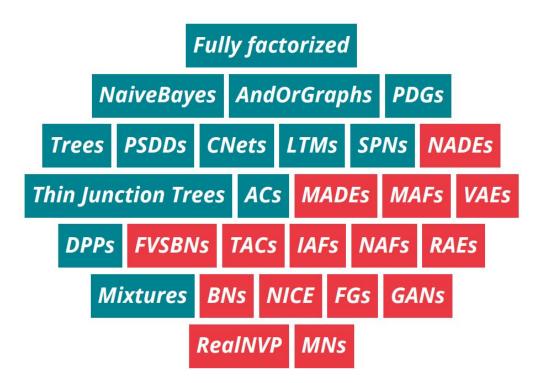


Tractable Probabilistic Circuits

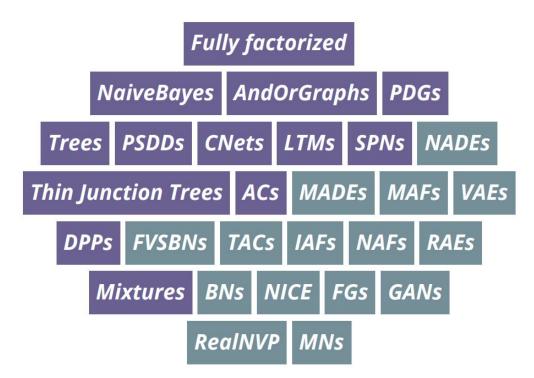
Guy Van den Broeck

VinAl Research - May 27, 2022

Outline


- 1. What are tractable probabilistic circuits?
- 2. Are these models any good?
- 3. How far can we push tractable inference?
- 4. What is their expressive power?

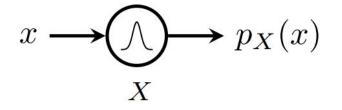
Outline



1. What are tractable probabilistic circuits?

- 2. Are these models any good?
- 3. How far can we push tractable inference?
- 4. What is their expressive power?

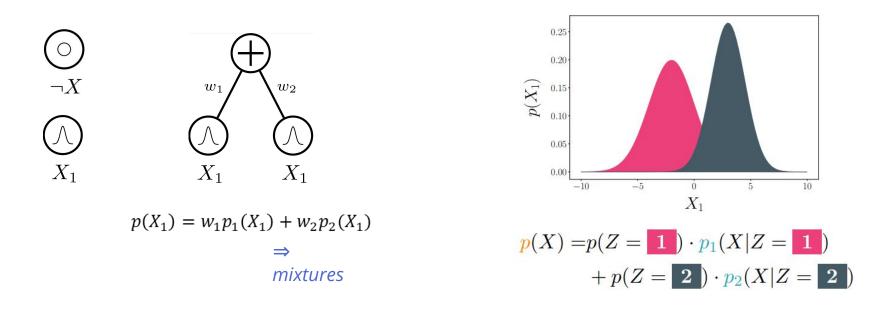
Intractable and tractable models

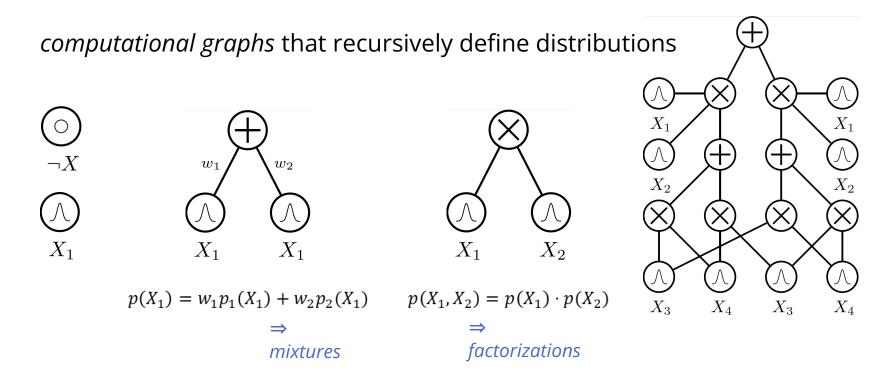


a unifying framework for tractable models

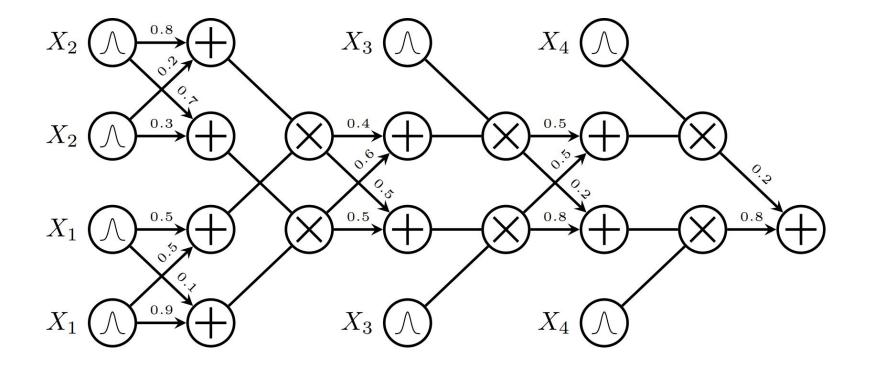
Probabilistic circuits

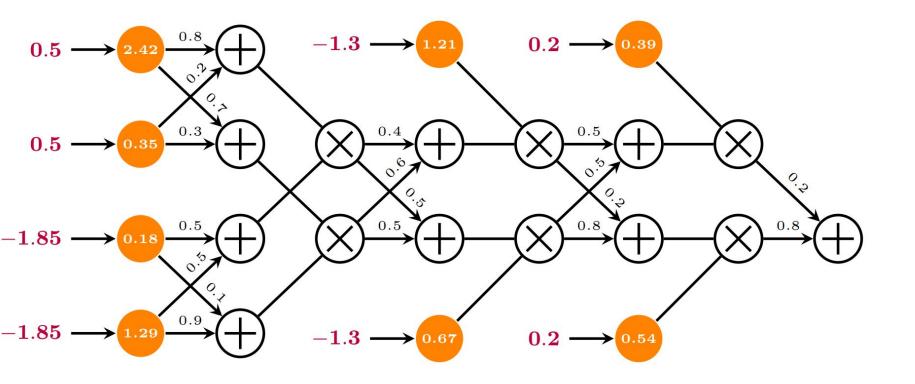
computational graphs that recursively define distributions

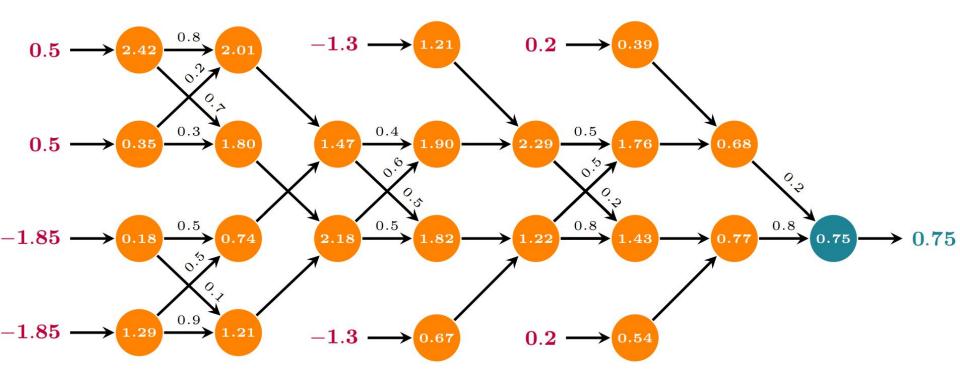


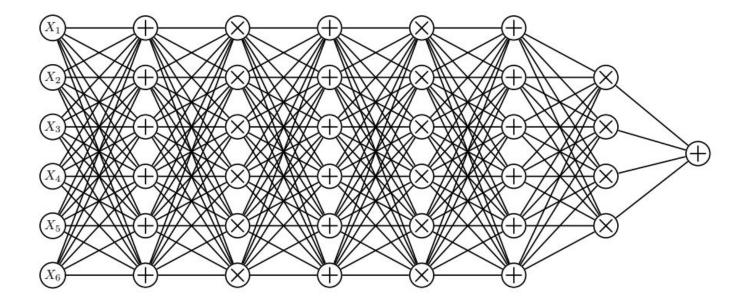

Simple distributions are tractable "black boxes" for: EVI: output $p(\mathbf{x})$ (density or mass) MAR: output 1 (normalized) or Z (unnormalized) MAP: output the mode

