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Constraints 

Running Example 



L K P A 

0 0 0 0 

0 0 0 1 

0 0 1 0 

0 0 1 1 

0 1 0 0 

0 1 0 1 

0 1 1 0 

0 1 1 1 

1 0 0 0 

1 0 0 1 

1 0 1 0 

1 0 1 1 

1 1 0 0 

1 1 0 1 

1 1 1 0 

1 1 1 1 

unstructured 

Structured Space 



L K P A 

0 0 0 0 

0 0 0 1 

0 0 1 0 

0 0 1 1 

0 1 0 0 

0 1 0 1 

0 1 1 0 

0 1 1 1 

1 0 0 0 

1 0 0 1 

1 0 1 0 

1 0 1 1 

1 1 0 0 

1 1 0 1 

1 1 1 0 

1 1 1 1 

unstructured 
L K P A 

0 0 0 0 

0 0 0 1 

0 0 1 0 

0 0 1 1 

0 1 0 0 

0 1 0 1 

0 1 1 0 

0 1 1 1 

1 0 0 0 

1 0 0 1 

1 0 1 0 

1 0 1 1 

1 1 0 0 

1 1 0 1 

1 1 1 0 

1 1 1 1 

structured 

Structured Space 

7 out of 16 instantiations  

are impossible 

• Must take at least one of 

Probability (P) or Logic (L). 

• Probability is a prerequisite  

for AI (A). 

• The prerequisites for KR (K) is 

either AI or Logic. 
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Example: Language 

• Non-local dependencies: 

At least one verb in each sentence 

• Sentence compression 

If a modifier is kept, its subject is also kept 

• Information extraction 

• Semantic role labeling 

• … and many more! 
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• Count size of structured space (#SAT) 
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• Algorithms linear in circuit size  

(pass up, pass down, similar to backprop) 

 

• Compilation by exhaustive SAT solvers 

 



Semantic Loss  

for Deep Learning 



Deep Structured 
Output Prediction 

Data Constraints 
(Background Knowledge) 

(Physics) 

Deep Neural 

Network 

+ 

Learn 



Deep Structured 
Output Prediction 

Data Constraints 
(Background Knowledge) 

(Physics) 

Deep Neural 

Network 

+ 

Learn 

Input 

Neural Network Logical Constraint 

Output 



Deep Structured 
Output Prediction 

Data Constraints 
(Background Knowledge) 

(Physics) 

Deep Neural 

Network 

+ 

Learn 

Input 

Neural Network Logical Constraint 

Output 



Semantic Loss 

                                            

                                              

                                       

                      

                                 

                                      

              

                                              

                                                 

 

 



Semantic Loss 

• Output is probability vector p, not logic! 

How close is output to satisfying constraint? 

                                       

                      

                                 

                                      

              

                                              

                                                 

 

 



Semantic Loss 

• Output is probability vector p, not logic! 

How close is output to satisfying constraint? 

• Answer: Semantic loss function L(α,p) 

                      

                                 

                                      

              

                                              

                                                 

 

 



Semantic Loss 

• Output is probability vector p, not logic! 

How close is output to satisfying constraint? 

• Answer: Semantic loss function L(α,p) 

• Axioms, for example: 

                                 

                                      

              

                                              

                                                 

 

 



Semantic Loss 

• Output is probability vector p, not logic! 

How close is output to satisfying constraint? 

• Answer: Semantic loss function L(α,p) 

• Axioms, for example: 

– If p is Boolean then L(p,p) = 0 

                                      

              

                                              

                                                 

 

 



Semantic Loss 

• Output is probability vector p, not logic! 

How close is output to satisfying constraint? 

• Answer: Semantic loss function L(α,p) 

• Axioms, for example: 

– If p is Boolean then L(p,p) = 0 

– If α implies β then L(α,p) ≥ L(β,p)  

              

                                              

                                                 

 

 



Semantic Loss 

• Output is probability vector p, not logic! 

How close is output to satisfying constraint? 

• Answer: Semantic loss function L(α,p) 

• Axioms, for example: 

– If p is Boolean then L(p,p) = 0 

– If α implies β then L(α,p) ≥ L(β,p)  

• Properties:  

                                              

                                                 

 

 



Semantic Loss 

• Output is probability vector p, not logic! 

How close is output to satisfying constraint? 

