression



What about other logistic circuits in more general forms?

Parameter Learning

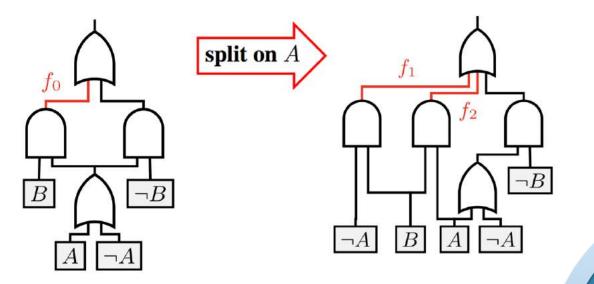
Reduce to logistic regression:



Features associated with each wire "Global Circuit Flow" features

Learning parameters θ is convex optimization!

Logistic Circuit Structure Learning



Generate candidate operations Calculate Gradient Variance

Execute the best operation

Comparable Accuracy with Neural Nets

ACCURACY % ON DATASET	MNIST	FASHION
BASELINE: LOGISTIC REGRESSION	85.3	79.3
BASELINE: KERNEL LOGISTIC REGRESSION	97.7	88.3
RANDOM FOREST	97.3	81.6
3-LAYER MLP	97.5	84.8
RAT-SPN (PEHARZ ET AL. 2018)	98.1	89.5
SVM WITH RBF KERNEL	98.5	87.8
5-LAYER MLP	99.3	89.8
LOGISTIC CIRCUIT (BINARY)	97.4	87.6
LOGISTIC CIRCUIT (REAL-VALUED)	99.4	91.3
CNN with 3 conv layers	99.1	90.7
Resnet (He et al. 2016)	99.5	93.6

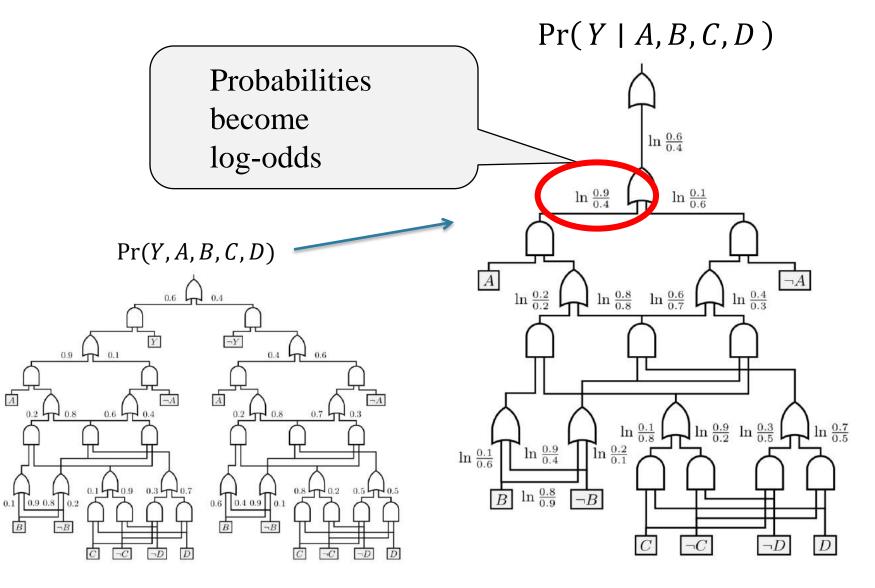
Significantly Smaller in Size

NUMBER OF PARAMETERS	Mnist	FASHION
BASELINE: LOGISTIC REGRESSION	<1K	<1K
BASELINE: KERNEL LOGISTIC REGRESSION	1,521 K	3,930K
LOGISTIC CIRCUIT (REAL-VALUED)	182K	467K
LOGISTIC CIRCUIT (BINARY)	268K	614K
3-layer MLP	1,411K	1,411K
RAT-SPN (Peharz et al. 2018)	8,500K	650K
CNN with 3 conv layers	2,196K	2,196K
5-layer MLP	2,411K	2,411K
Resnet (He et al. 2016)	4,838K	4,838K

