# Probabilistic Circuits: <br> A New Synthesis of Logic and Machine Learning 

## Guy Van den Broeck




## Overview

## Statistical ML "Probability"

## Symbolic AI

 "Logic"Connectionism "Deep"

## References

Jingyi Xu, Zilu Zhang, Tal Friedman, Yitao Liang and Guy Van den Broeck. A Semantic Loss Function for Deep Learning with Symbolic Knowledge, In Proceedings of the International Conference on Machine Learning (ICML), 2018.

YooJung Choi and Guy Van den Broeck. On Robust Trimming of Bayesian Network Classifiers, In Proceedings of the 27th International Joint Conference on Artificial Intelligence (IJCAI), 2018.

Jingyi Xu, Zilu Zhang, Tal Friedman, Yitao Liang and Guy Van den Broeck. A Semantic Loss Function for Deep Learning Under Weak Supervision, In NIPS 2017 Workshop on Learning with Limited Labeled Data: Weak Supervision and Beyond, 2017.

Yitao Liang and Guy Van den Broeck. Towards Compact Interpretable Models: Shrinking of Learned Probabilistic Sentential Decision Diagrams, In IJCAI 2017 Workshop on Explainable Artificial Intelligence (XAI), 2017.

YooJung Choi, Adnan Darwiche and Guy Van den Broeck. Optimal Feature Selection for Decision Robustness in Bayesian Networks, In Proceedings of the 26th International Joint Conference on Artificial Intelligence (IJCAI), 2017.

Yitao Liang, Jessa Bekker and Guy Van den Broeck. Learning the Structure of Probabilistic Sentential Decision Diagrams, In Proceedings of the 33rd Conference on Uncertainty in Artificial Intelligence (UAI), 2017.

Jessa Bekker, Jesse Davis, Arthur Choi, Adnan Darwiche and Guy Van den Broeck. Tractable Learning for Complex Probability Queries, In Advances in Neural Information Processing Systems 28 (NIPS), 2015.

Arthur Choi, Guy Van den Broeck and Adnan Darwiche. Probability Distributions over Structured Spaces, In Proceedings of the AAAI Spring Symposium on KRR, 2015.

Arthur Choi, Guy Van den Broeck and Adnan Darwiche. Tractable Learning for Structured Probability Spaces: A Case Study in Learning Preference Distributions, In Proceedings of 24th International Joint Conference on Artificial Intelligence (IJCAI), 2015.

Doga Kisa, Guy Van den Broeck, Arthur Choi and Adnan Darwiche. Probabilistic sentential decision diagrams: Learning with massive logical constraints, In ICML Workshop on Learning Tractable Probabilistic Models (LTPM), 2014.

Doga Kisa, Guy Van den Broeck, Arthur Choi and Adnan Darwiche. Probabilistic sentential decision diagrams, In Proceedings of the 14th International Conference on Principles of Knowledge Representation and Reasoning (KR), 2014.
(... and ongoing work by Tal Friedman, YooJung Choi, and Yitao Liang)

## Structured Spaces

## Running Example

## Courses:

- Logic (L)
- Knowledge Representation (K)
- Probability (P)
- Artificial Intelligence (A)


## Data

| L | K | P | A | Students |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 1 | 0 | 6 |
| 0 | 0 | 1 | 1 | 54 |
| 0 | 1 | 1 | 1 | 10 |
| 1 | 0 | 0 | 0 | 5 |
| 1 | 0 | 1 | 0 | 1 |
| 1 | 0 | 1 | 1 | 0 |
| 1 | 1 | 0 | 0 | 17 |
| 1 | 1 | 1 | 0 | 4 |
| 1 | 1 | 1 | 1 | 3 |

## Running Example

## Courses:

- Logic (L)
- Knowledge Representation (K)
- Probability (P)
- Artificial Intelligence (A)


## Constraints

- Must take at least one of Probability or Logic.
- Probability is a prerequisite for AI.


## Data

| L | K | P | A | Students |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 1 | 0 | 6 |
| 0 | 0 | 1 | 1 | 54 |
| 0 | 1 | 1 | 1 | 10 |
| 1 | 0 | 0 | 0 | 5 |
| 1 | 0 | 1 | 0 | 1 |
| 1 | 0 | 1 | 1 | 0 |
| 1 | 1 | 0 | 0 | 17 |
| 1 | 1 | 1 | 0 | 4 |
| 1 | 1 | 1 | 1 | 3 |

- The prerequisites for KR is either AI or Logic.


## Structured Space

unstructured

| L | K | P | A |
| :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 1 |
| 0 | 0 | 1 | 0 |
| 0 | 0 | 1 | 1 |
| 0 | 1 | 0 | 0 |
| 0 | 1 | 0 | 1 |
| 0 | 1 | 1 | 0 |
| 0 | 1 | 1 | 1 |
| 1 | 0 | 0 | 0 |
| 1 | 0 | 0 | 1 |
| 1 | 0 | 1 | 0 |
| 1 | 0 | 1 | 1 |
| 1 | 1 | 0 | 0 |
| 1 | 1 | 0 | 1 |
| 1 | 1 | 1 | 0 |
| 1 | 1 | 1 | 1 |

## Structured Space

| unstructured |  |  |  |
| :---: | :---: | :---: | :---: |
| L | K | P | A |
| 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 1 |
| 0 | 0 | 1 | 0 |
| 0 | 0 | 1 | 1 |
| 0 | 1 | 0 | 0 |
| 0 | 1 | 0 | 1 |
| 0 | 1 | 1 | 0 |
| 0 | 1 | 1 | 1 |
| 1 | 0 | 0 | 0 |
| 1 | 0 | 0 | 1 |
| 1 | 0 | 1 | 0 |
| 1 | 0 | 1 | 1 |
| 1 | 1 | 0 | 0 |
| 1 | 1 | 0 | 1 |
| 1 | 1 | 1 | 0 |
| 1 | 1 | 1 | 1 |



## Example: Video


[Lu, W. L., Ting, J. A., Little, J. J., \& Murphy, K. P. (2013). Learning to track and identify players from broadcast sports videos.]

## Example: Video



We also connect all pairs of identity nodes $y_{t, i}$ and $y_{t, j}$ if they appear in the same time $t$. We then introduce an edge potential that enforces mutual exclusion:

$$
\psi_{\text {mutex }}\left(y_{t, i}, y_{t, j}\right)= \begin{cases}1 & \text { if } y_{t, i} \neq y_{t, j}  \tag{5}\\ 0 & \text { otherwise }\end{cases}
$$

This potential specifies the constraint that a player can be appear only once in a frame. For example, if the $i$-th detection $y_{t, i}$ has been assign to Bryant, $y_{t, j}$ cannot have the same identity because Bryant is impossible to appear twice in a frame.
[Lu, W. L., Ting, J. A., Little, J. J., \& Murphy, K. P. (2013). Learning to track and identify players from broadcast sports videos.]