Probabilistic circuits

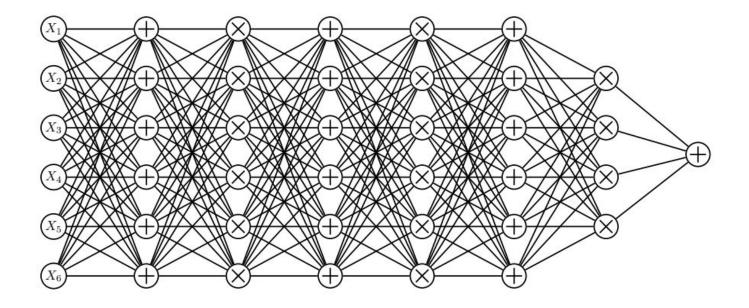

computational graphs that recursively define distributions


Probabilistic circuits


Likelihood
$$p(X_1 = -1.85, X_2 = 0.5, X_3 = -1.3, X_4 = 0.2)$$


Likelihood $p(X_1 = -1.85, X_2 = 0.5, X_3 = -1.3, X_4 = 0.2)$

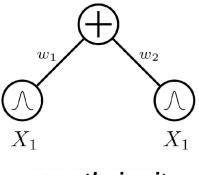
Likelihood
$$p(X_1 = -1.85, X_2 = 0.5, X_3 = -1.3, X_4 = 0.2)$$



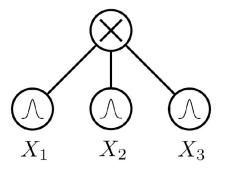
Just sum, products and distributions?

just arbitrarily compose them like a neural network!

Just sum, products and distributions?


just arbitrarily compose them like a neural network!

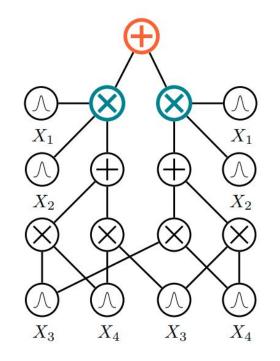
 \Rightarrow structural constraints needed for tractability


Tractable marginals

A sum node is *smooth* if its children depend on the same set of variables.

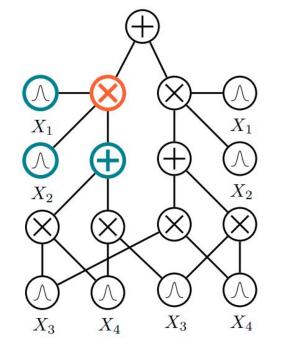
A product node is *decomposable* if its children depend on disjoint sets of variables.

smooth circuit



decomposable circuit

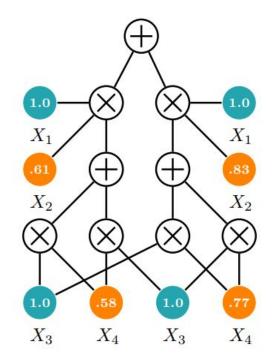
If $m{p}(\mathbf{x}) = \sum_i w_i m{p}_i(\mathbf{x})$, (smoothness):


$$\int \mathbf{p}(\mathbf{x}) d\mathbf{x} = \int \sum_{i} w_{i} \mathbf{p}_{i}(\mathbf{x}) d\mathbf{x} =$$
$$= \sum_{i} w_{i} \int \mathbf{p}_{i}(\mathbf{x}) d\mathbf{x}$$

 \Rightarrow integrals are "pushed down" to children

If $p(\mathbf{x}, \mathbf{y}, \mathbf{z}) = p(\mathbf{x})p(\mathbf{y})p(\mathbf{z})$, (decomposability):

$$\int \int \int \mathbf{p}(\mathbf{x}, \mathbf{y}, \mathbf{z}) d\mathbf{x} d\mathbf{y} d\mathbf{z} =$$
$$= \int \int \int \int \mathbf{p}(\mathbf{x}) \mathbf{p}(\mathbf{y}) \mathbf{p}(\mathbf{z}) d\mathbf{x} d\mathbf{y} d\mathbf{z} =$$
$$= \int \mathbf{p}(\mathbf{x}) d\mathbf{x} \int \mathbf{p}(\mathbf{y}) d\mathbf{y} \int \mathbf{p}(\mathbf{z}) d\mathbf{z}$$

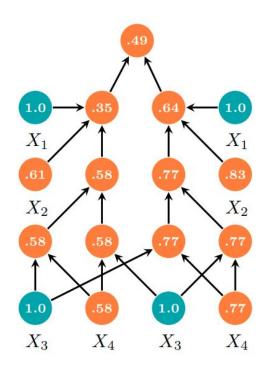


 \Rightarrow integrals decompose into easier ones

Forward pass evaluation for MAR

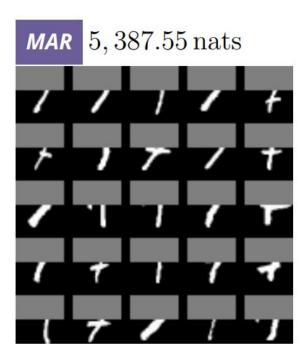
 \Rightarrow linear in circuit size!

E.g. to compute $p(x_2, x_4)$: leafs over X_1 and X_3 output $\mathbf{Z}_i = \int p(x_i) dx_i$ \Rightarrow for normalized leaf distributions: 1.0 leafs over X_2 and X_4 output **EV** feedforward evaluation (bottom-up)


Forward pass evaluation for MAR

inear in circuit size!

E.g. to compute $p(x_2, x_4)$: leafs over X_1 and X_3 output $\mathbf{Z}_i = \int p(x_i) dx_i$ for normalized leaf distributions: 1.0


leafs over X_2 and X_4 output **EVI**

feedforward evaluation (bottom-up)

Tractable MAR on PCs (Einsum Networks)

Peharz et al., "Einsum Networks: Fast and Scalable Learning of Tractable Probabilistic Circuits", 2020

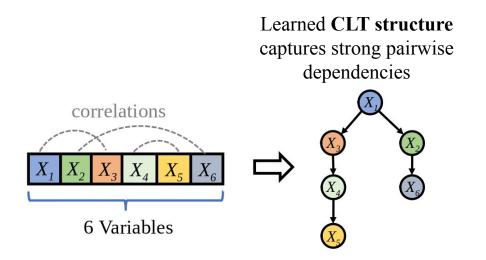
We *cannot* decompose bottom-up a MAP query:

 $\max_{\mathbf{q}} p(\mathbf{q} \mid \mathbf{e})$

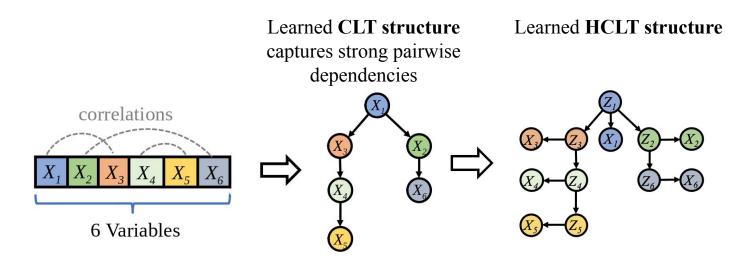
since for a sum node we are marginalizing out a latent variable

