Probabilistic Circuits: A New Synthesis of Logic and Machine Learning

Guy Van den Broeck

UCSD May 14, 2018

References

Jingyi Xu, Zilu Zhang, Tal Friedman, Yitao Liang and Guy Van den Broeck. <u>A Semantic Loss Function for Deep Learning with Symbolic</u> <u>Knowledge</u>, *In Proceedings of the International Conference on Machine Learning (ICML)*, 2018.

YooJung Choi and Guy Van den Broeck. On Robust Trimming of Bayesian Network Classifiers, In Proceedings of the 27th International Joint Conference on Artificial Intelligence (IJCAI), 2018.

Jingyi Xu, Zilu Zhang, Tal Friedman, Yitao Liang and Guy Van den Broeck. <u>A Semantic Loss Function for Deep Learning Under Weak</u> <u>Supervision</u>, In NIPS 2017 Workshop on Learning with Limited Labeled Data: Weak Supervision and Beyond, 2017.

Yitao Liang and Guy Van den Broeck. Towards Compact Interpretable Models: Shrinking of Learned Probabilistic Sentential Decision Diagrams, In IJCAI 2017 Workshop on Explainable Artificial Intelligence (XAI), 2017.

YooJung Choi, Adnan Darwiche and Guy Van den Broeck. Optimal Feature Selection for Decision Robustness in Bayesian Networks, In Proceedings of the 26th International Joint Conference on Artificial Intelligence (IJCAI), 2017.

Yitao Liang, Jessa Bekker and Guy Van den Broeck. Learning the Structure of Probabilistic Sentential Decision Diagrams, In Proceedings of the 33rd Conference on Uncertainty in Artificial Intelligence (UAI), 2017.

Jessa Bekker, Jesse Davis, Arthur Choi, Adnan Darwiche and Guy Van den Broeck. <u>Tractable Learning for Complex Probability</u> <u>Queries</u>, In Advances in Neural Information Processing Systems 28 (NIPS), 2015.

Arthur Choi, Guy Van den Broeck and Adnan Darwiche. Probability Distributions over Structured Spaces, In Proceedings of the AAAI Spring Symposium on KRR, 2015.

Arthur Choi, Guy Van den Broeck and Adnan Darwiche. <u>Tractable Learning for Structured Probability Spaces: A Case Study in Learning</u> <u>Preference Distributions</u>, In Proceedings of 24th International Joint Conference on Artificial Intelligence (IJCAI), 2015.

Doga Kisa, Guy Van den Broeck, Arthur Choi and Adnan Darwiche. Probabilistic sentential decision diagrams: Learning with massive logical constraints, In ICML Workshop on Learning Tractable Probabilistic Models (LTPM), 2014.

Doga Kisa, Guy Van den Broeck, Arthur Choi and Adnan Darwiche. <u>Probabilistic sentential decision diagrams</u>, In Proceedings of the 14th International Conference on Principles of Knowledge Representation and Reasoning (KR), 2014.

(... and ongoing work by Tal Friedman, YooJung Choi, and Yitao Liang)

Structured Spaces

Running Example

Courses:

- Logic (L)
- Knowledge Representation (K)
- Probability (P)
- Artificial Intelligence (A)

Data

\mathbf{L}	Κ	Р	A	Students
0	0	1	0	6
0	0	1	1	54
0	1	1	1	10
1	0	0	0	5
1	0	1	0	1
1	0	1	1	0
1	1	0	0	17
1	1	1	0	4
1	1	1	1	3 /

Running Example

Courses:

- Logic (L)
- Knowledge Representation (K)
- Probability (P)
- Artificial Intelligence (A)

Constraints

- Must take at least one of Probability or Logic.
- Probability is a prerequisite for AI.
- The prerequisites for KR is either AI or Logic.

Data

\mathbf{L}	Κ	Р	A	Students
0	0	1	0	6
0	0	1	1	54
0	1	1	1	10
1	0	0	0	5
1	0	1	0	1
1	0	1	1	0
1	1	0	0	17
1	1	1	0	4
1	1	1	1	3

Structured Space

unstructured

L	K	Р	Α
0	0	0	0
0	0	0	1
0	0	1	0
0	0	1	1
0	1	0	0
0	1	0	1
0	1	1	0
0	1	1	1
1	0	0	0
1	0	0	1
1	0	1	0
1	0	1	1
1	1	0	0
1	1	0	1
1	1	1	0
1	1	1	1

Structured Space

unstructured

L	K	Р	А
0	0	0	0
0	0	0	1
0	0	1	0
0	0	1	1
0	1	0	0
0	1	0	1
0	1	1	0
0	1	1	1
1	0	0	0
1	0	0	1
1	0	1	0
1	0	1	1
1	1	0	0
1	1	0	1
1	1	1	0
1	1	1	1

- Must take at least one of Probability (P) or Logic (L).
- Probability is a prerequisite for AI (A).
- The prerequisites for KR (**K**) is either AI or Logic.

7 out of 16 instantiations are impossible

structured

L	К	Р	Α
0	0		0
0	0	0	1
0	0	1	0
0	0	1	1
0	1	0	1
0	1		0
0	1	1	1
1	0	0	0
1	0	0	1
1	0	1	0
1	0	1	1
1	1	0	0
1	1	0	1
1	1	1	0
1	1	1	1

Example: Video

[Lu, W. L., Ting, J. A., Little, J. J., & Murphy, K. P. (2013). Learning to track and identify players from broadcast sports videos.]