## Example: Robotics



## Example: Robotics



The method developed in this paper can be used in a broad variety of semantic mapping and object manipulation tasks, providing an efficient and effective way to incorporate collision constraints into a recursive state estimator, obtaining optimal or near-optimal solutions.
[Wong, L. L., Kaelbling, L. P., \& Lozano-Perez, T., Collision-free state estimation. ICRA 2012]

## Example: Language

- Non-local dependencies:

At least one verb in each sentence

## Example: Language

- Non-local dependencies:

At least one verb in each sentence

- Sentence compression

If a modifier is kept, its subject is also kept

## Example: Language

- Non-local dependencies: At least one verb in each sentence
- Sentence compression If a modifier is kept, its subject is also kept
- Information extraction

| Citations |  |
| :--- | :--- |
| Start | The citation must start with author <br> or editor. |
| AppearsOnce | Each field must be a consecutive list <br> of words, and can appear at most <br> once in a citation. |
| Punctuation | State transitions must occur on <br> punctuation marks. |
| BookJournal | The words proc, journal, proceed- <br> ings, ACM <br> are JOURNAL or BOOKTITLE. |
| $\ldots$ | Che words tech, technical are <br> TECCH_REPORT. |
| TechReport | Quotations can appear only in titles. |
| Title | The words CA, Australia, NY are <br> LOCATION. |
| Location |  |

[Chang, M., Ratinov, L., \& Roth, D. (2008). Constraints as prior knowledge],..., [Chang, M. W., Ratinov, L., \& Roth, D. (2012). Structured learning with constrained conditional models.], [https://en.wikipedia.org/wiki/Constrained_conditional_model]

## Example: Language

- Non-local dependencies: At least one verb in each sentence
- Sentence compression If a modifier is kept, its subject is also kept
- Information extraction
- Semantic role labeling
- ... and many more!

| Citations |  |
| :--- | :--- |
| Start | The citation must start with author <br> or editor. |
| AppearsOnce | Each field must be a consecutive list <br> of words, and can appear at most <br> once in a citation. |
| Punctuation | State transitions must occur on <br> punctuation marks. |
| BookJournal | The words proc, journal, proceed- <br> ings, ACM <br> are JOURNAL or BOOKTITLE. |
| $\ldots$ | The words tech, technical are <br> TECH_REPORT. |
| TechReport | Quotations can appear only in titles. <br> TitleThe words CA, Australia, NY are <br> LOCATION. |
| Location |  |

[Chang, M., Ratinov, L., \& Roth, D. (2008). Constraints as prior knowledge],..., [Chang, M. W., Ratinov, L., \& Roth, D. (2012). Structured learning with constrained conditional models.], [https://en.wikipedia.org/wiki/Constrained_conditional_model]

# Example: Deep Learning 


[Graves, A., Wayne, G., Reynolds, M., Harley, T., Danihelka, I., Grabska-Barwińska, A., et al.. (2016). Hybrid computing using a neural network with dynamic external memory. Nature, 538(7626), 471-476.]

## Example: Deep Learning

## Example: Deep Learning

optimal planner recalculating a shortest path to the end node. To ensure that the network always moved to a valid node, the output distribution was renormalized over the set of possible triples outgoing from the current node. The performance

## Example: Deep Learning

optimal planner recalculating a shortest path to the end node. To ensure that the network always moved to a valid node, the output distribution was renormalized over the set of possible triples outgoing from the current node. The performance
it also received input triples during the answer phase, indicating the actions chosen on the previous time-step. This makes the problem a 'structured prediction

## Learning in Structured Spaces

| L | K | P | A | Students |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 1 | 0 | 6 |
| 0 | 0 | 1 | 1 | 54 |
| 0 | 1 | 1 | 1 | 10 |
| 1 | 0 | 0 | 0 | 5 |
| 1 | 0 | 1 | 0 | 1 |
| 1 | 0 | 1 | 1 | 0 |
| 1 | 1 | 0 | 0 | 17 |
| 1 | 1 | 1 | 0 | 4 |
| 1 | 1 | 1 | 1 | 3 |

## Learning in Structured Spaces

| L | K | P | A | Students |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 1 | 0 | 6 |
| 0 | 0 | 1 | 1 | 54 |
| 0 | 1 | 1 | 1 | 10 |
| 1 | 0 | 0 | 0 | 5 |
| 1 | 0 | 1 | 0 | 1 |
| 1 | 0 | 1 | 1 | 0 |
| 1 | 1 | 0 | 0 | 17 |
| 1 | 1 | 1 | 0 | 4 |
| 1 | 1 | 1 | 1 | 3 |



## Learning in Structured Spaces

| L | K | P | A | Students |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 1 | 0 | 6 |
| 0 | 0 | 1 | 1 | 54 |
| 0 | 1 | 1 | 1 | 10 |
| 1 | 0 | 0 | 0 | 5 |
| 1 | 0 | 1 | 0 | 1 |
| 1 | 0 | 1 | 1 | 0 |
| 1 | 1 | 0 | 0 | 17 |
| 1 | 1 | 1 | 0 | 4 |
| 1 | 1 | 1 | 1 | 3 |



## Learning in Structured Spaces

| L | K | P | A | Students |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 1 | 0 | 6 |
| 0 | 0 | 1 | 1 | 54 |
| 0 | 1 | 1 | 1 | 10 |
| 1 | 0 | 0 | 0 | 5 |
| 1 | 0 | 1 | 0 | 1 |
| 1 | 0 | 1 | 1 | 0 |
| 1 | 1 | 0 | 0 | 17 |
| 1 | 1 | 1 | 0 | 4 |
| 1 | 1 | 1 | 1 | 3 |



## ML Model <br> (Distribution) (Neural Network)

Statistical ML tools don't take constraints as input! ${ }^{(8)}$

## Specification Language: Logic

## Structured Probability Space

unstructured

| L | K | P | A |
| :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 1 |
| 0 | 0 | 1 | 0 |
| 0 | 0 | 1 | 1 |
| 0 | 1 | 0 | 0 |
| 0 | 1 | 0 | 1 |
| 0 | 1 | 1 | 0 |
| 0 | 1 | 1 | 1 |
| 1 | 0 | 0 | 0 |
| 1 | 0 | 0 | 1 |
| 1 | 0 | 1 | 0 |
| 1 | 0 | 1 | 1 |
| 1 | 1 | 0 | 0 |
| 1 | 1 | 0 | 1 |
| 1 | 1 | 1 | 0 |
| 1 | 1 | 1 | 1 |

structured

| L | K | P | A |
| :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 1 |
| 0 | 0 | 1 | 0 |
| 0 | 0 | 1 | 1 |
| 0 | 1 | 0 | 0 |
| 0 | 1 | 0 | 1 |
| 0 | 1 | 1 | 0 |
| 0 | 1 | 1 | 1 |
| 1 | 0 | 0 | 0 |
| 1 | 0 | 0 | 1 |
| 1 | 0 | 1 | 0 |
| 1 | 0 | 1 | 1 |
| 1 | 1 | 0 | 0 |
| 1 | 1 | 0 | 1 |
| 1 | 1 | 1 | 0 |
| 1 | 1 | 1 | 1 |

## Boolean Constraints

| unstructured |  |  |  |
| :---: | :---: | :---: | :---: |
| L | K | P | A |
| 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 1 |
| 0 | 0 | 1 | 0 |
| 0 | 0 | 1 | 1 |
| 0 | 1 | 0 | 0 |
| 0 | 1 | 0 | 1 |
| 0 | 1 | 1 | 0 |
| 0 | 1 | 1 | 1 |
| 1 | 0 | 0 | 0 |
| 1 | 0 | 0 | 1 |
| 1 | 0 | 1 | 0 |
| 1 | 0 | 1 | 1 |
| 1 | 1 | 0 | 0 |
| 1 | 1 | 0 | 1 |
| 1 | 1 | 1 | 0 |
| 1 | 1 | 1 | 1 |



## Combinatorial Objects: Rankings

| rank | sushi |
| :---: | :---: |
| 1 | fatty tuna |
| 2 | sea urchin |
| 3 | salmon roe |
| 4 | shrimp |
| 5 | tuna |
| 6 | squid |
| 7 | tuna roll |
| 8 | see eel |
| 9 | egg |
| 10 | cucumber <br> roll |


| rank | sushi |
| :---: | :---: |
| 1 | shrimp |
| 2 | sea urchin |
| 3 | salmon roe |
| 4 | fatty tuna |
| 5 | tuna |
| 6 | squid |
| 7 | tuna roll |
| 8 | see eel |
| 9 | egg |
| 10 | cucumber <br> roll |