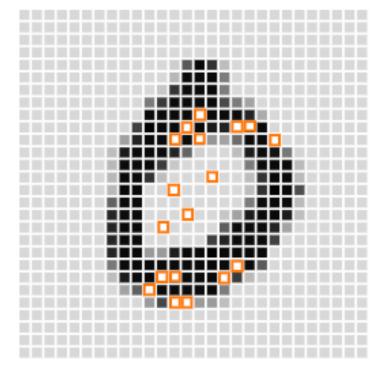
Better Data Efficiency

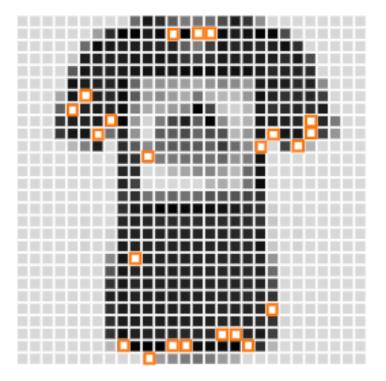
ACCURACY % WITH % OF TRAINING DATA	1	MNIST		FASHION		
	100%	10%	2%	100%	10%	2%
5-layer MLP	99.3	98.2	94.3	89.8	86.5	80.9
CNN with 3 Conv Layers	99.1	98.1	95.3	90.7	87.6	83.8
LOGISTIC CIRCUIT (BINARY)	97.4	96.9	94.1	87.6	86.7	83.2
LOGISTIC CIRCUIT (REAL-VALUED)	99.4	97.6	96.1	91.3	87.8	86.0

Logistic vs. Probabilistic Circuits

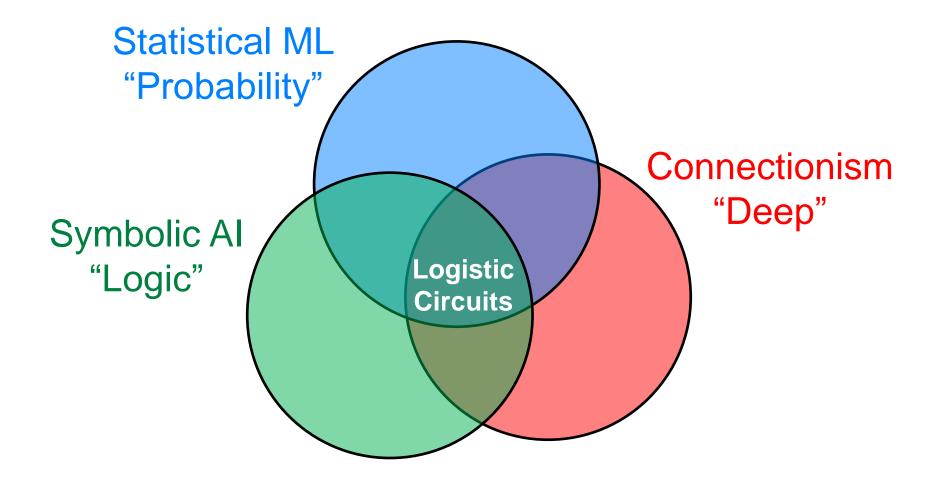


Interpretable?

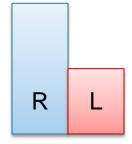




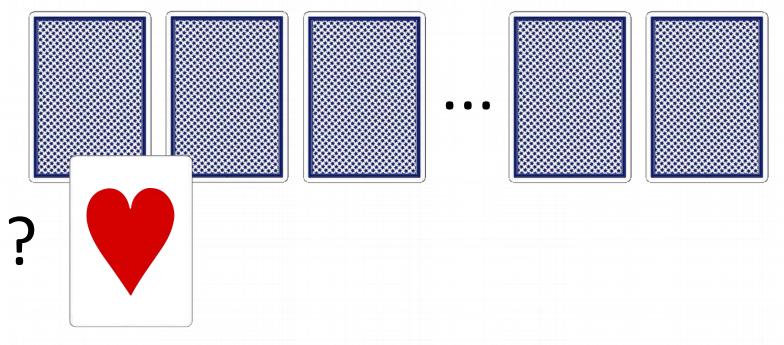
Conclusions 2



High-Level Probabilistic Inference



Simple Reasoning Problem



Probability that Card1 is Hearts? 1/4

Automated Reasoning

Let us automate this:

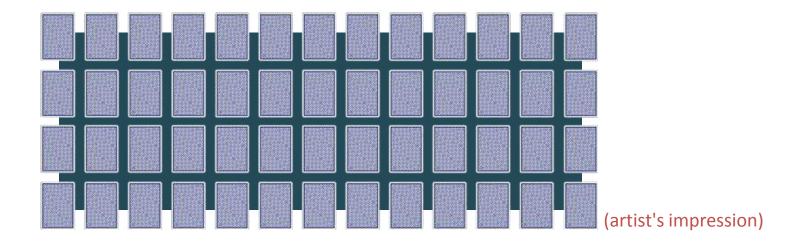
1. Probabilistic graphical model (e.g., factor graph)