Example: Video

We also connect all pairs of identity nodes $y_{t,i}$ and $y_{t,j}$ if they appear in the same time *t*. We then introduce an edge potential that enforces mutual exclusion:

$$\psi_{\text{mutex}}(y_{t,i}, y_{t,j}) = \begin{cases} 1 & \text{if } y_{t,i} \neq y_{t,j} \\ 0 & \text{otherwise} \end{cases}$$
(5)

This potential specifies the constraint that a player can be appear only *once* in a frame. For example, if the *i*-th detection $y_{t,i}$ has been assign to Bryant, $y_{t,j}$ cannot have the same identity because Bryant is impossible to appear twice in a frame.

[Lu, W. L., Ting, J. A., Little, J. J., & Murphy, K. P. (2013). Learning to track and identify players from broadcast sports videos.]

Example: Robotics

Example: Robotics

The method developed in this paper can be used in a broad variety of semantic mapping and object manipulation tasks, providing an efficient and effective way to incorporate collision constraints into a recursive state estimator, obtaining optimal or near-optimal solutions.

Non-local dependencies:

At least one verb in each sentence

- Non-local dependencies:
 At least one verb in each sentence
- Sentence compression
 If a modifier is kept, its subject is also kept

- Non-local dependencies:
 At least one verb in each sentence
- Sentence compression If a modifier is kept, its subject is also kept
- Information extraction

	Citations
Start	The citation must start with author or editor.
AppearsOnce	Each field must be a consecutive list of words, and can appear at most once in a citation.
Punctuation	State transitions must occur on punctuation marks.
BookJournal	The words proc, journal, proceed- ings, ACM are JOURNAL or BOOKTITLE.
	•••
TechReport	The words <i>tech, technical</i> are <i>TECH_REPORT.</i>
Title	Quotations can appear only in titles.
Location	The words CA, Australia, NY are LOCATION.

- Non-local dependencies:
 At least one verb in each sentence
- Sentence compression If a modifier is kept, its subject is also kept
- Information extraction
- Semantic role labeling
- ... and many more!

	Citations
Start	The citation must start with author or editor.
AppearsOnce	Each field must be a consecutive list of words, and can appear at most once in a citation.
Punctuation	State transitions must occur on punctuation marks.
BookJournal	The words proc, journal, proceed- ings, ACM are JOURNAL or BOOKTITLE.
• • • •	
TechReport	The words <i>tech</i> , <i>technical</i> are <i>TECH_REPORT</i> .
Title	Quotations can appear only in titles.
Location	The words CA, Australia, NY are LOCATION.

New Scientist

HOME NEWS TECHNOLOGY SPACE PHYSICS HEALTH EARTH HUMANS LIFE TOPICS EVENTS JOBS

Meet The People Shaping The Future Of Energy: Reinventing Energy Summit - 25 November in L

iome | News | Technology

G f 😏 🗢 🕂 🛛 26

DAILY NEWS 12 October 2016

DeepMind's AI has learned to navigate the Tube using memory

nature International W

 Home
 News & Comment
 Research
 Careers & Jobs
 Current Issue
 Archive
 Audio & Video
 Free

 News & Comment
 News
 2016
 November
 Article

NATURE | NEWS

Google's Al reasons its way around the London Underground

beepMind's latest technique uses external memory to solve tasks that require <mark>logic</mark> and easoning — a step toward more human-like Al.

Elizabeth Gibne

Ĺ	Κ	Р	A	Students
0	0	1	0	6
0	0	1	1	54
0	1	1	1	10
1	0	0	0	5
1	0	1	0	1
1	0	1	1	0
1	1	0	0	17
1	1	1	0	4
1	1	1	1	3

L	K	Р	А	Students
$\frac{\mathbf{L}}{0}$	$\frac{\mathbf{n}}{0}$	1	$\frac{11}{0}$	6
0	0	1	1	54
0	1	1	1	10
1	0	0	0	5
1	0	1	0	1
1	0	1	1	0
1	1	0	0	17
1	1	1	0	4
1	1	1	1	3

Constraints (Background Knowledge) (Physics)

 $P \lor L$ $A \Rightarrow P$ $K \Rightarrow$

Statistical ML tools don't take constraints as input! 😕

Specification Language: Logic

Structured Probability Space

unstructured

L	К	Р	Α
0	0	0	0
0	0	0	1
0	0	1	0
0	0	1	1
0	1	0	0
0	1	0	1
0	1	1	0
0	1	1	1
1	0	0	0
1	0	0	1
1	0	1	0
1	0	1	1
1	1	0	0
1	1	0	1
1	1	1	0
1	1	1	1

- Must take at least one of Probability or Logic.
- Probability is a prerequisite for AI.
- The prerequisites for KR is either AI or Logic.

7 out of 16 instantiations are impossible

structured

L	K	Р	А
0	0	0	0
0	0	0	1
0	0	1	0
0	0	1	1
0	1		
0	1	0	1
0	1	1	0
0	1	1	1
1	0	0	0
1	0	0	1
1	0	1	0
1	0	1	1
1	1	0	0
1	1	0	1
1	1	1	0
1	1	1	1

Boolean Constraints

uns	stru	ctu	red	
L	К	Р	А	
0	0	0	0	
0	0	0	1	
0	0	1	0	$P \lor L$
0	0	1	1	
0	1	0	0	$A \Rightarrow P$
0	1	0	1	$K \Rightarrow (P \lor L)$
0	1	1	0	
0	1	1	1	
1	0	0	0	
1	0	0	1	
1	0	1	0	7 out of 16 instantiations
1	0	1	1	/ out of to instantiations
1	1	0	0	are impossible
1	1	0	1	L
1	1	1	0	
1	1	1	1	

structured

L	К	Р	Α
	0		0
0	0	0	1
0	0	1	0
0	0	1	1
	1		0
0	1	0	1
	1		0
0	1	1	1
1	0	0	0
1	0	0	1
1	0	1	0
1	0	1	1
1	1	0	0
1	1	0	1
1	1	1	0
1	1	1	1