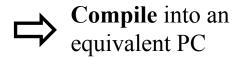
$$\max_{\mathbf{q}} \sum_{i} w_{i} p_{i}(\mathbf{q}, \mathbf{e}) = \max_{\mathbf{q}} \sum_{\mathbf{z}} p(\mathbf{q}, \mathbf{z}, \mathbf{e}) \neq \sum_{\mathbf{z}} \max_{\mathbf{q}} p(\mathbf{q}, \mathbf{z}, \mathbf{e})$$

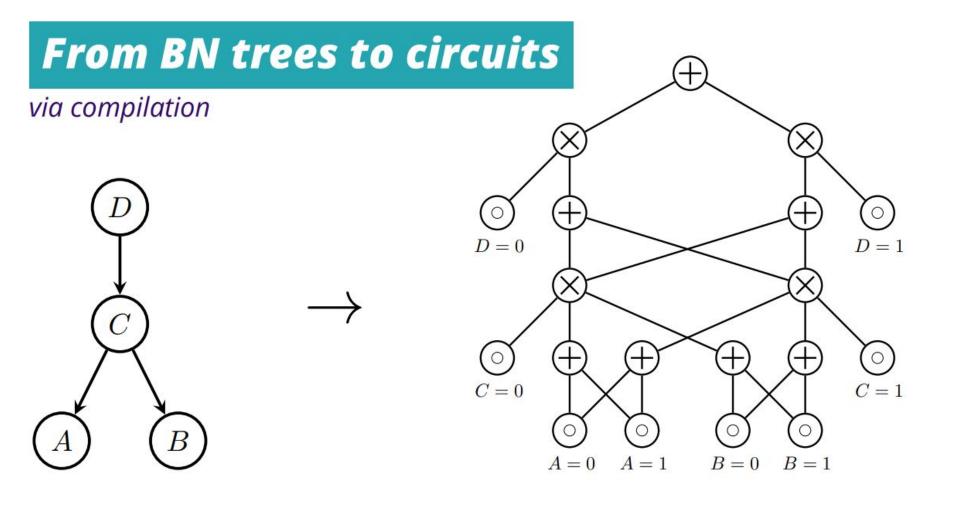
→ MAP for latent variable models is **intractable** [Conaty et al. 2017]


Outline

- 1. What are tractable probabilistic circuits?
- 2. Are these models any good?
- 3. How far can we push tractable inference?
- 4. What is their expressive power?

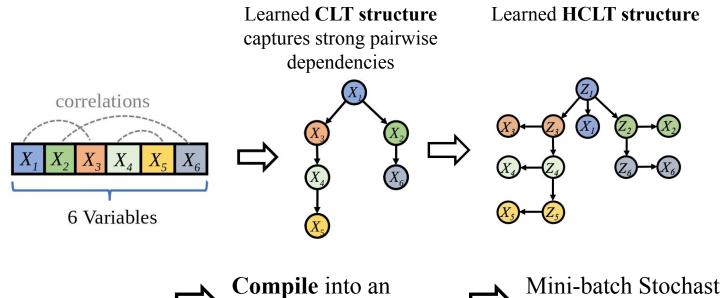

Learning Expressive Probabilistic Circuits

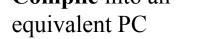

Hidden Chow-Liu Trees



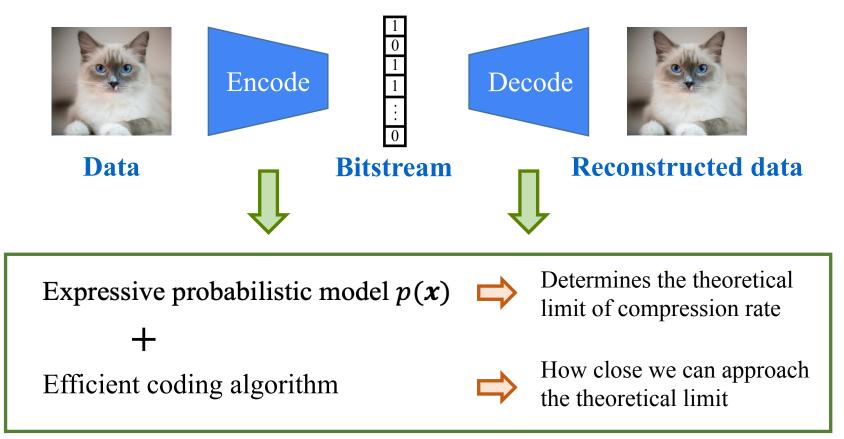
Learning Expressive Probabilistic Circuits

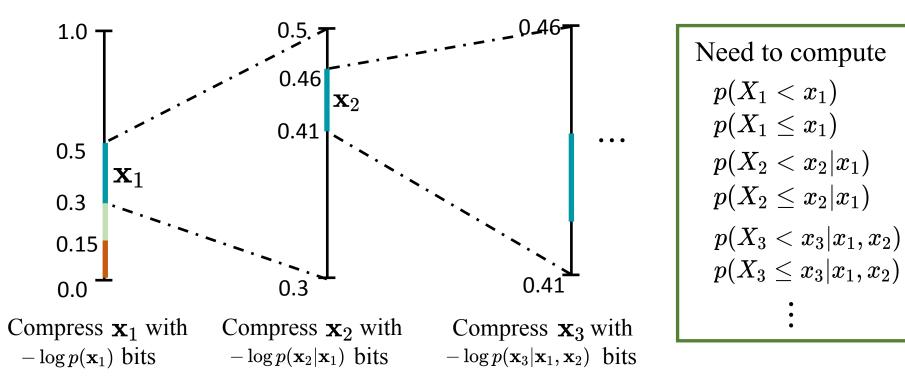
Hidden Chow-Liu Trees



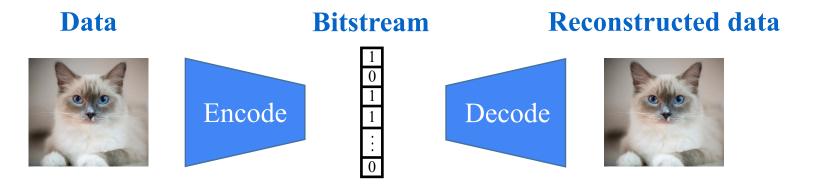


Learning Expressive Probabilistic Circuits


Hidden Chow-Liu Trees



Lossless Data Compression



A Typical Streaming Code – Arithmetic Coding

We want to compress a set of variables (e.g., pixels, letters) $\{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_k\}$

Lossless Neural Compression with Probabilistic Circuits

Probabilistic Circuits

- Expressive \rightarrow SoTA likelihood on MNIST.
- Fast

- \rightarrow Time complexity of en/decoding is O(|p| log(D)), where D is the # variables and |p| is the size of the PC.