2. Probabilistic inference algorithm (e.g., variable elimination or junction tree)

Automated Reasoning

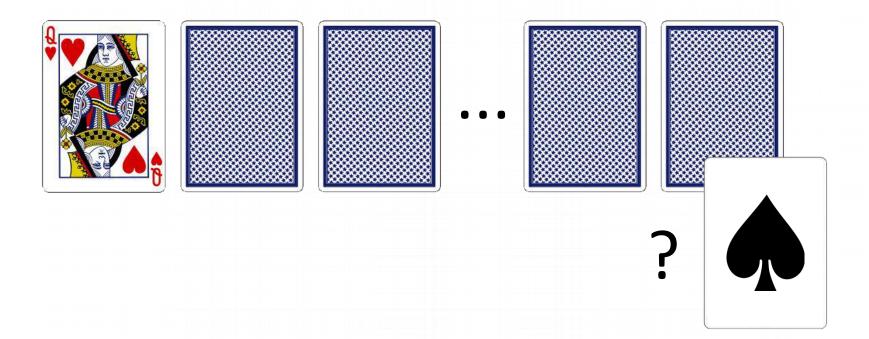
Let us automate this:

1. Probabilistic graphical model (e.g., factor graph) is fully connected!



 Probabilistic inference algorithm (e.g., variable elimination or junction tree) builds a table with 52⁵² rows

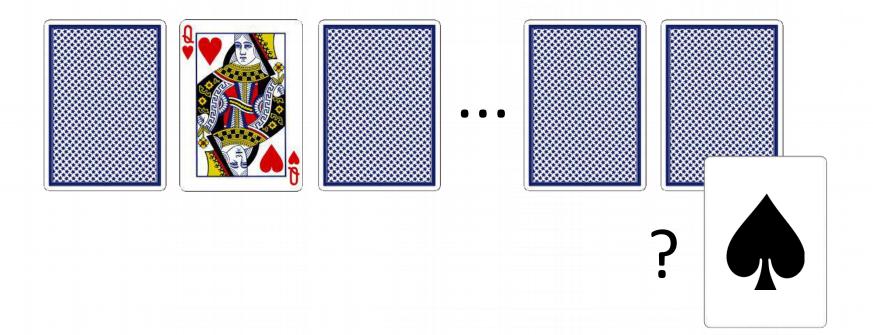
What's Going On Here?



Probability that Card52 is Spades given that Card1 is QH?

13/51

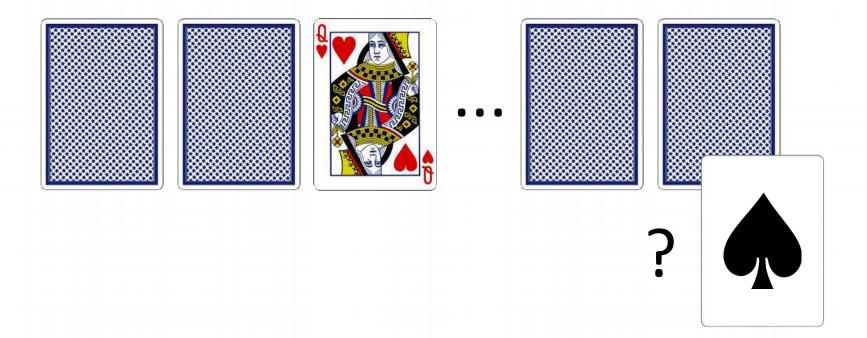
What's Going On Here?



Probability that Card52 is Spades given that Card2 is QH?

13/51

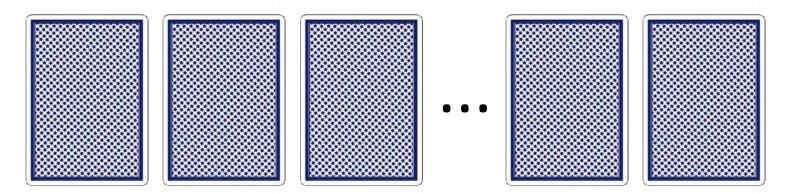
What's Going On Here?



Probability that Card52 is Spades given that Card3 is QH?

13/51

Tractable Reasoning

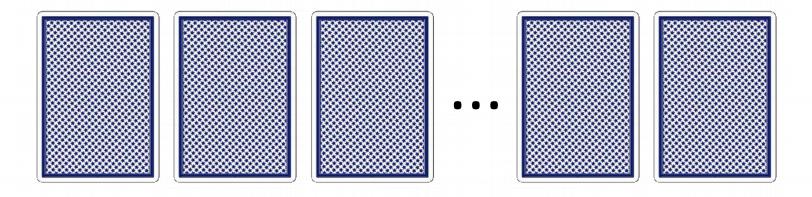


What's going on here? Which property makes reasoning tractable?