• Answer: Semantic loss function L(α,p) 

• Axioms, for example: 

– If p is Boolean then L(p,p) = 0 

– If α implies β then L(α,p) ≥ L(β,p)  

• Properties:  

– If α is equivalent to β then L(α,p) = L(β,p) 

                                                 

 

 



Semantic Loss 

• Output is probability vector p, not logic! 

How close is output to satisfying constraint? 

• Answer: Semantic loss function L(α,p) 

• Axioms, for example: 

– If p is Boolean then L(p,p) = 0 

– If α implies β then L(α,p) ≥ L(β,p)  

• Properties:  

– If α is equivalent to β then L(α,p) = L(β,p) 

– If p is Boolean and satisfies α then L(α,p) = 0 

 

 



Semantic Loss 

• Output is probability vector p, not logic! 

How close is output to satisfying constraint? 

• Answer: Semantic loss function L(α,p) 

• Axioms, for example: 

– If p is Boolean then L(p,p) = 0 

– If α implies β then L(α,p) ≥ L(β,p)  

• Properties:  

– If α is equivalent to β then L(α,p) = L(β,p) 

– If p is Boolean and satisfies α then L(α,p) = 0 

 

 

SEMANTIC 

Loss! 



Semantic Loss: Definition 

Theorem: Axioms imply unique semantic loss: 

 

 

Probability of getting x after  

flipping coins with prob. p 

Probability of satisfying α after  

flipping coins with prob. p 
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• Why? Decomposability and determinism! 
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• Predict sushi preferences 

• Add semantic loss to objective 
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Semantic Loss Conclusions 

• Cares about meaning not syntax 

• Elegant axiomatic approach 

 

• If you have complex output constraints 

Use logical circuits to enforce them 

 If you have unlabeled data (no constraints) 

Get a lot of signal by minimizing 

semantic loss of exactly-one 

 



Probabilistic Circuits 



L K L  P A P  L L  P A P L K L  P P  

K K A A A A 

Logical Circuits 
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             are true 

0.1 0.6 

0.3 

1 0 1 0 1 0 0.6 0.4 1 0 1 0 

0.8 0.2 0.25 0.75 0.9 0.1 

Pr(L,K,P,A)  

   = 0.3 x 1  

       x 0.8 x 0.4 

       x 0.25  

   = 0.024 
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0.8 0.2 

A A 
0.25 0.75 
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0.1 0.6 
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Can read probabilistic independences off the circuit structure  

PSDD nodes induce 

a normalized 

distribution! 



Tractable for  
Probabilistic Inference 

• MAP inference: Find most-likely assignment  
(otherwise NP-complete) 

• Computing conditional probabilities Pr(x|y) 
(otherwise PP-complete) 

• Sample from Pr(x|y) 

 

                                     

                                          

 



Tractable for  
Probabilistic Inference 

• MAP inference: Find most-likely assignment  
(otherwise NP-complete) 

• Computing conditional probabilities Pr(x|y) 
(otherwise PP-complete) 

• Sample from Pr(x|y) 

 

 Algorithms linear in circuit size  

(pass up, pass down, similar to backprop) 

 



Learning  

Probabilistic Circuits 
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Student takes 

course L 

Student takes course P 

Probability of  P given L 

Parameters are Interpretable 

Explainable AI DARPA Program 
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Learning Algorithms 

• Parameter learning:  

Closed form max likelihood from complete data 

One pass over data to estimate Pr(x|y) 

 

 

• Structure learning: 
○ Compile logical constraint for structured space 

Use SAT solver technology 

○ Learn structure from data by search/optimization 

 

Not a lot to say: very easy! 
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distribution: 
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– # of components 
from 1 to 20 

– EM with  
10 random seeds 

– implementation of 
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Learning Preference Distributions 

Special-purpose  
distribution: 
Mixture-of-Mallows 

– # of components 
from 1 to 20 

– EM with  
10 random seeds 

– implementation of 
Lu & Boutilier 

PSDD 

This is the naive approach, circuit does not depend on data! 



Learning from Incomplete Data 
 

• Movielens Dataset: 

– 3,900 movies, 6,040 users, 1m ratings 

– take ratings from 64 most rated movies 

– ratings 1-5 converted to pairwise prefs. 