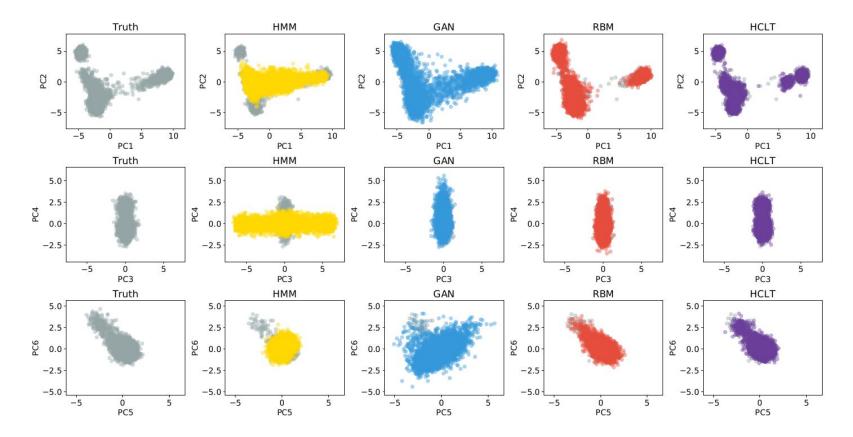
```
Arithmetic Coding:
  p(X_1 < x_1)
  p(X_1 \leq x_1)
  p(X_2 < x_2 | x_1)
  p(X_2 \leq x_2 | x_1)
  p(X_3 < x_3 | x_1, x_2)
  p(X_3 \leq x_3 | x_1, x_2)
```

Lossless Neural Compression with Probabilistic Circuits

SoTA compression rates

Dataset	HCLT (ours)	IDF	BitSwap	BB-ANS	JPEG2000	WebP	McBits
MNIST	1.24 (1.20)	1.96 (1.90)	1.31 (1.27)	1.42 (1.39)	3.37	2.09	(1.98)
FashionMNIST	3.37 (3.34)	3.50 (3.47)	3.35 (3.28)	3.69 (3.66)	3.93	4.62	(3.72)
EMNIST (Letter)	1.84 (1.80)	2.02 (1.95)	1.90 (1.84)	2.29 (2.26)	3.62	3.31	(3.12)
EMNIST (ByClass)	1.89 (1.85)	2.04 (1.98)	1.91 (1.87)	2.24 (2.23)	3.61	3.34	(3.14)

Compress and decompress 5-40x faster than NN methods with similar bitrates


Method	# parameters	Theoretical bpd	Codeword bpd	Comp. time (s)	Decomp. time (s)
PC (HCLT, $M = 16$)	3.3M	1.26	1.30	9	44
PC (HCLT, $M = 24$)	5.1M	1.22	1.26	15	86
PC (HCLT, $M = 32$)	7.0M	1.20	1.24	26	142
IDF	24.1M	1.90	1.96	288	592
BitSwap	2.8M	1.27	1.31	578	326

Lossless Neural Compression with Probabilistic Circuits

Can be effectively combined with Flow models to achieve better generative performance

Model	CIFAR10	ImageNet32	ImageNet64
RealNVP	3.49	4.28	3.98
Glow	3.35	4.09	3.81
IDF	3.32	4.15	3.90
IDF++	3.24	4.10	3.81
PC+IDF	3.28	3.99	3.71

Tractable and expressive generative models of genetic variation data

PC Learners keep getting better! ... stay tuned ...

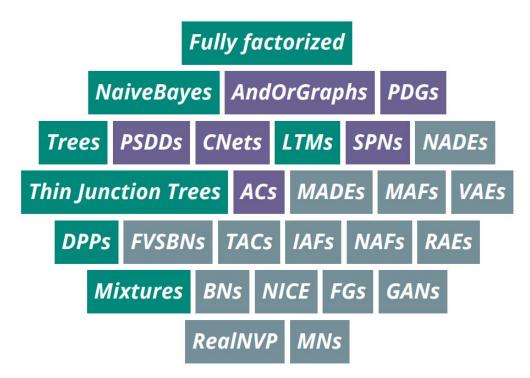

Dataset	Sparse PC (ours)	HCLT	RatSPN	IDF	BitSwap	BB-ANS	McBits
MNIST	1.14	1.20	1.67	1.90	1.27	1.39	1.98
EMNIST(MNIST)	1.52	1.77	2.56	2.07	1.88	2.04	2.19
EMNIST(Letters)	1.58	1.80	2.73	1.95	1.84	2.26	3.12
EMNIST(Balanced)	1.60	1.82	2.78	2.15	1.96	2.23	2.88
EMNIST(ByClass)	1.54	1.85	2.72	1.98	1.87	2.23	3.14
FashionMNIST	3.27	3.34	4.29	3.47	3.28	3.66	3.72

Table 1: Density estimation performance on MNIST-family datasets in test set bpd.

Dataset	\mathbf{PC}	Bipartite flow	AF/SCF	IAF/SCF
Penn Treebank	1.23	1.38	1.46	1.63

Training SotA likelihood full MNIST probabilistic circuit model in ~7 minutes on GPU: https://github.com/Juice-jl/ProbabilisticCircuits.jl/blob/master/examples/train_mnist_hclt.ipynb

Juice-jl /	Prob	abi	listic	Cir	cuits.jl	\$	ζ Unpin	⊙١	Jnwatch 7 👻	양 Fo	rk 8	🔶 s	tarred	72	•
<> Code	⊙ Iss	ues	10	17	, Pull requests	ç	入 Discuss	sions	 Actions 	⊞	Projects	s 🛱	Wiki		
₽ master -	Pro	obab	oilistic	Circ	cuits.jl / exan	nples	/ train_m	nist_	hclt.ipynb			Go	to file		
🕕 liuanji (update c	lemo	notebo	ook	~				Latest	commit c	9e062e 2	2 days ag	• ©) Hist	ory
A 1 contribu	itor														
609 lines (609 slo	c)	26.5	КВ					<>	D	Raw	Blame	C	Ø	Û
					Dataset		PC (ours)	IDF	Hierarchical VAE	E PixelV/	Æ				*
					MNIST		1.20	2.90	1.27	1.39					
					FashionMNIST		3.34	3.47	3.28	3.66					
					EMNIST (Letter	split)	1.80	1.95	1.84	2.26					
					EMNIST (ByClas	ss split)	1.85	1.98	1.87	2.23					
	* Note:	all re	ported	num	bers are bits-pe	er-dime	ension (bpc	d). The	e results are extr	acted fro	m [1].				
					ndt and Guy Va e on Learning F				s Compression v , 2022.	vith Prob	abilistic (Circuits, I	n		
	We sta	rt by i	importii	ng Pi	robabilisticCircu	uits.jl a	nd other re	quirec	l packages:						- 1
In [1]:		g MLI	Datase		icCircuits										
	We first	t load	I the MI	NIST	dataset from N	ILData	sets.jl and	move	them to GPU:						

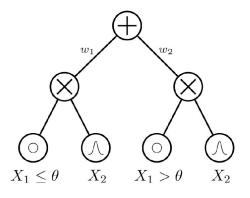
Expressive models without compromises

Outline

- 1. What are tractable probabilistic circuits?
- 2. Are these models any good?
- 3. How far can we push tractable inference?
- 4. What is their expressive power?

We *cannot* decompose bottom-up a MAP query:

 $\max_{\mathbf{q}} p(\mathbf{q} \mid \mathbf{e})$


since for a sum node we are marginalizing out a latent variable

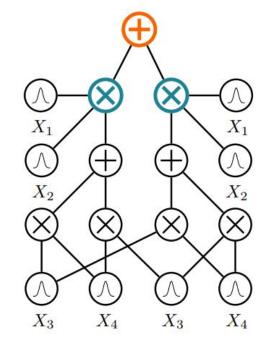
$$\max_{\mathbf{q}} \sum_{i} w_{i} p_{i}(\mathbf{q}, \mathbf{e}) = \max_{\mathbf{q}} \sum_{\mathbf{z}} p(\mathbf{q}, \mathbf{z}, \mathbf{e}) \neq \sum_{\mathbf{z}} \max_{\mathbf{q}} p(\mathbf{q}, \mathbf{z}, \mathbf{e})$$

→ MAP for latent variable models is **intractable** [Conaty et al. 2017]

Determinism

A sum node is *deterministic* if only one of its children outputs non-zero for any input

 \Rightarrow allows **tractable MAP** inference argmax_x p(x)