10 items:<br>3,628,800<br>rankings

20 items:
2,432,902,008,176,640,000
rankings

## Combinatorial Objects: Rankings

| rank | sushi |
| :---: | :---: |
| 1 | fatty tuna |
| 2 | sea urchin |
| 3 | salmon roe |
| 4 | shrimp |
| 5 | tuna |
| 6 | squid |
| 7 | tuna roll |
| 8 | see eel |
| 9 | egg |
| 10 | cucumber <br> roll |


| rank | sushi |
| :---: | :---: |
| 1 | shrimp |
| 2 | sea urchin |
| 3 | salmon roe |
| 4 | fatty tuna |
| 5 | tuna |
| 6 | squid |
| 7 | tuna roll |
| 8 | see eel |
| 9 | egg |
| 10 | cucumber <br> roll |

$A_{i j}$ item $\boldsymbol{i}$ at position $\boldsymbol{j}$ ( $n$ items require $n^{2}$ Boolean variables)

## Combinatorial Objects: Rankings

| rank | sushi |
| :---: | :---: |
| 1 | fatty tuna |
| 2 | sea urchin |
| 3 | salmon roe |
| 4 | shrimp |
| 5 | tuna |
| 6 | squid |
| 7 | tuna roll |
| 8 | see eel |
| 9 | egg |
| 10 | cucumber <br> roll |


| rank | sushi |
| :---: | :---: |
| 1 | shrimp |
| 2 | sea urchin |
| 3 | salmon roe |
| 4 | fatty tuna |
| 5 | tuna |
| 6 | squid |
| 7 | tuna roll |
| 8 | see eel |
| 9 | egg |
| 10 | cucumber <br> roll |

# $A_{i j}$ item $i$ at position $j$ ( $n$ items require $n^{2}$ Boolean variables) 

An item may be assigned to more than one position

A position may contain more than one item

## Encoding Rankings in Logic

$A_{i j}:$ item $i$ at position $j$

|  | pos 1 | pos 2 | pos 3 | pos 4 |
| :--- | :--- | :--- | :--- | :--- |
| item 1 | $A_{11}$ | $A_{12}$ | $A_{13}$ | $A_{14}$ |
| item 2 | $A_{21}$ | $A_{22}$ | $A_{23}$ | $A_{24}$ |
| item 3 | $A_{31}$ | $A_{32}$ | $A_{33}$ | $A_{34}$ |
| item 4 | $A_{41}$ | $A_{42}$ | $A_{43}$ | $A_{44}$ |

## Encoding Rankings in Logic

$A_{i j}:$ item $i$ at position $j$

|  | pos 1 | pos 2 | pos 3 | pos 4 |
| :--- | :---: | :---: | :---: | :---: |
| item 1 | $A_{11}$ | $A_{12}$ | $A_{13}$ | $A_{14}$ |
| item 2 | $A_{21}$ | $A_{22}$ | $A_{23}$ | $A_{24}$ |
| item 3 | $A_{31}$ | $A_{32}$ | $A_{33}$ | $A_{34}$ |
| item 4 | $A_{41}$ | $A_{42}$ | $A_{43}$ | $A_{44}$ |

constraint: each item $i$ assigned to a unique position ( $n$ constraints)

$$
\bigvee_{j} A_{i j} \wedge\left(\bigwedge_{k \neq j} \neg A_{i k}\right)
$$

## Encoding Rankings in Logic

$A_{i j}:$ item $i$ at position $j$

|  | pos 1 | pos 2 | pos 3 | pos 4 |
| :--- | :---: | :---: | :---: | :---: |
| item 1 | $A_{11}$ | $A_{12}$ | $A_{13}$ | $A_{14}$ |
| item 2 | $A_{21}$ | $A_{22}$ | $A_{23}$ | $A_{24}$ |
| item 3 | $A_{31}$ | $A_{32}$ | $A_{33}$ | $A_{34}$ |
| item 4 | $A_{41}$ | $A_{42}$ | $A_{43}$ | $A_{44}$ |
|  |  |  |  |  |

constraint: each item $i$ assigned to a unique position ( $n$ constraints)

$$
\bigvee_{j} A_{i j} \wedge\left(\bigwedge_{k \neq j} \neg A_{i k}\right)
$$

constraint: each position $j$ assigned a unique item ( $n$ constraints)

$$
\bigvee_{i} A_{i j} \wedge\left(\bigwedge_{k \neq i} \neg A_{k j}\right)
$$

## Encoding Rankings in Logic

$A_{i j}:$ item $i$ at position $j$

|  | pos 1 | pos 2 | pos 3 | pos 4 |
| :--- | :---: | :---: | :---: | :---: |
| item 1 | $A_{11}$ | $A_{12}$ | $A_{13}$ | $A_{14}$ |
| item 2 | $A_{21}$ | $A_{22}$ | $A_{23}$ | $A_{24}$ |
| item 3 | $A_{31}$ | $A_{32}$ | $A_{33}$ | $A_{34}$ |
| item 4 | $A_{41}$ | $A_{42}$ | $A_{43}$ | $A_{44}$ |
|  |  |  |  |  |

constraint: each item $i$ assigned to a unique position ( $n$ constraints)

$$
\bigvee_{j} A_{i j} \wedge\left(\bigwedge_{k \neq j} \neg A_{i k}\right)
$$

constraint: each position $j$ assigned a unique item ( $n$ constraints)

$$
\bigvee_{i} A_{i j} \wedge\left(\bigwedge_{k \neq i} \neg A_{k j}\right)
$$

total constraints $2 n$
unstructured space $2^{n^{2}}$
structured space $n$ !

# Structured Space for Paths cf. Nature paper 



## Structured Space for Paths cf. Nature paper



Good variable assignment (represents route)

## Structured Space for Paths cf. Nature paper




Good variable assignment (represents route)

184


Bad variable assignment (does not represent route)

16,777,032

## Structured Space for Paths cf. Nature paper




Good variable assignment (represents route)

184


Bad variable assignment (does not represent route)

16,777,032

Space easily encoded in logical constraints © © $_{\text {[nssinno etal. }}$

# Structured Space for Paths cf. Nature paper 




Good variable assignment (represents route)

184


Bad variable assignment (does not represent route)

16,777,032

Unstructured probability space: $184+16,777,032=2^{24}$

## Logical Circuits

## Logical Circuits



## Property: Decomposability



## Property: Decomposability



## Property: Decomposability



Property: AND gates have disjoint input circuits

## Property: Determinism



Input: $L, K, P, A$ are true and $\neg L, \neg K, \neg P, \neg A$ are false

## Property: Determinism



Input: $L, K, P, A$ are true and $\neg L, \neg K, \neg P, \neg A$ are false

## Property: Determinism



Input: $\mathrm{L}, \mathrm{K}, \mathrm{P}, \mathrm{A}$ are true and $\neg \mathrm{L}, \neg \mathrm{K}, \neg \mathrm{P}, \neg \mathrm{A}$ are false Property: OR gates have at most one true input wire

## Tractable for Logical Inference

- Is structured space empty? (SAT)
- Count size of structured space (\#SAT)
- Check equivalence of spaces


## Tractable for Logical Inference

- Is structured space empty? (SAT)
- Count size of structured space (\#SAT)
- Check equivalence of spaces
- Algorithms linear in circuit size © (pass up, pass down, similar to backprop)


## Tractable for Logical Inference

- Is structured space empty? (SAT)
- Count size of structured space (\#SAT)
- Check equivalence of spaces
- Algorithms linear in circuit size © (pass up, pass down, similar to backprop)
- Compilation by exhaustive SAT solvers


## Semantic Loss for Deep Learning

## Deep Structured Output Prediction



## Deep Structured Output Prediction



Neural Network


# Deep Structured Output Prediction 



Neural Network
Logical Constraint


## Semantic Loss

## Semantic Loss

- Output is probability vector $\mathbf{p}$, not logic! How close is output to satisfying constraint?