Combinatorial Objects: Rankings

rank	sushi	r	ank	sushi
1	fatty tuna		1	shrimp
2	sea urchin		2	sea urchin
3	salmon roe		3	salmon roe
4	shrimp		4	fatty tuna
5	tuna		5	tuna
6	squid		6	squid
7	tuna roll		7	tuna roll
8	see eel		8	see eel
9	egg		9	egg
10	cucumber roll		10	cucumber roll

10 items: 3,628,800 rankings

20 items: 2,432,902,008,176,640,000 rankings

Combinatorial Objects: Rankings

rank	sushi	rank	sushi
1	fatty tuna	1	shrimp
2	sea urchin	2	sea urchin
3	salmon roe	3	salmon roe
4	shrimp	4	fatty tuna
5	tuna	5	tuna
6	squid	6	squid
7	tuna roll	7	tuna roll
8	see eel	8	see eel
9	egg	9	egg
10	cucumber roll	10	cucumber roll

A_{ij} item *i* at position *j*(*n* items require *n*²
Boolean variables)

Combinatorial Objects: Rankings

rank	sushi	rank	sushi
1	fatty tuna	1	shrimp
2	sea urchin	2	sea urchin
3	salmon roe	3	salmon roe
4	shrimp	4	fatty tuna
5	tuna	5	tuna
6	squid	6	squid
7	tuna roll	7	tuna roll
8	see eel	8	see eel
9	egg	9	egg
10	cucumber roll	10	cucumber roll

A_{ij} item *i* at position *j*(*n* items require *n*² Boolean variables)

An item may be assigned to more than one position

A position may contain more than one item

A_{ij} : item *i* at position *j*

	pos 1	pos 2	pos 3	pos 4
item 1	<i>A</i> ₁₁	<i>A</i> ₁₂	<i>A</i> ₁₃	<i>A</i> ₁₄
item 2	<i>A</i> ₂₁	A ₂₂	A ₂₃	A_{24}
item 3	<i>A</i> ₃₁	A ₃₂	A ₃₃	<i>A</i> ₃₄
item 4	<i>A</i> ₄₁	A ₄₂	A ₄₃	A_{44}

A_{ij} : item *i* at position *j*

	pos 1	pos 2	pos 3	pos 4
item 1	<i>A</i> ₁₁	<i>A</i> ₁₂	<i>A</i> ₁₃	<i>A</i> ₁₄
item 2	<i>A</i> ₂₁	A ₂₂	A_{23}	A ₂₄
item 3	<i>A</i> ₃₁	<i>A</i> ₃₂	A ₃₃	<i>A</i> ₃₄
item 4	A_{41}	A_{42}	A ₄₃	A_{44}

constraint: each item *i* assigned to a unique position (*n* constraints)

$$\bigvee_{j} A_{ij} \wedge \left(\bigwedge_{k \neq j} \neg A_{ik}\right)$$

A_{ij} : item *i* at position *j*

	pos 1	pos 2	pos 3	pos 4
item 1	<i>A</i> ₁₁	<i>A</i> ₁₂	<i>A</i> ₁₃	<i>A</i> ₁₄
item 2	A ₂₁	A ₂₂	A ₂₃	A_{24}
item 3	<i>A</i> ₃₁	A ₃₂	A ₃₃	<i>A</i> ₃₄
item 4	<i>A</i> ₄₁	A_{42}	A ₄₃	A_{44}

constraint: each item *i* assigned to a unique position (*n* constraints)

$$\bigvee_{j} A_{ij} \wedge \left(\bigwedge_{k \neq j} \neg A_{ik}\right)$$

constraint: each position *j* assigned a unique item (*n* constraints)

$$\bigvee_i A_{ij} \wedge \left(\bigwedge_{k \neq i} \neg A_{kj}\right)$$

A_{ij} : item *i* at position *j*

	pos 1	pos 2	pos 3	pos 4
item 1	<i>A</i> ₁₁	A ₁₂	A ₁₃	<i>A</i> ₁₄
item 2	<i>A</i> ₂₁	A ₂₂	A ₂₃	A_{24}
item 3	<i>A</i> ₃₁	A ₃₂	A ₃₃	<i>A</i> ₃₄
item 4	<i>A</i> ₄₁	A_{42}	A ₄₃	A_{44}

constraint: each item *i* assigned to a unique position (*n* constraints)

$$\bigvee_{j} A_{ij} \wedge \left(\bigwedge_{k \neq j} \neg A_{ik}\right)$$

constraint: each position *j* assigned a unique item (*n* constraints)

$$\bigvee_i A_{ij} \wedge \left(\bigwedge_{k \neq i} \neg A_{kj}\right)$$

total constraints 2n<u>unstructured</u> space 2^{n^2} structured space n!

Structured Space for Paths cf. Nature paper

Structured Space for Paths cf. Nature paper

Good variable assignment (represents route)

184
Structured Space for Paths cf. Nature paper

Good variable assignment (represents route)

184

Bad variable assignment (does not represent route)

16,777,032

Structured Space for Paths cf. Nature paper

Space easily encoded in logical constraints 🙂 [Nishino et al.]

Structured Space for Paths cf. Nature paper

Space easily encoded in logical constraints \bigcirc [Nishino et al.] Unstructured probability space: 184+16,777,032 = 2²⁴

Logical Circuits

Property: AND gates have disjoint input circuits

Input: L, K, P, A are true and ¬L, ¬K, ¬P, ¬A are false

Input: L, K, P, A are true and ¬L, ¬K, ¬P, ¬A are false

Input: L, K, P, A are true and ¬L, ¬K, ¬P, ¬A are false Property: OR gates have at most one true input wire

Tractable for Logical Inference

- Is structured space empty? (SAT)
- Count size of structured space (#SAT)
- Check equivalence of spaces

Tractable for Logical Inference

- Is structured space empty? (SAT)
- Count size of structured space (#SAT)
- Check equivalence of spaces

 Algorithms linear in circuit size (pass up, pass down, similar to backprop)

Tractable for Logical Inference

- Is structured space empty? (SAT)
- Count size of structured space (#SAT)
- Check equivalence of spaces

 Algorithms linear in circuit size (pass up, pass down, similar to backprop)

Compilation by exhaustive SAT solvers

Semantic Loss for Deep Learning

Deep Structured Output Prediction

Deep Structured Output Prediction

Neural Network

• Output is probability vector **p**, not logic! How close is output to satisfying constraint?