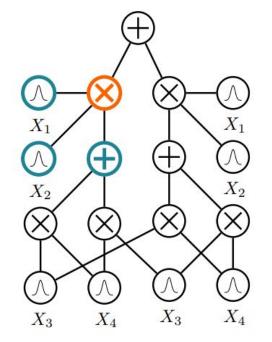

deterministic circuit

Darwiche and Marquis, "A Knowledge Compilation Map", 2002

Determinism + decomposability = tractable MAP

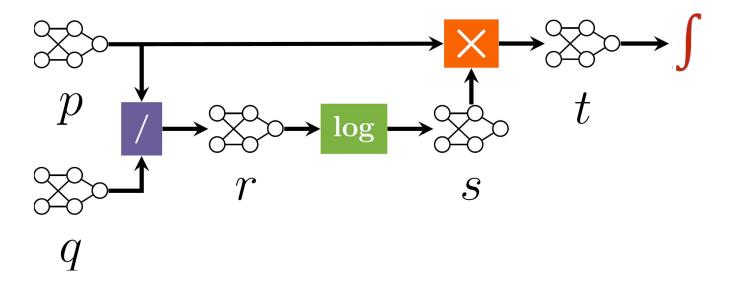
If $\mathbf{p}(\mathbf{q}, \mathbf{e}) = \sum_{i} w_i \mathbf{p}_i(\mathbf{q}, \mathbf{e}) = \max_i w_i \mathbf{p}_i(\mathbf{q}, \mathbf{e})$, (*deterministic* sum node):

$$\max_{\mathbf{q}} \mathbf{p}(\mathbf{q}, \mathbf{e}) = \max_{\mathbf{q}} \sum_{i} w_{i} \mathbf{p}_{i}(\mathbf{q}, \mathbf{e})$$
$$= \max_{\mathbf{q}} \max_{i} w_{i} \mathbf{p}_{i}(\mathbf{q}, \mathbf{e})$$
$$= \max_{i} \max_{\mathbf{q}} w_{i} \mathbf{p}_{i}(\mathbf{q}, \mathbf{e})$$

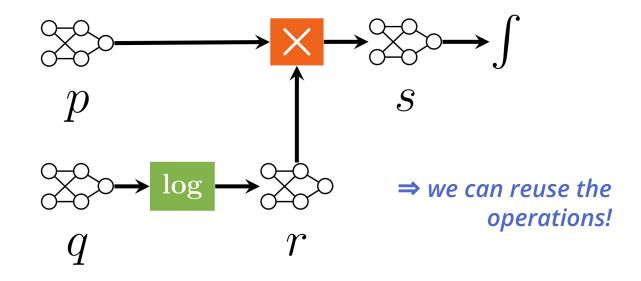


one non-zero child term, thus sum is max

Determinism + decomposability = tractable MAP


If $p(q, e) = p(q_x, e_x, q_y, e_y) = p(q_x, e_x)p(q_y, e_y)$ (*decomposable* product node):

 $\max_{\mathbf{q}} p(\mathbf{q} \mid \mathbf{e}) = \max_{\mathbf{q}} p(\mathbf{q}, \mathbf{e})$ $= \max_{\mathbf{q},\mathbf{q},\mathbf{q},\mathbf{y}} p(\mathbf{q}, \mathbf{e}, \mathbf{e}, \mathbf{q}, \mathbf{q}, \mathbf{e}, \mathbf{q})$ $= \max_{\mathbf{q},\mathbf{x}} p(\mathbf{q}, \mathbf{e}, \mathbf{e}, \mathbf{q}) \cdot \max_{\mathbf{q},\mathbf{y}} p(\mathbf{q}, \mathbf{q}, \mathbf{e}, \mathbf{q})$ $\implies \text{ solving optimization independently}$


Queries as pipelines: KLD

 $\mathbb{KLD}(p \parallel q) = \int p(\mathbf{x}) \times \log((p(\mathbf{x})/q(\mathbf{x}))d\mathbf{X})$

Queries as pipelines: Cross Entropy

 $H(p,q) = \int p(\boldsymbol{x}) \times \log(q(\boldsymbol{x})) d\boldsymbol{X}$

Operation			Tractability
		Input conditions	Output conditions
Log	$\log(p)$	Sm, Dec, Det	Sm, Dec
	Q_{Δ}	$\rightarrow \log -$	$\sim \sim \sim \sim$
	$\Delta $	log	
	smooth,		smooth,
	decomposable, deterministic		decomposable

Tractable circuit operations

Operation		Tractability			
		Input properties	Output properties	Hardness	
SUM	$\theta_1 p + \theta_2 q$	(+Cmp)	(+SD)	NP-hard for Det output	
PRODUCT	$p \cdot q$	Cmp (+Det, +SD)	Dec (+Det, +SD)	#P-hard w/o Cmp	
POWER	$p^n, n \in \mathbb{N}$	SD (+Det)	SD (+Det)	#P-hard w/o SD	
	$p^{\alpha}, \alpha \in \mathbb{R}$	Sm, Dec, Det (+SD)	Sm, Dec, Det (+SD)	#P-hard w/o Det	
QUOTIENT	p/q	Cmp; q Det (+ p Det,+SD)	Dec (+Det,+SD)	#P-hard w/o Det	
LOG	$\log(p)$	Sm, Dec, Det	Sm, Dec	#P-hard w/o Det	
Exp	$\exp(p)$	linear	SD	#P-hard	

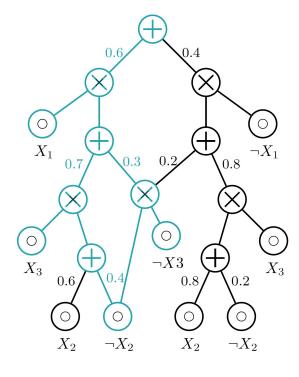
Inference by tractable operations

systematically derive tractable inference algorithm of complex queries

	Query	Tract. Conditions	Hardness
CROSS ENTROPY	$-\int p(oldsymbol{x}) \log q(oldsymbol{x}) \mathrm{d} \mathbf{X}$	Cmp, q Det	#P-hard w/o Det
SHANNON ENTROPY	$-\sum p(oldsymbol{x})\log p(oldsymbol{x})$	Sm, Dec, Det	coNP-hard w/o Det
Rényi Entropy	$(1-lpha)^{-1}\log\int p^{lpha}(oldsymbol{x})d\mathbf{X}, lpha\in\mathbb{N}$	SD	#P-hard w/o SD
KENTI ENTROPT	$(1-lpha)^{-1}\log \int p^lpha(oldsymbol{x}) d\mathbf{X}, lpha\in\mathbb{R}_+$	Sm, Dec, Det	#P-hard w/o Det
MUTUAL INFORMATION	$\int p(oldsymbol{x},oldsymbol{y}) \log(p(oldsymbol{x},oldsymbol{y})/(p(oldsymbol{x})p(oldsymbol{y})))$	Sm, SD, Det*	coNP-hard w/o SD
KULLBACK-LEIBLER DIV.	$\int p(oldsymbol{x}) \log(p(oldsymbol{x})/q(oldsymbol{x})) d \mathbf{X}$	Cmp, Det	#P-hard w/o Det
Rényi's Alpha Div.	$(1-lpha)^{-1}\log\int p^{lpha}(oldsymbol{x})q^{1-lpha}(oldsymbol{x})\;d\mathbf{X},lpha\in\mathbb{N}$	Cmp, q Det	#P-hard w/o Det
KENTI S ALPHA DIV.	$(1-\alpha)^{-1}\log \int p^{\alpha}(\boldsymbol{x})q^{1-\alpha}(\boldsymbol{x}) d\mathbf{X}, \alpha \in \mathbb{R}$	Cmp, Det	#P-hard w/o Det
ITAKURA-SAITO DIV.	$\int [p(oldsymbol{x})/q(oldsymbol{x}) - \log(p(oldsymbol{x})/q(oldsymbol{x})) - 1] d \mathbf{X}$	Cmp, Det	#P-hard w/o Det
CAUCHY-SCHWARZ DIV.	$-\lograc{\int p(oldsymbol{x})q(oldsymbol{x})doldsymbol{X}}{\sqrt{\int p^2(oldsymbol{x})doldsymbol{X}\int q^2(oldsymbol{x})doldsymbol{X}}}$	Cmp	#P-hard w/o Cmp
SQUARED LOSS	$\int (p(oldsymbol{x}) - q(oldsymbol{x}))^2 d \mathbf{X}$	Cmp	#P-hard w/o Cmp