## Semantic Loss

- Output is probability vector $\mathbf{p}$, not logic! How close is output to satisfying constraint?
- Answer: Semantic loss function $L(\alpha, \mathbf{p})$


## Semantic Loss

- Output is probability vector $\mathbf{p}$, not logic! How close is output to satisfying constraint?
- Answer: Semantic loss function L(a,p)
- Axioms, for example:


## Semantic Loss

- Output is probability vector $\mathbf{p}$, not logic! How close is output to satisfying constraint?
- Answer: Semantic loss function L(a,p)
- Axioms, for example:
- If $\mathbf{p}$ is Boolean then $L(\mathbf{p}, \mathbf{p})=0$


## Semantic Loss

- Output is probability vector $\mathbf{p}$, not logic! How close is output to satisfying constraint?
- Answer: Semantic loss function L(a,p)
- Axioms, for example:
- If $\mathbf{p}$ is Boolean then $L(\mathbf{p}, \mathbf{p})=0$
- If $\alpha$ implies $\beta$ then $L(\alpha, p) \geq L(\beta, p)$


## Semantic Loss

- Output is probability vector $\mathbf{p}$, not logic! How close is output to satisfying constraint?
- Answer: Semantic loss function L(a,p)
- Axioms, for example:
- If $\mathbf{p}$ is Boolean then $L(\mathbf{p}, \mathbf{p})=0$
- If $\alpha$ implies $\beta$ then $L(\alpha, p) \geq L(\beta, p)$
- Properties:


## Semantic Loss

- Output is probability vector $\mathbf{p}$, not logic! How close is output to satisfying constraint?
- Answer: Semantic loss function L(a,p)
- Axioms, for example:
- If $\mathbf{p}$ is Boolean then $L(\mathbf{p}, \mathbf{p})=0$
- If $\alpha$ implies $\beta$ then $L(\alpha, p) \geq L(\beta, p)$
- Properties:
- If $\alpha$ is equivalent to $\beta$ then $L(\alpha, \mathbf{p})=L(\beta, \mathbf{p})$


## Semantic Loss

- Output is probability vector $\mathbf{p}$, not logic! How close is output to satisfying constraint?
- Answer: Semantic loss function L(a,p)
- Axioms, for example:
- If $\mathbf{p}$ is Boolean then $L(\mathbf{p}, \mathbf{p})=0$
- If $\alpha$ implies $\beta$ then $L(\alpha, p) \geq L(\beta, p)$
- Properties:
- If $\alpha$ is equivalent to $\beta$ then $L(\alpha, \mathbf{p})=L(\beta, \mathbf{p})$
- If $\mathbf{p}$ is Boolean and satisfies $\alpha$ then $L(\alpha, p)=0$


## Semantic Loss

- Output is probability vector $\mathbf{p}$, not logic! How close is output to satisfying constraint?
- Answer: Semantic loss function L(a,p)
- Axioms, for example:
- If $\mathbf{p}$ is Boolean then $L(\mathbf{p}, \mathbf{p})=0$
- If $\alpha$ implies $\beta$ then $L(\alpha, p) \geq L(\beta, p)$
- Properties:
- If $\alpha$ is equivalent to $\beta$ then $L(\alpha, p)=L(\beta, p)$
- If $\mathbf{p}$ is Boolean and satisfies $\alpha$ then $L(\alpha, \mathbf{p})=0$


## Semantic Loss: Definition

Theorem: Axioms imply unique semantic loss:

$$
\mathrm{L}^{\mathrm{s}}(\alpha, \mathrm{p}) \propto-\log \sum_{\mathrm{x} \mid \alpha} \prod_{i: \mathbf{x} \mid=X_{i}} \mathrm{p}_{i} \prod_{i: \mathrm{x} \mid=\neg X_{i}}\left(1-\mathrm{p}_{i}\right)
$$

Probability of getting $\mathbf{x}$ after flipping coins with prob. p

Probability of satisfying a after flipping coins with prob. $\mathbf{p}$

## How to Compute Semantic Loss?

## How to Compute Semantic Loss?

- In general: \#P-hard $:$


## How to Compute Semantic Loss?

- In general: \#P-hard $)^{\circ}$
- With a logical circuit for $\alpha$ : Linear!


## How to Compute Semantic Loss?

- In general: \#P-hard $:$
- With a logical circuit for $\alpha$ : Linear!
- Example: exactly-one constraint:

$$
\left\{\begin{array}{l}
x_{1} \vee x_{2} \vee x_{3} \\
\neg x_{1} \vee \neg x_{2} \\
\neg x_{2} \vee \neg x_{3} \\
\neg x_{1} \vee \neg x_{3}
\end{array}\right.
$$

## How to Compute Semantic Loss?

- In general: \#P-hard $)^{\circ}$
- With a logical circuit for $\alpha$ : Linear!
- Example: exactly-one constraint:

$$
\left\{\begin{array}{l}
x_{1} \vee x_{2} \vee x_{3} \\
\neg x_{1} \vee \neg x_{2} \\
\neg x_{2} \vee \neg x_{3} \\
\neg x_{1} \vee \neg x_{3}
\end{array}\right.
$$

## How to Compute Semantic Loss?

- In general: \#P-hard $:$
- With a logical circuit for $\alpha$ : Linear!
- Example: exactly-one constraint:

$$
\left\{\begin{array}{l}
x_{1} \vee x_{2} \vee x_{3} \\
\neg x_{1} \vee \neg x_{2} \\
\neg x_{2} \vee \neg x_{3} \\
\neg x_{1} \vee \neg x_{3}
\end{array}\right.
$$



## How to Compute Semantic Loss?

- In general: \#P-hard $:$
- With a logical circuit for $\alpha$ : Linear!
- Example: exactly-one constraint:

$$
\left\{\begin{array}{l}
x_{1} \vee x_{2} \vee x_{3} \\
\neg x_{1} \vee \neg x_{2} \\
\neg x_{2} \vee \neg x_{3} \\
\neg x_{1} \vee \neg x_{3}
\end{array}\right.
$$



$$
=-\log (+\quad)
$$

$$
\begin{array}{llllll}
\operatorname{Pr}\left(x_{1}\right) & \operatorname{Pr}\left(\neg x_{2}\right) & \operatorname{Pr}\left(\neg x_{3}\right) & \operatorname{Pr}\left(\neg x_{1}\right) & \operatorname{Pr}\left(x_{2}\right) & \operatorname{Pr}\left(x_{3}\right)
\end{array}
$$

- Why? Decomposability and determinism!


## Supervised Learning

- Predict shortest paths
- Add semantic loss to objective


| Test accuracy \% | Coherent | Incoherent | Constraint |
| :--- | :--- | :--- | :--- |
| 5-layer MLP | 5.62 | $\mathbf{8 5 . 9 1}$ | 6.99 |
| Semantic loss | $\mathbf{2 8 . 5 1}$ | 83.14 | $\mathbf{6 9 . 8 9}$ |

## Supervised Learning

- Predict shortest paths
- Add semantic loss to objective


| Test accuracy \% | Coherent | Incoherent | Constraint |
| :--- | :--- | :--- | :--- |
| 5-layer MLP | 5.62 | $\mathbf{8 5 . 9 1}$ | 6.99 |
| Semantic loss | $\mathbf{2 8 . 5 1}$ | 83.14 | $\mathbf{6 9 . 8 9}$ |

Is output
a path?