- Output is probability vector **p**, not logic! How close is output to satisfying constraint?
- Answer: Semantic loss function L(α, p)

- Output is probability vector **p**, not logic! How close is output to satisfying constraint?
- Answer: Semantic loss function L(α, p)
- Axioms, for example:

- Output is probability vector **p**, not logic! How close is output to satisfying constraint?
- Answer: Semantic loss function L(α, p)
- Axioms, for example:

- If **p** is Boolean then $L(\mathbf{p},\mathbf{p}) = 0$

- Output is probability vector **p**, not logic! How close is output to satisfying constraint?
- Answer: Semantic loss function L(α, p)
- Axioms, for example:
 - If **p** is Boolean then $L(\mathbf{p},\mathbf{p}) = 0$
 - If α implies β then $L(\alpha, \mathbf{p}) \ge L(\beta, \mathbf{p})$

- Output is probability vector **p**, not logic! How close is output to satisfying constraint?
- Answer: Semantic loss function L(α, p)
- Axioms, for example:
 - If **p** is Boolean then $L(\mathbf{p},\mathbf{p}) = 0$
 - If α implies β then $L(\alpha, \mathbf{p}) \ge L(\beta, \mathbf{p})$
- Properties:

- Output is probability vector p, not logic! How close is output to satisfying constraint?
- Answer: Semantic loss function L(α, p)
- Axioms, for example:
 - If **p** is Boolean then $L(\mathbf{p},\mathbf{p}) = 0$
 - If α implies β then $L(\alpha, \mathbf{p}) \ge L(\beta, \mathbf{p})$
- Properties:

- If α is equivalent to β then $L(\alpha, \mathbf{p}) = L(\beta, \mathbf{p})$

- Output is probability vector p, not logic! How close is output to satisfying constraint?
- Answer: Semantic loss function L(α, p)
- Axioms, for example:
 - If **p** is Boolean then $L(\mathbf{p},\mathbf{p}) = 0$
 - If α implies β then $L(\alpha, \mathbf{p}) \ge L(\beta, \mathbf{p})$
- Properties:
 - If α is equivalent to β then L(α ,**p**) = L(β ,**p**)
 - If **p** is Boolean and satisfies α then $L(\alpha, \mathbf{p}) = 0$

- Output is probability vector p, not logic! How close is output to satisfying constraint?
- Answer: Semantic loss function L(α, p)
- Axioms, for example:
 - If **p** is Boolean then $L(\mathbf{p},\mathbf{p}) = 0$
 - If α implies β then $L(\alpha, \mathbf{p}) \ge L(\beta, \mathbf{p})$
- Properties:
 - If α is equivalent to β then $L(\alpha, \mathbf{p}) = L(\beta, \mathbf{p})$
 - If **p** is Boolean and satisfies α then L(α ,**p**) = 0

SEMANTIC

Loss!

Semantic Loss: Definition

<u>Theorem</u>: Axioms imply unique semantic loss:

$$L^{s}(\alpha, \mathbf{p}) \propto -\log \sum_{\mathbf{x} \models \alpha} \prod_{i:\mathbf{x} \models X_{i}} p_{i} \prod_{i:\mathbf{x} \models \neg X_{i}} (1 - p_{i})$$
Probability of gotting **x** after

Probability of getting **x** after flipping coins with prob. **p**

Probability of satisfying α after flipping coins with prob. **p**

• In general: #P-hard ⊗

- In general: #P-hard ⊗
- With a logical circuit for α: Linear!

- In general: #P-hard ☺
- With a logical circuit for α : Linear! Example: exactly-one constraint: $\begin{cases} x_1 \lor x_2 \lor x_3 \\ \neg x_1 \lor \neg x_2 \\ \neg x_2 \lor \neg x_3 \\ \neg x_1 \lor \neg x_3 \end{cases}$

- In general: #P-hard ☺
- With a logical circuit for α : Linear!
- Example: exactly-one constraint:

 $\begin{cases}
x_1 \lor x_2 \lor x_3 \\
\neg x_1 \lor \neg x_2 \\
\neg x_2 \lor \neg x_3 \\
\neg x_1 \lor \neg x_3
\end{cases}$

- In general: #P-hard ☺
- With a logical circuit for α : Linear! $(x_1 \vee x_1)$
- Example: exactly-one constraint:

 $\begin{pmatrix}
x_1 \lor x_2 \lor x_3 \\
\neg x_1 \lor \neg x_2 \\
\neg x_2 \lor \neg x_3 \\
\neg x_1 \lor \neg x_3
\end{pmatrix}$

- In general: #P-hard ⊗
- With a logical circuit for α : Linear! $(x_1 \vee$
- Example: exactly-one constraint:

 $\begin{cases}
x_1 \lor x_2 \lor x_3 \\
\neg x_1 \lor \neg x_2 \\
\neg x_2 \lor \neg x_3 \\
\neg x_1 \lor \neg x_3
\end{cases}$

• Why? Decomposability and determinism!
- Predict shortest paths
- Add semantic loss to objective

Test accuracy %	Coherent	Incoherent	Constraint
5-layer MLP	5.62	85.91	6.99
Semantic loss	28.51	83.14	69.89

- Predict shortest paths
- Add semantic loss to objective

Test accuracy %	Coherent	Incoherent	Constraint
5-layer MLP	5.62	85.91	6.99
Semantic loss	28.51	83.14	69.89
			Is output
			a patn?