Even harder queries

Marginal MAP


Given a set of query variables $Q \subset X$ and evidence e, find: $argmax_q p(q|e)$

 \Rightarrow i.e. MAP of a marginal distribution on **Q**

NP^{PP}-complete for PGMs

NP-hard even for PCs tractable for marginals, MAP & entropy

Pruning circuits

Any parts of circuit not relevant for MMAP state can be pruned away

e.g.
$$p(X_1 = 1, X_2 = 0)$$

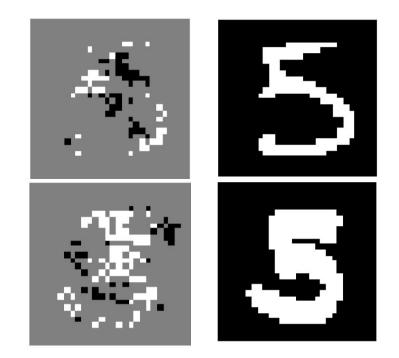
We can find such edges in *linear time*

Iterative MMAP solver

Prune edges

Dataset	runtime search	(# solved) pruning
NLTCS	0.01 (10)	0.63 (10)
MSNBC	0.03 (10)	0.73 (10)
KDD	0.04 (10)	0.68 (10)
Plants	2.95 (10)	2.72 (10)
Audio	2041.33 (6)	13.70 (10)
Jester	2913.04 (2)	14.74 (10)
Netflix	- (0)	47.18 (10)
Accidents	109.56 (10)	15.86 (10)
Retail	0.06 (10)	0.81 (10)
Pumsb-star	2208.27 (7)	20.88 (10)
DNA	- (0)	505.75 (9)
Kosarek	48.74 (10)	3.41 (10)
MSWeb	1543.49 (10)	1.28 (10)
Book	- (0)	46.50 (10)
EachMovie	- (0)	1216.89 (8)
WebKB	- (0)	575.68 (10)
Reuters-52	- (0)	120.58 (10)
20 NewsGrp.	- (0)	504.52 (9)
BBC	- (0)	2757.18 (3)
Ad	- (0)	1254.37 (8)

Probabilistic Sufficient Explanations


<u>Goal</u>: explain an instance of classification (a specific prediction)

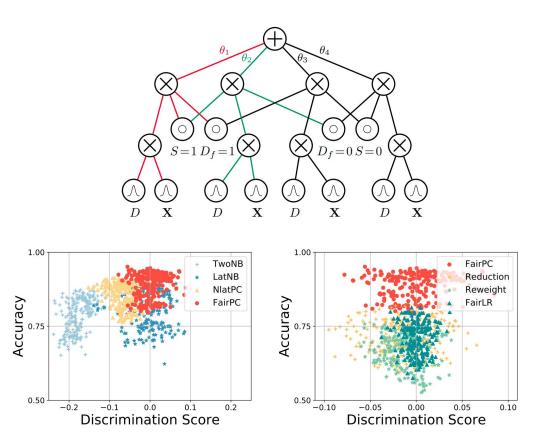
Explanation is a subset of features, s.t.

 The explanation is "probabilistically sufficient"

> Under the feature distribution, given the explanation, the classifier is likely to make the observed prediction.

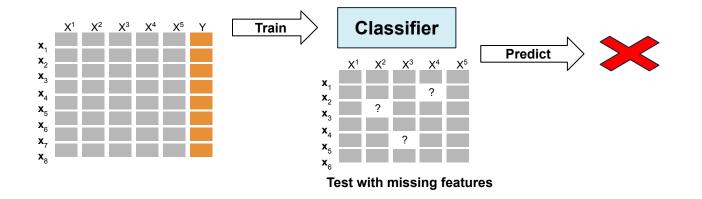
2. It is minimal and "simple"

Model-Based Algorithmic Fairness: FairPC


Learn classifier given

- features S and X
- training labels/decisions D

Group fairness by demographic parity:


Fair decision D_f should be independent of the sensitive attribute S

Discover the **latent fair decision** D_f by learning a PC.

[Choi et al. AAAI21]

Prediction with Missing Features

See work on

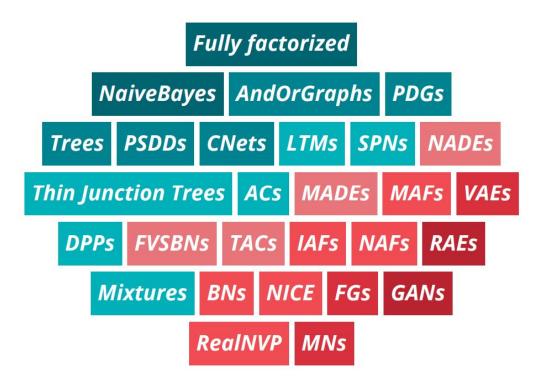
- Expected predictions / conformant learning [Khosravi et al.]
- Generative forests [Correia et al.]

Tractable Computation of Expected Kernels

- How to compute the expected kernel given two distributions **p**, **q**?

$$\mathbb{E}_{\mathbf{x}\sim\mathbf{p},\mathbf{x}'\sim\mathbf{q}}[\mathbf{k}(\mathbf{x},\mathbf{x}')]$$

- Circuit representation for kernel functions, e.g., $\mathbf{k}(\mathbf{x}, \mathbf{x}') = \exp\left(-\sum_{i=1}^{4} |X_i - X'_i|^2\right)$


$$\exp(-|X_{1} - X_{1}'|^{2}) \bigwedge^{1} \bigoplus^{1} \bigoplus^{$$

Tractable Computation of Expected Kernels: Applications

- Reasoning about support vector regression (SVR) with missing features

$$\mathbb{E}_{\mathbf{x}_{m} \sim \mathbf{p}(\mathbf{X}_{m} | \mathbf{x}_{o})} \left[\sum_{i=1}^{m} w_{i} \mathbf{k}(\mathbf{x}_{i}, \mathbf{x}) + b \right]$$

missing
features SVR model

- Collapsed Black-box Importance Sampling: minimize kernelized Stein discrepancy

tractability is a spectrum

Outline

- 1. What are tractable probabilistic circuits?
- 2. Are these models any good?
- 3. How far can we push tractable inference?
- 4. What is their expressive power?

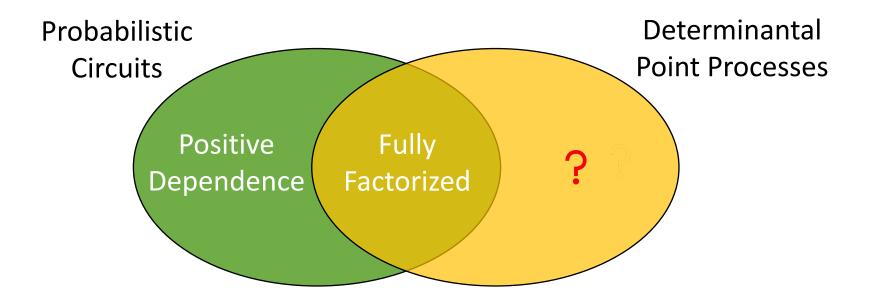
Probabilistic circuits seem awfully general.

Are all tractable probabilistic models probabilistic circuits?