 

• PSDD for partial rankings 

– 4 tiers 

– 18,711 parameters  

rank movie 

1 The Godfather 

2 The Usual Suspects 

3 Casablanca 

4 The Shawshank Redemption 

5 Schindler’s List 

6 One Flew Over the Cuckoo’s Nest 

7 The Godfather: Part II 

8 Monty Python and the Holy Grail 

9 Raiders of the Lost Ark 

10 Star Wars IV: A New Hope 

movies by expected tier 
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Probabilistic-Logical Queries 

rank movie 

1 Star Wars V: The Empire Strikes Back 

2 Star Wars IV: A New Hope 

3 The Godfather 

4 The Shawshank Redemption 

5 The Usual Suspects 

 

 

• no other Star Wars movie in top-5 

• at least one comedy in top-5 

rank movie 

1 Star Wars V: The Empire Strikes Back 

2 American Beauty 

3 The Godfather 

4 The Usual Suspects 

5 The Shawshank Redemption 

diversified recommendations via 

logical constraints 



Learning  

Probabilistic Circuit Structure 



Tractable Learning 

Bayesian networks Markov networks 



Tractable Learning 

Bayesian networks Markov networks 

Do not support linear-time exact inference 



Tractable Learning 

SPNs Cutset Networks 

Historically: Polytrees, Chow-Liu trees, etc. 

Both are Arithmetic Circuits (ACs) 

[Darwiche, JACM 2003] 



PSDDs are Arithmetic Circuits 

2 

1 n 

p1 s1 p2 s2 pn sn 

PSDD AC 

+ 

* * * 

* * * 1 2 n 

p1 s1 p2 s2 pn sn 
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Tractable Learning 

Strong Properties Representational Freedom 

DNN 

SPN 

Cutset 



Variable Trees (vtrees) 

PSDD Vtree Correspondence 



Learning Variable Trees 

• How much do vars depend on each other? 

   
• Learn vtree by hierarchical clustering 
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• Learn vtree by hierarchical clustering 
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Learning Primitives 

Primitives maintain PSDD properties and structured space! 



LearnPSDD 

Vtree learning 

Construct the most 

naïve PSDD 

LearnPSDD 

(search for better 

structure) 

1 

2 

3 



LearnPSDD 

Vtree learning 

Construct the most 

naïve PSDD 

LearnPSDD 

(search for better 

structure) 

1 

2 

3 

Simulate 
operations 

Execute the 
best 

Generate 
candidate 
operations 



Experiments on 20 datasets 
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Compare with L-SPN: smaller size in 14, better LL in 6,   

                                  win on both in 2 

 

Comparable in performance & Smaller in size 

 



Ensembles of PSDDs 
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EM/Bagging 
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State-of-the-Art Performance 

State of the art in 6 

datasets 
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What happens if you  
have a structured space? 

Multi-valued data = exactly-one constraint 

Never omit domain constraints! 
 

 

𝒙𝟏 ∨ 𝒙𝟐∨ 𝒙𝟑
¬𝒙𝟏 ∨ ¬𝒙𝟐
¬𝒙𝟐 ∨ ¬𝒙𝟑
¬𝒙𝟏 ∨ ¬𝒙𝟑

 



Circuit-Based 

Probabilistic Reasoning 



Compilation for Inference 



Compilation for Inference 



Ongoing Work  

• Probabilistic program inference 

by compilation 

• Approximate inference  

by collapsed compilation 

• Robust feature selection  

by compilation [IJCAI18] 

 

• Powerful reasoning toolbox! 

 



Conclusions 

• Logic is everywhere in machine learning  

• Probabilistic circuits build on logical circuits 

1. Tractability   

2. Semantics   

3. Natural encoding of structured spaces 

• Learning is effective 

1. Enforcing neural network output constraints 

State of the art semi-supervised learning and complex output 

2. Density estimation from constraints encoding structured space 

State of the art learning preference distributions 

3. Density estimation from standard unstructured datasets 

State of the art on standard tractable learning datasets 



Conclusions 

Statistical ML 

“Probability” 

Symbolic AI 

“Logic” 

Connectionism 

“Deep” 

PSDD 
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Questions? 

PSDD with 15,000 nodes 

LearnPSDD code: https://github.com/UCLA-StarAI/LearnPSDD 

Other code online soon 
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