- Predict shortest paths
- Add semantic loss to objective

Test accuracy %	Coherent	Incoherent	Constraint
5-layer MLP	5.62	85.91	6.99
Semantic loss	28.51	83.14	69.89
	I		
	ha	Does output ave true edges	Is output ? a path?

- Predict shortest paths
- Add semantic loss to objective

- Predict sushi preferences
- Add semantic loss to objective

rank	sushi	
1	fatty tuna	
2	sea urchin	
3	salmon roe	
4	shrimp	
5	tuna	
6	squid	
7	tuna roll	
8	see eel	
9	egg	
10	cucumber roll	

Test accuracy %	Coherent	Incoherent	Constraint
3-layer MLP	1.01	75.78	2.72
Semantic loss	13.59	72.43	55.28

- Predict sushi preferences
- Add semantic loss to objective

rank	sushi	
1	fatty tuna	
2	sea urchin	
3	salmon roe	
4	shrimp	
5	tuna	
6	squid	
7	tuna roll	
8	see eel	
9	egg	
10	cucumber roll	

?

Test accuracy %	Coherent	Incoherent	Constraint
3-layer MLP	1.01	75.78	2.72
Semantic loss	13.59	72.43	55.28
			ls outpu
			a ranking

- Predict sushi preferences
- Add semantic loss to objective

rank	sushi
1	fatty tuna
2	sea urchin
3	salmon roe
4	shrimp
5	tuna
6	squid
7	tuna roll
8	see eel
9	egg
10	cucumber roll

- Predict sushi preferences
- Add semantic loss to objective

rank	sushi
1	fatty tuna
2	sea urchin
3	salmon roe
4	shrimp
5	tuna
6	squid
7	tuna roll
8	see eel
9	egg
10	cucumber roll

• Unlabeled data must have some label

Unlabeled data must have some label

Unlabeled data must have some label

Unlabeled data must have some label

Low semantic loss with exactly-one constraint

Unlabeled data must have some label

Low semantic loss with exactly-one constraint

$$L^{s}(exactly-one, p) \propto -\log \sum_{i=1}^{n} p_{i} \prod_{j=1, j \neq i}^{n} (1 - p_{j})$$

MNIST

Accuracy % with # of used labels	100	1000	ALL
AtlasRBF (Pitelis et al., 2014)	91.9 (± 0.95)	96.32 (± 0.12)	98.69
Deep Generative (Kingma et al., 2014)	$96.67(\pm 0.14)$	$97.60(\pm 0.02)$	99.04
Virtual Adversarial (Miyato et al., 2016)	97.67	98.64	99.36
Ladder Net (Rasmus et al., 2015)	98.94 (±0.37)	99.16 (±0.08)	99.43 (± 0.02)
Baseline: MLP, Gaussian Noise	78.46 (±1.94)	94.26 (±0.31)	99.34 (±0.08)
Baseline: Self-Training	72.55 (±4.21)	87.43 (±3.07)	
MLP with Semantic Loss	98.38 (±0.51)	98.78 (±0.17)	99.36 (±0.02)

FASHION

Accuracy % with # of used labels	100	500	1000	ALL
Ladder Net (Rasmus et al., 2015)	81.46 (±0.64)	85.18 (±0.27)	86.48 (± 0.15)	90.46
Baseline: MLP, Gaussian Noise	69.45 (±2.03)	78.12 (±1.41)	80.94 (±0.84)	89.87
MLP with Semantic Loss	86.74 (±0.71)	89.49 (±0.24)	89.67 (±0.09)	89.81

(a) Confidently Correct

(b) Unconfidently Correct

(d) Confidently Incorrect

(c) Unconfidently Incorrect

CIFAR10

Accuracy % with # of used labels	4000	ALL
CNN Baseline in Ladder Net	$76.67 (\pm 0.61)$	90.73
Ladder Net (Rasmus et al., 2015)	79.60 (±0.47)	
Baseline: CNN, Whitening, Cropping	77.13	90.96
CNN with Semantic Loss	81.79	90.92

Semantic Loss Conclusions

- Cares about *meaning* not syntax
- Elegant axiomatic approach

Semantic Loss Conclusions

- Cares about *meaning* not syntax
- Elegant axiomatic approach

• If you have complex output constraints Use logical circuits to enforce them

Semantic Loss Conclusions

- Cares about *meaning* not syntax
- Elegant axiomatic approach

If you have complex output constraints
 Use logical circuits to enforce them
 If you have unlabeled data (no constraints)
 Get a lot of signal by minimizing
 semantic loss of exactly-one

Probabilistic Circuits

PSDD: Probabilistic SDD

Can read probabilistic independences off the circuit structure

Tractable for Probabilistic Inference

- MAP inference: Find most-likely assignment (otherwise NP-complete)
- Computing conditional probabilities Pr(x|y) (otherwise PP-complete)
- **Sample** from Pr(x|y)

Tractable for Probabilistic Inference

- MAP inference: Find most-likely assignment (otherwise NP-complete)
- Computing conditional probabilities Pr(x|y) (otherwise PP-complete)
- **Sample** from Pr(x|y)

Algorithms linear in circuit size ③ (pass up, pass down, similar to backprop)

Learning Probabilistic Circuits

Explainable AI DARPA Program

Learning Algorithms

• Parameter learning:

Closed form max likelihood from complete data One pass over data to estimate Pr(x|y)

Learning Algorithms

• Parameter learning:

Closed form max likelihood from complete data

One pass over data to estimate Pr(x|y)

Not a lot to say: very easy!
Learning Algorithms

• Parameter learning:

Closed form max likelihood from complete data One pass over data to estimate Pr(x|y)

Not a lot to say: very easy!