## Supervised Learning

- Predict shortest paths
- Add semantic loss to objective


| Test accuracy \% | Coherent | Incoherent | Constraint |
| :--- | :--- | :--- | :--- |
| 5-layer MLP | 5.62 | $\mathbf{8 5 . 9 1}$ | 6.99 |
| Semantic loss | $\mathbf{2 8 . 5 1}$ | 83.14 | $\mathbf{6 9 . 8 9}$ |
|  |  | $\uparrow$ |  |
| Does output |  |  |  |
| have true edges? |  |  |  | | Is output |
| ---: |
| a path? |

## Supervised Learning

- Predict shortest paths
- Add semantic loss to objective


| Test accuracy \% | Coherent | Incoherent | Constraint |  |
| :--- | :--- | :--- | :--- | :---: |
| 5-layer MLP | 5.62 | $\mathbf{8 5 . 9 1}$ | 6.99 |  |
| Semantic loss | $\mathbf{2 8 . 5 1}$ | 83.14 | $\mathbf{6 9 . 8 9}$ |  |
|  |  |  |  |  |
| Is output <br> the true path? | Does output <br> have true edges? | Is output <br> a path? |  |  |

## Supervised Learning

- Predict sushi preferences
- Add semantic loss to objective

| rank | sushi |
| :---: | :---: |
| 1 | fatty tuna |
| 2 | sea urchin |
| 3 | salmon roe |
| 4 | shrimp |
| 5 | tuna |
| 6 | squid |
| 7 | tuna roll |
| 8 | see eel |
| 9 | egg |
| 10 | cucumber roll |


| Test accuracy \% | Coherent | Incoherent | Constraint |
| :--- | :--- | :--- | :--- |
| 3-layer MLP | 1.01 | $\mathbf{7 5 . 7 8}$ | 2.72 |
| Semantic loss | $\mathbf{1 3 . 5 9}$ | 72.43 | $\mathbf{5 5 . 2 8}$ |

## Supervised Learning

- Predict sushi preferences
- Add semantic loss to objective

| rank | sushi |
| :---: | :---: |
| 1 | fatty tuna |
| 2 | sea urchin |
| 3 | salmon roe |
| 4 | shrimp |
| 5 | tuna |
| 6 | squid |
| 7 | tuna roll |
| 8 | see eel |
| 9 | egg |
| 10 | cucumber roll |


| Test accuracy \% | Coherent | Incoherent | Constraint |
| :--- | :--- | :--- | :--- |
| 3-layer MLP | 1.01 | $\mathbf{7 5 . 7 8}$ | 2.72 |
| Semantic loss | $\mathbf{1 3 . 5 9}$ | 72.43 | $\mathbf{5 5 . 2 8}$ |

Is output a ranking?

## Supervised Learning

- Predict sushi preferences
- Add semantic loss to objective

| rank | sushi |
| :---: | :---: |
| 1 | fatty tuna |
| 2 | sea urchin |
| 3 | salmon roe |
| 4 | shrimp |
| 5 | tuna |
| 6 | squid |
| 7 | tuna roll |
| 8 | see eel |
| 9 | egg |
| 10 | cucumber roll |


| Test accuracy \% | Coherent | Incoherent | Constraint |
| :--- | :--- | :--- | :--- |
| 3-layer MLP | 1.01 | $\mathbf{7 5 . 7 8}$ | 2.72 |
| Semantic loss | $\mathbf{1 3 . 5 9}$ | 72.43 | $\mathbf{5 5 . 2 8}$ |
|  |  |  |  |
| Does output <br> correctly rank <br> individual sushis? |  |  | Is output <br> a ranking? |

## Supervised Learning

- Predict sushi preferences
- Add semantic loss to objective

| rank | sushi |
| :---: | :---: |
| 1 | fatty tuna |
| 2 | sea urchin |
| 3 | salmon roe |
| 4 | shrimp |
| 5 | tuna |
| 6 | squid |
| 7 | tuna roll |
| 8 | see eel |
| 9 | egg |
| 10 | cucumber roll |


| Test accuracy \% | Coherent | Incoherent | Constraint |
| :--- | :--- | :--- | :--- |
| 3-layer MLP | 1.01 | $\mathbf{7 5 . 7 8}$ | 2.72 |
| Semantic loss | $\mathbf{1 3 . 5 9}$ | 72.43 | $\mathbf{5 5 . 2 8}$ |
|  |  |  |  |
| Is output <br> the true ranking? | Does output <br> correctly rank <br> individual sushis? | Is output |  |
| a ranking? |  |  |  |

## Semi-Supervised Learning

- Unlabeled data must have some label


## Semi-Supervised Learning

- Unlabeled data must have some label



## Semi-Supervised Learning

- Unlabeled data must have some label

- Class 1
- Class 2
- Unlabeled


## Semi-Supervised Learning

- Unlabeled data must have some label

- Low semantic loss with exactly-one constraint


## Semi-Supervised Learning

- Unlabeled data must have some label

- Low semantic loss with exactly-one constraint

$$
\mathrm{L}^{\mathrm{s}}(\text { exactly-one, } \mathrm{p}) \propto-\log \sum_{i=1}^{n} \mathrm{p}_{i} \prod_{j=1, j \neq i}^{n}\left(1-\mathrm{p}_{j}\right)
$$

## MNIST

| Accuracy \% with \# of used labels | 100 | 1000 | ALL |
| :--- | :--- | :--- | :--- |
| AtlasRBF (Pitelis et al., 2014) | $91.9( \pm 0.95)$ | $96.32( \pm 0.12)$ | 98.69 |
| Deep Generative (Kingma et al., 2014) | $96.67( \pm 0.14)$ | $97.60( \pm 0.02)$ | 99.04 |
| Virtual Adversarial (Miyato et al., 2016) | 97.67 | 98.64 | 99.36 |
| Ladder Net (Rasmus et al., 2015) | $\mathbf{9 8 . 9 4}( \pm 0.37)$ | $\mathbf{9 9 . 1 6}( \pm 0.08)$ | $99.43( \pm 0.02)$ |
| Baseline: MLP, Gaussian Noise | $78.46( \pm 1.94)$ | $94.26( \pm 0.31)$ | $99.34( \pm 0.08)$ |
| Baseline: Self-Training | $72.55( \pm 4.21)$ | $87.43( \pm 3.07)$ |  |
| MLP with Semantic Loss | $98.38( \pm 0.51)$ | $98.78( \pm 0.17)$ | $99.36( \pm 0.02)$ |

## FASHION

| Accuracy \% with \# of used labels | 100 | 500 | 1000 | ALL |
| :--- | :--- | :--- | :--- | :--- |
| Ladder Net (Rasmus et al., 2015) | $81.46( \pm 0.64)$ | $85.18( \pm 0.27)$ | $86.48( \pm 0.15)$ | 90.46 |
| Baseline: MLP, Gaussian Noise | $69.45( \pm 2.03)$ | $78.12( \pm 1.41)$ | $80.94( \pm 0.84)$ | 89.87 |
| MLP with Semantic Loss | $\mathbf{8 6 . 7 4}( \pm 0.71)$ | $\mathbf{8 9 . 4 9}( \pm 0.24)$ | $89.67( \pm 0.09)$ | 89.81 |


(a) Confidently Correct

(b) Unconfidently Correct

(c) Unconfidently Incorrect

(d) Confidently Incorrect

## CIFAR10

| Accuracy \% with \# of used labels | 4000 | ALL |
| :--- | :--- | :--- |
| CNN Baseline in Ladder Net | $76.67( \pm 0.61)$ | 90.73 |
| Ladder Net (Rasmus et al., 2015) | $79.60( \pm 0.47)$ |  |
| Baseline: CNN, Whitening, Cropping | 77.13 | 90.96 |
| CNN with Semantic Loss | $\mathbf{8 1 . 7 9}$ | 90.92 |