- High-level (first-order) reasoning
- Symmetry
- Exchangeability

⇒ Lifted Inference

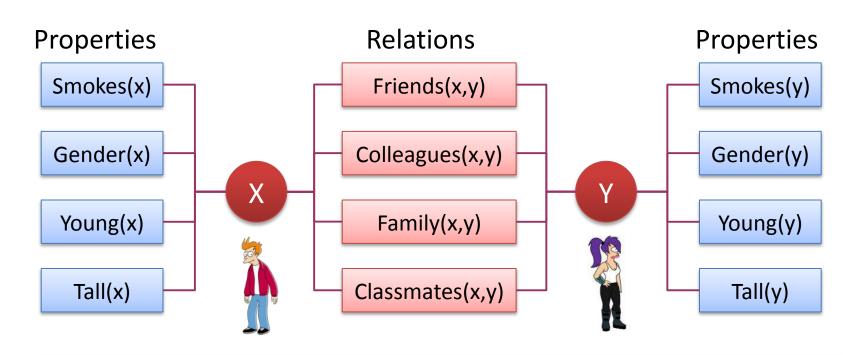
[Niepert and Van den Broeck, AAAI' 14], [Van den Broeck, AAAI-KRR'15]



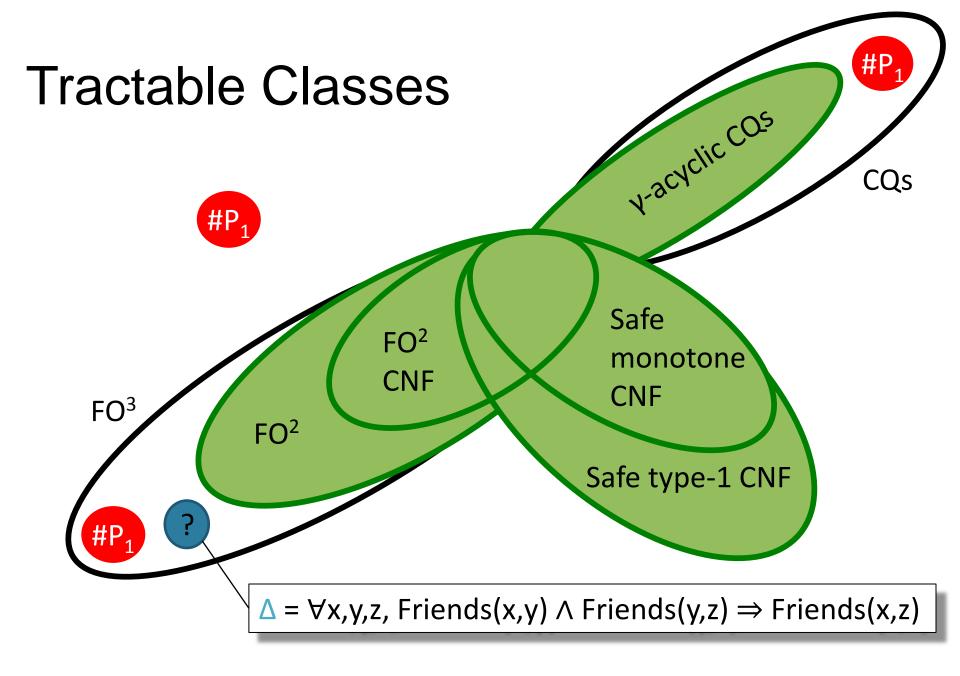
Model distribution at first-order level:

Can we now be efficient in the size of our domain?

FO² is liftable!



"Smokers are more likely to be friends with other smokers." "Colleagues of the same age are more likely to be friends." "People are either family or friends, but never both." "If X is family of Y, then Y is also family of X." "Universities in the Bay Area are more likely to be rivals."



[VdB; NIPS'11], [VdB et al.; KR'14], [Gribkoff, VdB, Suciu; UAI'15], [Beame, VdB, Gribkoff, Suciu; PODS'15], etc.

Conclusions 3

- Challenge is even greater at first-order level
- Existing reasoning algorithms cannot cut it!

- Integration of logic and probability is longstanding goal of AI
- First-order probabilistic reasoning is frontier and integration of AI, KR, ML, DBs, theory, PL, etc.

Final Conclusions

- Knowledge is everywhere in learning
- Some concepts not easily learned from data
- Make knowledge first-class citizen in ML
- Logical circuits turned statistical models
- Strong properties produce strong learners
- There is no dilemma between understanding and accuracy?
- A wealth of high-level reasoning approaches are still absent from ML discussion

Acknowledgements

Thanks to my students and collaborators!

Thanks for your attention!

Questions?