• Structure learning:

Learning Algorithms

• Parameter learning:

Closed form max likelihood from complete data One pass over data to estimate Pr(x|y)

Not a lot to say: very easy!

- Structure learning:
 - Compile logical constraint for structured space
 Use SAT solver technology

Learning Algorithms

• Parameter learning:

Closed form max likelihood from complete data One pass over data to estimate Pr(x|y)

Not a lot to say: very easy!

- Structure learning:
 - Compile logical constraint for structured space
 Use SAT solver technology
 - Learn structure from data by search/optimization

Learning Preference Distributions

Learning Preference Distributions

This is the naive approach, circuit does not depend on data!

Learning from Incomplete Data

- Movielens Dataset:
 - 3,900 movies, 6,040 users, 1m ratings
 - take ratings from 64 most rated movies
 - ratings 1-5 converted to pairwise prefs.
- PSDD for **partial** rankings
 - 4 tiers
 - 18,711 parameters

movies by expected tier

rank	movie					
1	The Godfather					
2	The Usual Suspects					
3	Casablanca					
4	The Shawshank Redemption					
5	Schindler's List					
6	One Flew Over the Cuckoo's Nest					
7	The Godfather: Part II					
8	Monty Python and the Holy Grail					
9	Raiders of the Lost Ark					
10	Star Wars IV: A New Hope					

rank	movie
1	Star Wars V: The Empire Strikes Back
2	Star Wars IV: A New Hope
3	The Godfather
4	The Shawshank Redemption
5	The Usual Suspects

rank	movie
1	Star Wars V: The Empire Strikes Back
2	Star Wars IV: A New Hope
3	The Godfather
4	The Shawshank Redemption
5	The Usual Suspects

- no other Star Wars movie in top-5
- at least one comedy in top-5

rank	movie
1	Star Wars V: The Empire Strikes Back
2	Star Wars IV: A New Hope
3	The Godfather
4	The Shawshank Redemption
5	The Usual Suspects

- no other Star Wars movie in top-5
- at least one comedy in top-5

rank	movie
1	Star Wars V: The Empire Strikes Back
2	American Beauty
3	The Godfather
4	The Usual Suspects
5	The Shawshank Redemption

rank	movie
1	Star Wars V: The Empire Strikes Back
2	Star Wars IV: A New Hope
3	The Godfather
4	The Shawshank Redemption
5	The Usual Suspects

- no other Star Wars movie in top-5
- at least one comedy in top-5

rank	movie					
1	Star Wars V: The Empire Strikes Back					
2	American Beauty					
3	The Godfather					
4	The Usual Suspects					
5	The Shawshank Redemption					

diversified recommendations via *logical constraints*

Learning Probabilistic Circuit Structure

Bayesian networks

Markov networks

Bayesian networks Markov networks

Do not support linear-time exact inference

Historically: Polytrees, Chow-Liu trees, etc.

Cutset Networks

Both are Arithmetic Circuits (ACs)

[Darwiche, JACM 2003]

PSDDs are Arithmetic Circuits

DNN

Strong Properties

Representational Freedom

Strong Properties

Strong Properties

Variable Trees (vtrees)

Learning Variable Trees

• How much do vars depend on each other?

$$\mathrm{MI}(\mathbf{X},\mathbf{Y}) = \sum_{X \in \mathbf{X}} \sum_{Y \in \mathbf{Y}} \mathrm{Pr}(X,Y) \log \frac{\mathrm{Pr}(X,Y)}{\mathrm{Pr}(X) \mathrm{Pr}(Y)}$$

Learn vtree by hierarchical clustering

Learning Variable Trees

How much do vars depend on each other?

$$\mathrm{MI}(\mathbf{X}, \mathbf{Y}) = \sum_{X \in \mathbf{X}} \sum_{Y \in \mathbf{Y}} \mathrm{Pr}(X, Y) \log \frac{\mathrm{Pr}(X, Y)}{\mathrm{Pr}(X) \mathrm{Pr}(Y)}$$

Learn vtree by hierarchical clustering

Learning Primitives

Learning Primitives

Learning Primitives

Primitives maintain PSDD properties and structured space!