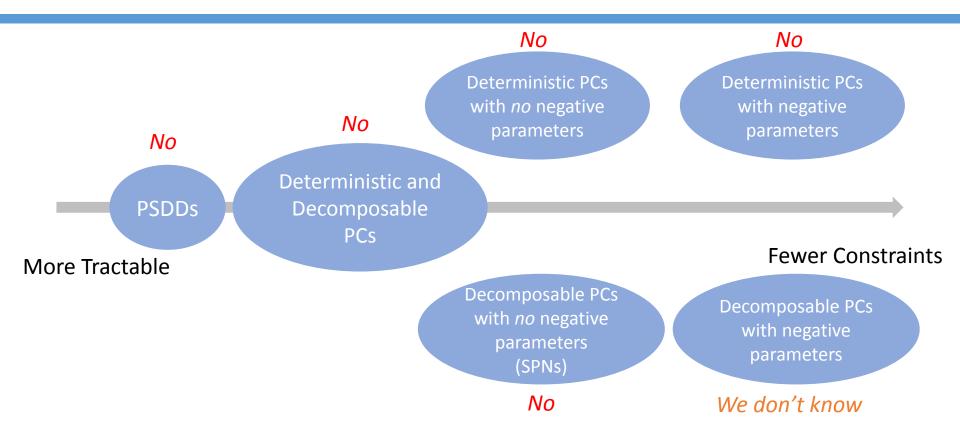
Enter: Determinantal Point Processes (DPPs)

DPPs are models where probabilities are specified by (sub)determinants

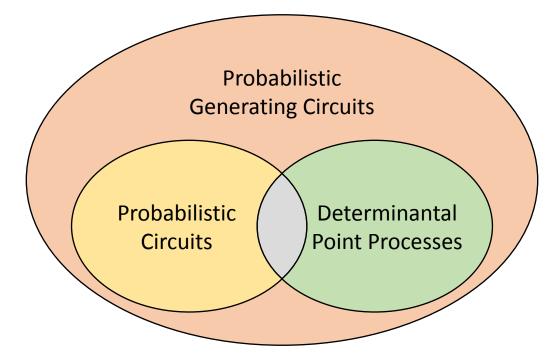
$$L = \begin{bmatrix} 1 & 0.9 & 0.8 & 0 \\ 0.9 & 0.97 & 0.96 & 0 \\ 0.8 & 0.96 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$


Tractable likelihoods and marginals

Global Negative Dependence


Diversity in recommendation systems

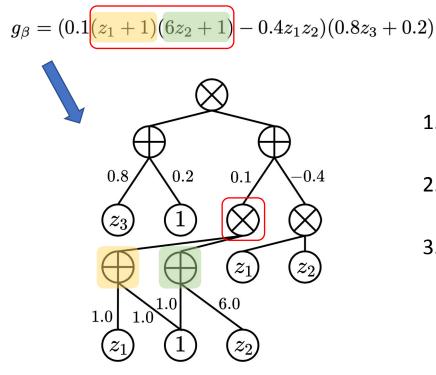
$$\Pr_L(X_1 = 1, X_2 = 0, X_3 = 1, X_4 = 0) = \frac{1}{\det(L+I)} \det(L_{\{1,2\}})$$


Relationship between PCs and DPPs

We cannot tractably represent DPPs with subclasses of PCs

Probabilistic Generating Circuits

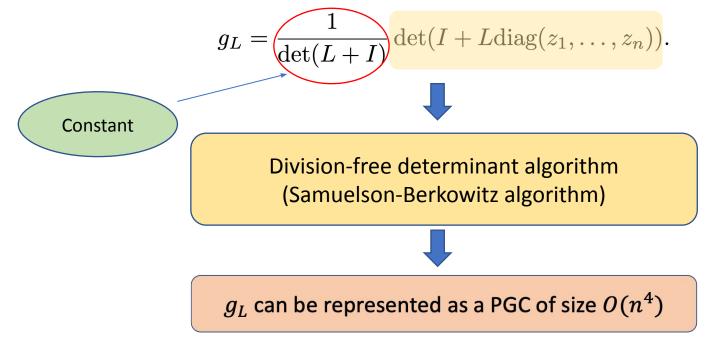
A Tractable Unifying Framework for PCs and DPPs

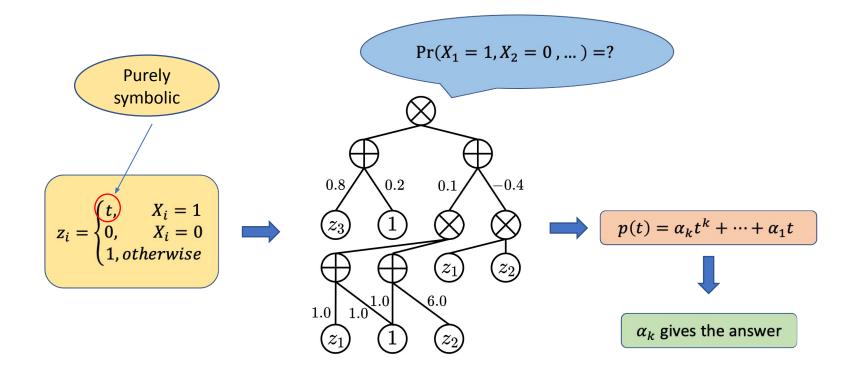

Probability Generating Functions

-	X_1	X_2	X_3	\Pr_{β}
-	0	0	0	0.02
	0	0	1	0.08
	0	1	0	0.12
	0	1	1	0.48
	1	0	0	0.02
	1	0	1	0.08
	1	1	0	0.04
	1	1	1	0.16

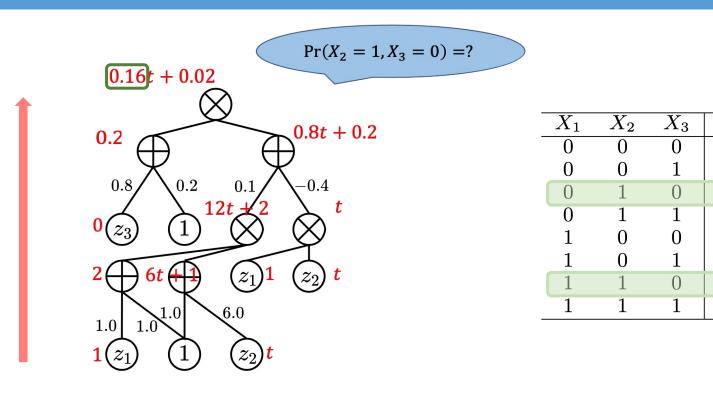
$$g_{\beta} = \underbrace{0.16z_1z_2z_3}_{0.16z_1z_2z_3} + 0.04z_1z_2 + 0.08z_1z_3 + 0.02z_1 \\ + 0.48z_2z_3 + 0.12z_2 + 0.08z_3 + 0.02z_1$$

 $g_{\beta} = (0.1(z_1+1)(6z_2+1) - 0.4z_1z_2)(0.8z_3+0.2)$


Probabilistic Generating Circuits (PGCs)


- Sum nodes with weighted edges to children.
- 2. Product nodes with unweighted edges to children.
- 3. Leaf nodes: z_i or constant.