## Semantic Loss Conclusions

- Cares about meaning not syntax
- Elegant axiomatic approach


## Semantic Loss Conclusions

- Cares about meaning not syntax
- Elegant axiomatic approach
- If you have complex output constraints

Use logical circuits to enforce them

## Semantic Loss Conclusions

- Cares about meaning not syntax
- Elegant axiomatic approach
- If you have complex output constraints Use logical circuits to enforce them If you have unlabeled data (no constraints)
Get a lot of signal by minimizing semantic loss of exactly-one

Probabilistic Circuits

## Logical Circuits

```
P\veeL
A=>P
K=>(P\veeL)
```



## PSDD: Probabilistic SDD



## PSDD: Probabilistic SDD



# PSDD: 

$\operatorname{Pr}(L, K, P, A)$
$=0.3 \times 1$
x $0.8 \times 0.4$
x 0.25



## PSDD nodes induce



## PSDD nodes induce



Can read probabilistic independences off the circuit structure

## Tractable for Probabilistic Inference

- MAP inference: Find most-likely assignment (otherwise NP-complete)
- Computing conditional probabilities $\operatorname{Pr}(x \mid y)$ (otherwise PP-complete)
- Sample from $\operatorname{Pr}(x \mid y)$


# Tractable for Probabilistic Inference 

- MAP inference: Find most-likely assignment (otherwise NP-complete)
- Computing conditional probabilities $\operatorname{Pr}(\mathrm{x} \mid \mathrm{y})$ (otherwise PP-complete)
- Sample from $\operatorname{Pr}(x \mid y)$

Algorithms linear in circuit size © (pass up, pass down, similar to backprop)

# Learning <br> Probabilistic Circuits 

## Parameters are Interpretable



## Parameters are Interpretable



## Parameters are Interpretable



## Parameters are Interpretable



## Learning Algorithms

- Parameter learning:

Closed form max likelihood from complete data
One pass over data to estimate $\operatorname{Pr}(\mathrm{x} \mid \mathrm{y})$

## Learning Algorithms

- Parameter learning:

Closed form max likelihood from complete data
One pass over data to estimate $\operatorname{Pr}(\mathrm{x} \mid \mathrm{y})$
Not a lot to say: very easy!

## Learning Algorithms

- Parameter learning:

Closed form max likelihood from complete data
One pass over data to estimate $\operatorname{Pr}(\mathrm{x} \mid \mathrm{y})$
Not a lot to say: very easy!

- Structure learning:


## Learning Algorithms

- Parameter learning:

Closed form max likelihood from complete data
One pass over data to estimate $\operatorname{Pr}(\mathrm{x} \mid \mathrm{y})$
Not a lot to say: very easy!

- Structure learning:
- Compile logical constraint for structured space Use SAT solver technology


## Learning Algorithms

- Parameter learning:

Closed form max likelihood from complete data
One pass over data to estimate $\operatorname{Pr}(\mathrm{x} \mid \mathrm{y})$
Not a lot to say: very easy!

- Structure learning:
- Compile logical constraint for structured space Use SAT solver technology
- Learn structure from data by search/optimization


## Learning Preference Distributions



## Learning Preference Distributions



This is the naive approach, circuit does not depend on data!

## Learning from Incomplete Data

- Movielens Dataset:
- 3,900 movies, 6,040 users, 1 m ratings
- take ratings from 64 most rated movies
- ratings 1-5 converted to pairwise prefs.
- PSDD for partial rankings
- 4 tiers
- 18,711 parameters
movies by expected tier

| rank | movie |
| :---: | :---: |
| 1 | The Godfather |
| 2 | The Usual Suspects |
| 3 | Casablanca |
| 4 | The Shawshank Redemption |
| 5 | Schindler's List |
| 6 | One Flew Over the Cuckoo's Nest |
| 7 | The Godfather: Part II |
| 8 | Monty Python and the Holy Grail |
| 9 | Raiders of the Lost Ark |
| 10 | Star Wars IV: A New Hope |

## Probabilistic-Logical Queries

| rank | movie |
| :---: | :---: |
| 1 | Star Wars V: The Empire Strikes Back |
| 2 | Star Wars IV: A New Hope |
| 3 | The Godfather |
| 4 | The Shawshank Redemption |
| 5 | The Usual Suspects |

## Probabilistic-Logical Queries

- no other Star Wars movie in top-5
- at least one comedy in top-5

| rank | movie |
| :---: | :---: |
| 1 | Star Wars V: The Empire Strikes Back |
| 2 | Star Wars IV: A New Hope |
| 3 | The Godfather |
| 4 | The Shawshank Redemption |
| 5 | The Usual Suspects |

## Probabilistic-Logical Queries

- no other Star Wars movie in top-5
- at least one comedy in top-5

| rank | movie |
| :---: | :---: |
| 1 | Star Wars V: The Empire Strikes Back |
| 2 | Star Wars IV: A New Hope |
| 3 | The Godfather |
| 4 | The Shawshank Redemption |
| 5 | The Usual Suspects |


| rank | movie |
| :---: | :---: |
| 1 | Star Wars V: The Empire Strikes Back |
| 2 | American Beauty |
| 3 | The Godfather |
| 4 | The Usual Suspects |
| 5 | The Shawshank Redemption |

## Probabilistic-Logical Queries

- no other Star Wars movie in top-5
- at least one comedy in top-5

| rank | movie |
| :---: | :---: |
| 1 | Star Wars V: The Empire Strikes Back |
| 2 | Star Wars IV: A New Hope |
| 3 | The Godfather |
| 4 | The Shawshank Redemption |
| 5 | The Usual Suspects |


| rank | movie |
| :---: | :---: |
| 1 | Star Wars V: The Empire Strikes Back |
| 2 | American Beauty |
| 3 | The Godfather |
| 4 | The Usual Suspects |
| 5 | The Shawshank Redemption |

diversified recommendations via logical constraints

## Learning <br> Probabilistic Circuit Structure

## Tractable Learning

Bayesian networks


Markov networks


## Tractable Learning

Bayesian networks
Markov networks


Do not support linear-time exact inference

## Tractable Learning

Historically: Polytrees, Chow-Liu trees, etc.

SPNs


## Cutset Networks



Both are Arithmetic Circuits (ACs)
[Darwiche, JACM 2003]

## PSDDs are Arithmetic Circuits



## Tractable Learning

## Tractable Learning

## DNN



Strong Properties
Representational Freedom

## Tractable Learning



## Tractable Learning



## Tractable Learning



DNN


Strong Properties
Representational Freedom

## Variable Trees (vtrees)

## PSDD



Vtree


Correspondence


## Learning Variable Trees

- How much do vars depend on each other?

$$
\operatorname{MI}(\mathbf{X}, \mathbf{Y})=\sum_{X \in \mathbf{X}} \sum_{Y \in \mathbf{Y}} \operatorname{Pr}(X, Y) \log \frac{\operatorname{Pr}(X, Y)}{\operatorname{Pr}(X) \operatorname{Pr}(Y)}
$$

- Learn vtree by hierarchical clustering


## Learning Variable Trees

- How much do vars depend on each other?

$$
\mathbf{M I}(\mathbf{X}, \mathbf{Y})=\sum_{X \in \mathbf{X}} \sum_{Y \in \mathbf{Y}} \operatorname{Pr}(X, Y) \log \frac{\operatorname{Pr}(X, Y)}{\operatorname{Pr}(X) \operatorname{Pr}(Y)}
$$

- Learn vtree by hierarchical clustering




## Learning Primitives



## Learning Primitives



## Learning Primitives



Primitives maintain PSDD properties and structured space!