LearnPSDD

LearnPSDD

Experiments on 20 datasets

Datasets	Var	Train	Valid	Test	LearnP	SDD	EM-LearnI	PSDD	SearchSPN	Merged L	-SPN	Merged (D-SPN
Datasets	1 41	II alli	vanu	1650	LL	Size	LL	Size	LL	LL	Size	LL	Size
NLTCS	16	16181	2157	3236	$-6.03^{\dagger *}$	3170	-6.03^{*}	2147	-6.07	-6.04	3988	-6.05	1152
MSNBC	17	291326	38843	58265	-6.05^{\dagger}	8977	-6.04^{*}	3891	-6.06	-6.46	2440	-6.08	9478
KDD	64	1800992	19907	34955	-2.16^\dagger	14974	-2.12^*	9182	-2.16	-2.14	6670	-2.19	16608
Plants	69	17412	2321	3482	-14.93	13129	-13.79^{*}	13951	-13.12^{\dagger}	-12.69	47802	-13.49	36960
Audio	100	15000	2000	3000	-42.53	13765	-41.98*	9721	-40.13^{\dagger}	-40.02	10804	-42.06	6142
Jester	100	9000	1000	4116	-57.67	11322	-53.47^{*}	7014	-53.08^{\dagger}	-52.97	10002	-55.36	4996
Netflix	100	15000	2000	3000	-58.92	10997	-58.41^{*}	6250	-56.91^\dagger	-56.64	11604	-58.64	6142
Accidents	111	12758	1700	2551	-34.13	10489	-33.64^*	6752	-30.02^\dagger	-30.01	13322	-30.83	6846
Retail	135	22041	2938	4408	-11.13	4091	-10.81^{*}	7251	-10.97^\dagger	-10.87	2162	-10.95	3158
Pumsb-Star	163	12262	1635	2452	-34.11	10489	-33.67^{*}	7965	-28.69^{\dagger}	-24.11	17604	-24.34	18338
DNA	180	1600	400	1186	-89.11^{*}	6068	-92.67	14864	-81.76^{\dagger}	-85.51	4320	-87.49	1430
Kosarek	190	33375	4450	6675	-10.99^{\dagger}	11034	-10.81^{*}	10179	-11.00	-10.62	5318	-10.98	6712
MSWeb	294	29441	32750	5000	-10.18^{\dagger}	11389	-9.97^{*}	14512	-10.25	-9.90	16484	-10.06	12770
Book	500	8700	1159	1739	-35.90	15197	-34.97^*	11292	-34.91^\dagger	-34.76	11998	-37.44	11916
EachMovie	500	4524	1002	591	-56.43^*	12483	-58.01	16074	-53.28^\dagger	-52.07	15998	-58.05	19846
WebKB	839	2803	558	838	-163.42	10033	-161.09^{*}	18431	-157.88^{\dagger}	-153.55	20134	-161.17	10046
Reuters-52	889	6532	1028	1530	-94.94	10585	-89.61*	9546	-86.38^{\dagger}	-83.90	46232	-87.49	28334
20NewsGrp.	910	11293	3764	3764	-161.41	12222	-161.09^{*}	18431	-153.63^\dagger	-154.67	43684	-161.46	29016
BBC	1058	1670	225	330	-260.83	10585	-253.19^{*}	20327	-252.13^\dagger	-253.45	21160	-260.59	8454
AD	1556	2461	327	491	-30.49^{*}	9666	-31.78	9521	-16.97^{\dagger}	-16.77	49790	-15.39	31070

Experiments on 20 datasets

Compare with O-SPN: smaller size in 14, better LL in 11, win on both in 6

Compare with L-SPN: smaller size in 14, better LL in 6, win on both in 2

Experiments on 20 datasets

Compare with O-SPN: smaller size in 14, better LL in 11, win on both in 6

Compare with L-SPN: smaller size in 14, better LL in 6, win on both in 2

Comparable in performance & Smaller in size

Ensembles of PSDDs

Ensembles of PSDDs

EM/Bagging

Ensembles of PSDDs

EM/Bagging

State-of-the-Art Performance

Datasets	Var	LearnPSDD Ensemble	Best-to-Date		
NLTCS	16	-5.99^{\dagger}	-6.00		
MSNBC	17	-6.04^{\dagger}	- <mark>6.04[†]</mark>		
KDD	64	-2.11^{\dagger}	-2.12		
Plants	69	-13.02	-11.99^{\dagger}		
Audio	100	-39.94	-39.49^{\dagger}		
Jester	100	-51.29	-41.11^{\dagger}		
Netflix	100	-55.71^{+}	-55.84		
Accidents	111	-30.16	-24.87^{\dagger}		
Retail	135	-10.72^{\dagger}	-10.78		
Pumsb-Star	163	-26.12	-22.40^{\dagger}		
DNA	180	-88.01	-80.03^{\dagger}		
Kosarek	190	-10.52^\dagger	-10.54		
MSWeb	294	-9.89	-9.22^{\dagger}		
Book	500	-34.97	-30.18^{\dagger}		
EachMovie	500	-58.01	-51.14^{\dagger}		
WebKB	839	-161.09	-150.10^{\dagger}		
Reuters-52	889	-89.61	-80.66^{\dagger}		
20NewsGrp.	910	-155.97	-150.88^{\dagger}		
BBC	1058	-253.19	-233.26^{\dagger}		
AD	1556	-31.78	-14.36^{\dagger}		

State-of-the-Art Performance

Datasets	Var	LearnPSDD Ensemble	Best-to-Date
NETCS	16	-5.99^{\dagger}	-6.00
MSNBC	17	-6.04^{+}	-6.04^{\dagger}
KDD	64	-2.11^{\dagger}	-2.12
Plants	69	-13.02	-11.99^{\dagger}
Audio	100	-39.94	-39.49^{\dagger}
Jester	100	-51.29	-41.11^{\dagger}
Netflix	100	-55.71^{\dagger}	-55.84
Accidents	111	-30.16	-24.87^{\dagger}
Retail	135	-10.72^{\dagger}	-10.78
Pumsb-Star	163	-26.12	-22.40^{\dagger}
DNA	180	-88.01	-80.03^{\dagger}
Kosarek	190	-10.52^{\dagger}	-10.54
MSWeb	294	-9.89	-9.22^{\dagger}
Book	500	-34.97	-30.18^{\dagger}
EachMovie	500	-58.01	-51.14^{\dagger}
WebKB	839	-161.09	-150.10^{\dagger}
Reuters-52	889	-89.61	-80.66^{\dagger}
20NewsGrp.	910	-155.97	-150.88^{\dagger}
BBC	1058	-253.19	-233.26^{\dagger}
AD	1556	-31.78	-14.36^{\dagger}

State of the art in 6 datasets
Multi-valued data = exactly-one constraint

Multi-valued data = exactly-one constraint

$$\begin{pmatrix}
x_1 \lor x_2 \lor x_3 \\
\neg x_1 \lor \neg x_2 \\
\neg x_2 \lor \neg x_3 \\
\neg x_1 \lor \neg x_3
\end{pmatrix}$$