DPPs as PGCs


The generating polynomial for a DPP with kernel L is given by:

PGCs Support Tractable Likelihoods/Marginals

Example

 Pr_{β}

0.02

0.08

0.12

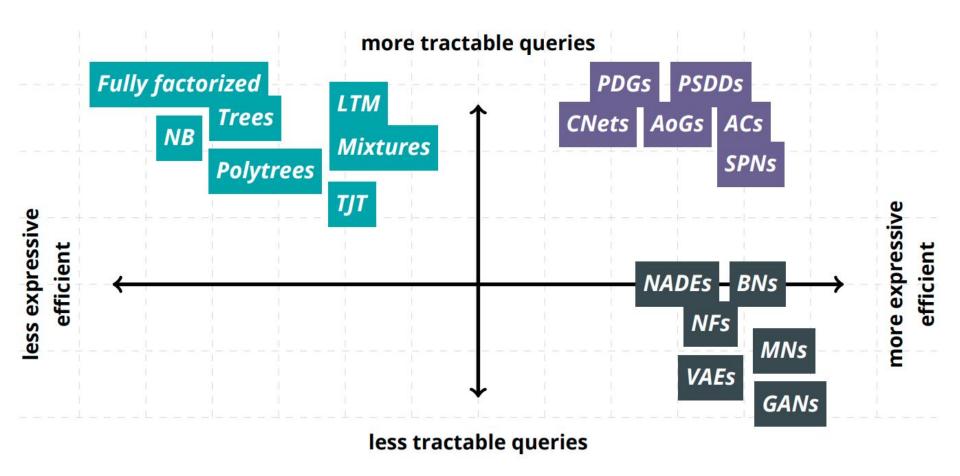
0.48

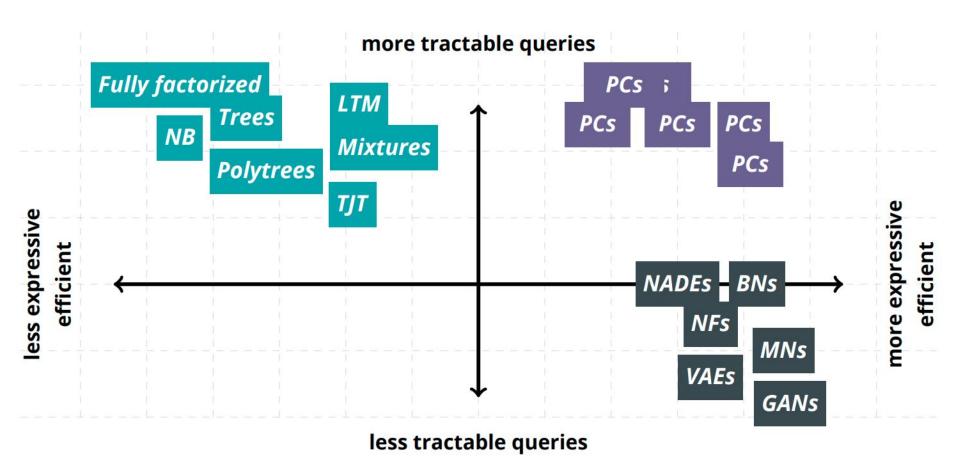
0.02

0.08

 $0.04 \\ 0.16$

Experiment Results: Amazon Baby Registries


	DPP	Strudel	EiNet	MT	SimplePGC
apparel	-9.88	-9.51	-9.24	-9.31	$-9.10^{*\dagger\circ}$
bath	-8.55	-8.38	-8.49	-8.53	$-8.29^{*\dagger\circ}$
bedding	-8.65	-8.50	-8.55	-8.59	$-8.41^{*\dagger\circ}$
carseats	-4.74	-4.79	-4.72	-4.76	$-4.64^{*\dagger\circ}$
diaper	-10.61	-9.90	-9.86	-9.93	$-9.72^{*\dagger\circ}$
feeding	-11.86	-11.42	-11.27	-11.30	$-11.17^{*\dagger\circ}$
furniture	-4.38	-4.39	-4.38	-4.43	$-4.34^{*\dagger\circ}$
gear	-9.14	-9.15	-9.18	-9.23	$-9.04^{*\dagger\circ}$
gifts	-3.51	-3.39	-3.42	-3.48	-3.47°
health	-7.40	-7.37	-7.47	-7.49	$-7.24^{*\dagger\circ}$
media	-8.36	-7.62	-7.82	-7.93	$-7.69^{\dagger\circ}$
moms	-3.55	-3.52	-3.48	-3.54	-3.53°
safety	-4.28	-4.43	-4.39	-4.36	$-4.28^{*\dagger\circ}$
strollers	-5.30	-5.07	-5.07	-5.14	$-5.00^{*\dagger\circ}$
toys	-8.05	-7.61	-7.84	-7.88	$-7.62^{\dagger\circ}$


SimplePGC achieves SOTA result on 11/15 datasets

Conclusion

- 1. What are tractable probabilistic circuits?
- 2. Are these models any good?
- 3. How far can we push tractable inference?
- 4. What is their expressive power?

Learn more about probabilistic circuits?

Tutorial (3h)

Inference

Learning

Theory

Representations

Probabilistic Circuits

Antonio Vergari University of California, Los Angeles

Robert Peharz TU Eindhoven YooJung Choi University of California, Los Angeles

Guy Van den Broeck University of California, Los Angeles

September 14th, 2020 - Ghent, Belgium - ECML-PKDD 2020

▶ ▶| ➡) 0:00 / 3:02:44

https://youtu.be/2RAG5-L9R70

Overview Paper (80p)

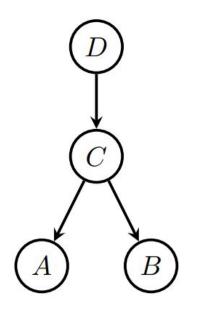
Probabilistic Circuits: A Unifying Framework for Tractable Probabilistic Models	*
YooJung Choi	
Antonio Vergari	
Guy Van den Broeck Computer Science Department University of California Los Angeles, CA, USA	
1 Introduction 2 Probabilistic Inference: Models, Queries, and Tractability 2.1 Probabilistic Models 2.2 Probabilistic Queries 2.3 Tractable Probabilistic Inference 2.4 Properties of Tractable Probabilistic Models	3 4 5 6 8 9

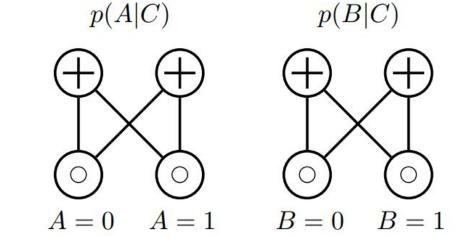
http://starai.cs.ucla.edu/papers/ProbCirc20.pdf

From BN trees to circuits

via compilation

...compile a leaf CPT

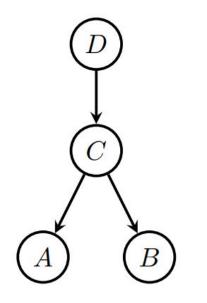

p(A|C=0)

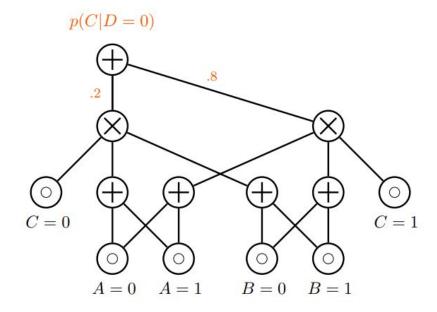


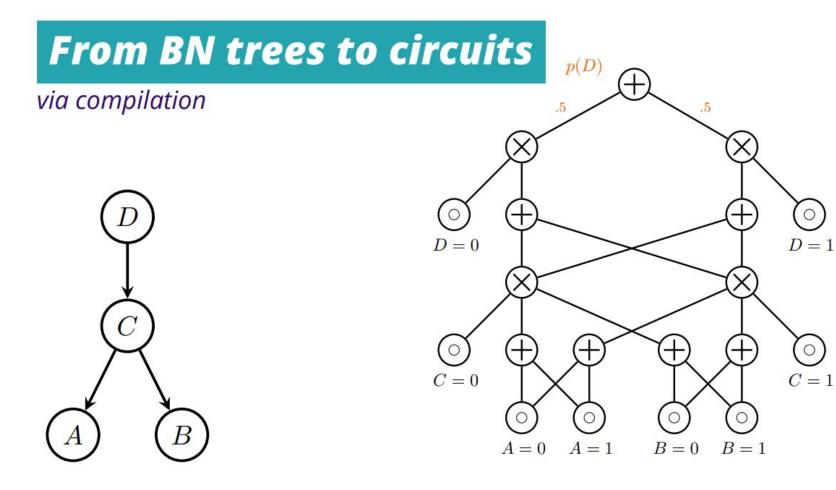
From BN trees to circuits

via compilation

...compile a leaf CPT...for all leaves...






From BN trees to circuits

via compilation

...and recurse over parents...