## LearnPSDD

## 1

## Vtree learning

## 2

Construct the most naïve PSDD

LearnPSDD
(search for better structure)

## LearnPSDD



## Experiments on 20 datasets

| Datasets | \|Var| | \|Train| | \|Valid| | \|Test| | LearnPSDD |  | EM-LearnPSDD |  | SearchSPN | Merged L-SPN |  | Merged O-SPN |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | LL | Size | LL | Size | LL | LL | Size | LL | Size |
| NLTCS | 16 | 16181 | 2157 | 3236 | $-6.03^{\dagger *}$ | 3170 | -6.03* | 2147 | -6.07 | -6.04 | 3988 | -6.05 | 1152 |
| MSNBC | 17 | 291326 | 38843 | 58265 | $-6.05^{\dagger}$ | 8977 | -6.04* | 3891 | -6.06 | -6.46 | 2440 | -6.08 | 9478 |
| KDD | 64 | 1800992 | 19907 | 34955 | $-2.16^{\dagger}$ | 14974 | -2.12* | 9182 | -2.16 | -2.14 | 6670 | -2.19 | 16608 |
| Plants | 69 | 17412 | 2321 | 3482 | -14.93 | 13129 | -13.79* | 13951 | $-13.12^{\dagger}$ | -12.69 | 47802 | -13.49 | 36960 |
| Audio | 100 | 15000 | 2000 | 3000 | -42.53 | 13765 | -41.98* | 9721 | $-40.13^{\dagger}$ | -40.02 | 10804 | -42.06 | 6142 |
| Jester | 100 | 9000 | 1000 | 4116 | -57.67 | 11322 | $-53.47^{*}$ | 7014 | $-53.08^{\dagger}$ | -52.97 | 10002 | -55.36 | 4996 |
| Netflix | 100 | 15000 | 2000 | 3000 | $-58.92$ | 10997 | -58.41* | 6250 | $-56.91{ }^{\dagger}$ | -56.64 | 11604 | -58.64 | 6142 |
| Accidents | 111 | 12758 | 1700 | 2551 | -34.13 | 10489 | -33.64* | 6752 | $-30.02{ }^{\dagger}$ | -30.01 | 13322 | -30.83 | 6846 |
| Retail | 135 | 22041 | 2938 | 4408 | -11.13 | 4091 | -10.81* | 7251 | $-10.97^{\dagger}$ | -10.87 | 2162 | -10.95 | 3158 |
| Pumsb-Star | 163 | 12262 | 1635 | 2452 | $-34.11$ | 10489 | $-33.67^{*}$ | 7965 | $-28.69^{\dagger}$ | -24.11 | 17604 | -24.34 | 18338 |
| DNA | 180 | 1600 | 400 | 1186 | -89.11* | 6068 | -92.67 | 14864 | $-81.76{ }^{\dagger}$ | -85.51 | 4320 | -87.49 | 1430 |
| Kosarek | 190 | 33375 | 4450 | 6675 | $-10.99^{\dagger}$ | 11034 | $-10.81 *$ | 10179 | -11.00 | -10.62 | 5318 | -10.98 | 6712 |
| MSWeb | 294 | 29441 | 32750 | 5000 | $-10.18^{\dagger}$ | 11389 | $-9.97 *$ | 14512 | -10.25 | $-9.90$ | 16484 | -10.06 | 12770 |
| Book | 500 | 8700 | 1159 | 1739 | -35.90 | 15197 | $-34.97^{*}$ | 11292 | $-34.91{ }^{\dagger}$ | -34.76 | 11998 | -37.44 | 11916 |
| EachMovie | 500 | 4524 | 1002 | 591 | $-56.43 *$ | 12483 | -58.01 | 16074 | $-53.28^{\dagger}$ | -52.07 | 15998 | -58.05 | 19846 |
| WebKB | 839 | 2803 | 558 | 838 | -163.42 | 10033 | -161.09* | 18431 | $-157.88^{\dagger}$ | -153.55 | 20134 | -161.17 | 10046 |
| Reuters-52 | 889 | 6532 | 1028 | 1530 | -94.94 | 10585 | -89.61* | 9546 | $-86.38^{\dagger}$ | -83.90 | 46232 | -87.49 | 28334 |
| 20NewsGrp. | 910 | 11293 | 3764 | 3764 | -161.41 | 12222 | -161.09* | 18431 | $-153.63^{\dagger}$ | -154.67 | 43684 | -161.46 | 29016 |
| BBC | 1058 | 1670 | 225 | 330 | -260.83 | 10585 | -253.19* | 20327 | $-252.13^{\dagger}$ | -253.45 | 21160 | -260.59 | 8454 |
| AD | 1556 | 2461 | 327 | 491 | -30.49* | 9666 | -31.78 | 9521 | $-16.97^{\dagger}$ | -16.77 | 49790 | -15.39 | 31070 |

## Experiments on 20 datasets

Compare with O-SPN: smaller size in 14, better LL in 11, win on both in 6

Compare with L-SPN: smaller size in 14, better LL in 6, win on both in 2

## Experiments on 20 datasets

Compare with O-SPN: smaller size in 14, better LL in 11, win on both in 6

Compare with L-SPN: smaller size in 14, better LL in 6, win on both in 2

Comparable in performance \& Smaller in size

## Ensembles of PSDDs



## Ensembles of PSDDs



EM/Bagging

## Ensembles of PSDDs



EM/Bagging

## State-of-the-Art Performance

| Datasets | $\mid$ Var $\mid$ | LearnPSDD <br> Ensemble | Best-to-Date |
| :---: | :---: | :---: | :---: |
| NLTCS | 16 | $-5.99^{\dagger}$ | -6.00 |
| MSNBC | 17 | $-6.04^{\dagger}$ | $-6.04^{\dagger}$ |
| KDD | 64 | $-2.11^{\dagger}$ | -2.12 |
| Plants | 69 | -13.02 | $-11.99^{\dagger}$ |
| Audio | 100 | -39.94 | $-39.49^{\dagger}$ |
| Jester | 100 | -51.29 | $-41.11^{\dagger}$ |
| Netflix | 100 | $-55.71^{\dagger}$ | -55.84 |
| Accidents | 111 | -30.16 | $-24.87^{\dagger}$ |
| Retail | 135 | $-10.72^{\dagger}$ | -10.78 |
| Pumsb-Star | 163 | -26.12 | $-22.40^{\dagger}$ |
| DNA | 180 | -88.01 | $-80.03^{\dagger}$ |
| Kosarek | 190 | $-10.52^{\dagger}$ | -10.54 |
| MSWeb | 294 | -9.89 | $-9.22^{\dagger}$ |
| Book | 500 | -34.97 | $-30.18^{\dagger}$ |
| EachMovie | 500 | -58.01 | $-51.14^{\dagger}$ |
| WebKB | 839 | -161.09 | $-150.10^{\dagger}$ |
| Reuters-52 | 889 | -89.61 | $-80.66^{\dagger}$ |
| 20NewsGrp. | 910 | -155.97 | $-150.88^{\dagger}$ |
| BBC | 1058 | -253.19 | $-233.26^{\dagger}$ |
| AD | 1556 | -31.78 | $-14.36^{\dagger}$ |