Multi-valued data = exactly-one constraint

$$\begin{pmatrix}
x_1 \lor x_2 \lor x_3 \\
\neg x_1 \lor \neg x_2 \\
\neg x_2 \lor \neg x_3 \\
\neg x_1 \lor \neg x_3
\end{pmatrix}$$

Datasets	No Constraint	PSDD	LEARNPSDD
Adult	-18.41	-14.14	-12.86
CovType	-14.39	-8.81	-7.32

Multi-valued data = exactly-one constraint

$$\begin{pmatrix}
x_1 \lor x_2 \lor x_3 \\
\neg x_1 \lor \neg x_2 \\
\neg x_2 \lor \neg x_3 \\
\neg x_1 \lor \neg x_3
\end{pmatrix}$$

Datasets	No Constraint	PSDD	LEARNPSDD
Adult	-18.41	-14.14	-12.86
CovType	-14.39	-8.81	-7.32

Never omit domain constraints!

Circuit-Based Probabilistic Reasoning

Compilation for Inference

$$\Pr(\texttt{Rain}) = 0.2,$$

 $\Pr(\texttt{Sun} \mid \texttt{Rain}) = \begin{cases} 0.1 \text{ if } \texttt{Rain} \\ 0.7 \text{ if } \neg \texttt{Rain} \end{cases}$
 $\Pr(\texttt{Rbow} \mid \texttt{R}, \texttt{S}) = \begin{cases} 1 \text{ if } \texttt{Rain} \land \texttt{Sun} \\ 0 \text{ otherwise} \end{cases}$

Compilation for Inference

$$\Pr(\texttt{Rain}) = 0.2,$$

 $\Pr(\texttt{Sun} \mid \texttt{Rain}) = \begin{cases} 0.1 \text{ if } \texttt{Rain} \\ 0.7 \text{ if } \neg \texttt{Rain} \end{cases}$
 $\Pr(\texttt{Rbow} \mid \texttt{R}, \texttt{S}) = \begin{cases} 1 \text{ if } \texttt{Rain} \land \texttt{Sun} \\ 0 \text{ otherwise} \end{cases}$

Ongoing Work

- Probabilistic program inference by compilation
- Approximate inference by collapsed compilation
- Robust feature selection
 by compilation [IJCAI18]

• Powerful reasoning toolbox!

Conclusions

- Logic is everywhere in machine learning ©
- Probabilistic circuits build on logical circuits
 - 1. Tractability
 - 2. Semantics
 - 3. Natural encoding of structured spaces
- Learning is effective
 - 1. Enforcing neural network output constraints State of the art semi-supervised learning and complex output
 - 2. Density estimation from constraints encoding structured space State of the art learning preference distributions
 - 3. Density estimation from standard unstructured datasets State of the art on standard tractable learning datasets

Conclusions

References

Jingyi Xu, Zilu Zhang, Tal Friedman, Yitao Liang and Guy Van den Broeck. <u>A Semantic Loss Function for Deep Learning with Symbolic</u> <u>Knowledge</u>, *In Proceedings of the International Conference on Machine Learning (ICML)*, 2018.

YooJung Choi and Guy Van den Broeck. On Robust Trimming of Bayesian Network Classifiers, In Proceedings of the 27th International Joint Conference on Artificial Intelligence (IJCAI), 2018.

Jingyi Xu, Zilu Zhang, Tal Friedman, Yitao Liang and Guy Van den Broeck. <u>A Semantic Loss Function for Deep Learning Under Weak</u> <u>Supervision</u>, In NIPS 2017 Workshop on Learning with Limited Labeled Data: Weak Supervision and Beyond, 2017.

Yitao Liang and Guy Van den Broeck. Towards Compact Interpretable Models: Shrinking of Learned Probabilistic Sentential Decision Diagrams, In IJCAI 2017 Workshop on Explainable Artificial Intelligence (XAI), 2017.

YooJung Choi, Adnan Darwiche and Guy Van den Broeck. Optimal Feature Selection for Decision Robustness in Bayesian Networks, In Proceedings of the 26th International Joint Conference on Artificial Intelligence (IJCAI), 2017.

Yitao Liang, Jessa Bekker and Guy Van den Broeck. Learning the Structure of Probabilistic Sentential Decision Diagrams, In Proceedings of the 33rd Conference on Uncertainty in Artificial Intelligence (UAI), 2017.

Jessa Bekker, Jesse Davis, Arthur Choi, Adnan Darwiche and Guy Van den Broeck. <u>Tractable Learning for Complex Probability</u> <u>Queries</u>, In Advances in Neural Information Processing Systems 28 (NIPS), 2015.

Arthur Choi, Guy Van den Broeck and Adnan Darwiche. Probability Distributions over Structured Spaces, In Proceedings of the AAAI Spring Symposium on KRR, 2015.

Arthur Choi, Guy Van den Broeck and Adnan Darwiche. <u>Tractable Learning for Structured Probability Spaces: A Case Study in Learning</u> <u>Preference Distributions</u>, In Proceedings of 24th International Joint Conference on Artificial Intelligence (IJCAI), 2015.

Doga Kisa, Guy Van den Broeck, Arthur Choi and Adnan Darwiche. Probabilistic sentential decision diagrams: Learning with massive logical constraints, In ICML Workshop on Learning Tractable Probabilistic Models (LTPM), 2014.

Doga Kisa, Guy Van den Broeck, Arthur Choi and Adnan Darwiche. <u>Probabilistic sentential decision diagrams</u>, In Proceedings of the 14th International Conference on Principles of Knowledge Representation and Reasoning (KR), 2014.

(... and ongoing work by Tal Friedman, YooJung Choi, and Yitao Liang)

Questions?

PSDD with 15,000 nodes

LearnPSDD code: <u>https://github.com/UCLA-StarAI/LearnPSDD</u> Other code online soon