## State-of-the-Art Performance

| Datasets | $\mid$ Var | LearnPSDD <br> Ensemble | Best-to-Date |
| :---: | :---: | :---: | :---: |
| NॉTCS | 16 | $-5.99^{\dagger}$ | -600 |
| MSNBC | 17 | $-6.04^{\dagger}$ | $-6.04^{\dagger}$ |
| KDD | 64 | $-2.11^{\dagger}$ | -2.12 |
| Plants | 69 | -13.02 | $-11.99^{\dagger}$ |
| Audio | 100 | -39.94 | $-39.49^{\dagger}$ |
| Jester | 100 | -51.29 | $-41.11^{\dagger}$ |
| Netflix | 100 | $-55.71^{\dagger}$ | -55.84 |
| Accidents | 111 | -30.16 | $-24.87^{\dagger}$ |
| Retail | 135 | $-10.72^{\dagger}$ | -10.78 |
| Pumsb-Star | 163 | -26.12 | $-22.40^{\dagger}$ |
| DNA | 180 | -88.01 | $-80.03^{\dagger}$ |
| Kosarek | 190 | $-10.52^{\dagger}$ | -10.54 |
| MSWeb | 294 | -9.89 | $-9.22^{\dagger}$ |
| Book | 500 | -34.97 | $-30.18^{\dagger}$ |
| EachMovie | 500 | -58.01 | $-51.14^{\dagger}$ |
| WebKB | 839 | -161.09 | $-150.10^{\dagger}$ |
| Reuters-52 | 889 | -89.61 | $-80.66^{\dagger}$ |
| 20NewsGrp. | 910 | -155.97 | $-150.88^{\dagger}$ |
| BBC | 1058 | -253.19 | $-233.26^{\dagger}$ |
| AD | 1556 | -31.78 | $-14.36^{\dagger}$ |

## State of the art in 6 datasets

## What happens if you have a structured space?

Multi-valued data $=$ exactly-one constraint

## What happens if you have a structured space?

Multi-valued data $=$ exactly-one constraint

$$
\left\{\begin{array}{l}
x_{1} \vee x_{2} \vee x_{3} \\
\neg x_{1} \vee \neg x_{2} \\
\neg x_{2} \vee \neg x_{3} \\
\neg x_{1} \vee \neg x_{3}
\end{array}\right.
$$

## What happens if you have a structured space?

Multi-valued data $=$ exactly-one constraint

$$
\left\{\begin{array}{l}
x_{1} \vee x_{2} \vee x_{3} \\
\neg x_{1} \vee \neg x_{2} \\
\neg x_{2} \vee \neg x_{3} \\
\neg x_{1} \vee \neg x_{3}
\end{array}\right.
$$

| Datasets | No Constraint | PSDD | LEARNPSDD |
| :---: | :---: | :---: | :---: |
| Adult | -18.41 | -14.14 | -12.86 |
| CovType | -14.39 | -8.81 | -7.32 |

## What happens if you have a structured space?

Multi-valued data $=$ exactly-one constraint

$$
\left\{\begin{array}{c}
x_{1} \vee x_{2} \vee x_{3} \\
\neg x_{1} \vee \neg x_{2} \\
\neg x_{2} \vee \neg x_{3} \\
\neg x_{1} \vee \neg x_{3}
\end{array}\right.
$$

| Datasets | No Constraint | PSDD | LEARNPSDD |
| :---: | :---: | :---: | :---: |
| Adult | -18.41 | -14.14 | -12.86 |
| CovType | -14.39 | -8.81 | -7.32 |

Never omit domain constraints!

## Circuit-Based Probabilistic Reasoning

## Compilation for Inference



$$
\begin{aligned}
\operatorname{Pr}(\text { Rain }) & =0.2, \\
\operatorname{Pr}(\text { Sun } \mid \text { Rain }) & =\left\{\begin{array}{l}
0.1 \text { if Rain } \\
0.7 \text { if } \neg \text { Rain }
\end{array}\right. \\
\operatorname{Pr}(\text { Rbow } \mid \operatorname{R}, S) & =\left\{\begin{array}{l}
1 \text { if Rain } \wedge \text { Sun } \\
0 \text { otherwise }
\end{array}\right.
\end{aligned}
$$

## Compilation for Inference


$\begin{aligned} \operatorname{Pr}(\text { Rain }) & =0.2, \\ \operatorname{Pr}(\text { Sun } \mid \text { Rain }) & =\left\{\begin{array}{l}0.1 \text { if Rain } \\ 0.7 \text { if } \neg \text { Rain }\end{array}\right. \\ \operatorname{Pr}(\text { Rbow } \mid \mathrm{R}, \mathrm{S}) & =\left\{\begin{array}{l}1 \text { if Rain } \wedge \text { Sun } \\ 0 \text { otherwise }\end{array}\right.\end{aligned}$

## Ongoing Work

- Probabilistic program inference by compilation
- Approximate inference by collapsed compilation
- Robust feature selection by compilation [IJCAI18]
- Powerful reasoning toolbox!


## Conclusions

- Logic is everywhere in machine learning ©
- Probabilistic circuits build on logical circuits

1. Tractability
2. Semantics
3. Natural encoding of structured spaces

- Learning is effective

1. Enforcing neural network output constraints State of the art semi-supervised learning and complex output
2. Density estimation from constraints encoding structured space State of the art learning preference distributions
3. Density estimation from standard unstructured datasets State of the art on standard tractable learning datasets

## Conclusions



## References

Jingyi Xu, Zilu Zhang, Tal Friedman, Yitao Liang and Guy Van den Broeck. A Semantic Loss Function for Deep Learning with Symbolic Knowledge, In Proceedings of the International Conference on Machine Learning (ICML), 2018.

YooJung Choi and Guy Van den Broeck. On Robust Trimming of Bayesian Network Classifiers, In Proceedings of the 27th International Joint Conference on Artificial Intelligence (IJCAI), 2018.

Jingyi Xu, Zilu Zhang, Tal Friedman, Yitao Liang and Guy Van den Broeck. A Semantic Loss Function for Deep Learning Under Weak Supervision, In NIPS 2017 Workshop on Learning with Limited Labeled Data: Weak Supervision and Beyond, 2017.

Yitao Liang and Guy Van den Broeck. Towards Compact Interpretable Models: Shrinking of Learned Probabilistic Sentential Decision Diagrams, In IJCAI 2017 Workshop on Explainable Artificial Intelligence (XAI), 2017.

YooJung Choi, Adnan Darwiche and Guy Van den Broeck. Optimal Feature Selection for Decision Robustness in Bayesian Networks, In Proceedings of the 26th International Joint Conference on Artificial Intelligence (IJCAI), 2017.

Yitao Liang, Jessa Bekker and Guy Van den Broeck. Learning the Structure of Probabilistic Sentential Decision Diagrams, In Proceedings of the 33rd Conference on Uncertainty in Artificial Intelligence (UAI), 2017.

Jessa Bekker, Jesse Davis, Arthur Choi, Adnan Darwiche and Guy Van den Broeck. Tractable Learning for Complex Probability Queries, In Advances in Neural Information Processing Systems 28 (NIPS), 2015.

Arthur Choi, Guy Van den Broeck and Adnan Darwiche. Probability Distributions over Structured Spaces, In Proceedings of the AAAI Spring Symposium on KRR, 2015.

Arthur Choi, Guy Van den Broeck and Adnan Darwiche. Tractable Learning for Structured Probability Spaces: A Case Study in Learning Preference Distributions, In Proceedings of 24th International Joint Conference on Artificial Intelligence (IJCAI), 2015.

Doga Kisa, Guy Van den Broeck, Arthur Choi and Adnan Darwiche. Probabilistic sentential decision diagrams: Learning with massive logical constraints, In ICML Workshop on Learning Tractable Probabilistic Models (LTPM), 2014.

Doga Kisa, Guy Van den Broeck, Arthur Choi and Adnan Darwiche. Probabilistic sentential decision diagrams, In Proceedings of the 14th International Conference on Principles of Knowledge Representation and Reasoning (KR), 2014.
(... and ongoing work by Tal Friedman, YooJung Choi, and Yitao Liang)

## Questions?

PSDD with 15,000 nodes

LearnPSDD code: https://github.com/UCLA-StarAI/LearnPSDD Other code online soon

