Tractable Computation of Expected Kernels by Circuits

Wenzhe Li*
Tsinghua University

Antonio Vergari

University of California, Los Angeles

Zhe Zeng*

University of California, Los Angeles

Guy Van den Broeck

University of California, Los Angeles

Tractable Computation of Expected Kernels by Circuits

Wenzhe Li*
Tsinghua University

Antonio Vergari

University of California, Los Angeles

Zhe Zeng*

University of California, Los Angeles

Guy Van den Broeck

University of California, Los Angeles

Tractable Computation of Expected Kernels by Circuits

Wenzhe Li*
Tsinghua University

Antonio Vergari

University of California, Los Angeles

Zhe Zeng*

University of California, Los Angeles

Guy Van den Broeck

University of California, Los Angeles

Tractable Computation of Expected Kernels by Circuits

Wenzhe Li*
Tsinghua University

Antonio Vergari

University of California, Los Angeles

Zhe Zeng*

University of California, Los Angeles

Guy Van den Broeck

University of California, Los Angeles

Motivation

A Fundamental Task
Given two distributions \mathbf{p} and \mathbf{q}, and a kernel \mathbf{k}, the task is to compute the expected kernel

$$
\mathbb{E}_{\mathbf{x} \sim \mathbf{p}, \mathbf{x}^{\prime} \sim \mathbf{q}}\left[\mathbf{k}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)\right]
$$

Motivation

A Fundamental Task

Given two distributions \mathbf{p} and \mathbf{q}, and a kernel \mathbf{k}, the task is to compute the expected kernel

$$
\mathbb{E}_{\mathbf{x} \sim \mathbf{p}, \mathbf{x}^{\prime} \sim \mathbf{q}}\left[\mathbf{k}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)\right]
$$

\Rightarrow In kernel-based frameworks, expected kernels are omnipresent!

Motivation

A Fundamental Task

Given two distributions \mathbf{p} and \mathbf{q}, and a kernel \mathbf{k}, the task is to compute the expected kernel

$$
\mathbb{E}_{\mathbf{x} \sim \mathbf{p}, \mathbf{x}^{\prime} \sim \mathbf{q}}\left[\mathbf{k}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)\right]
$$

\Rightarrow In kernel-based frameworks, expected kernels are omnipresent!
squared Maximum Mean Discrepancy (MMD)
$\mathbb{E}_{\mathbf{x} \sim \mathbf{p}, \mathbf{x}^{\prime} \sim \mathbf{p}}\left[\mathbf{k}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)\right]+\mathbb{E}_{\mathbf{x} \sim \mathbf{q}, \mathbf{x}^{\prime} \sim \mathbf{q}}\left[\mathbf{k}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)\right]-2 \mathbb{E}_{\mathbf{x} \sim \mathbf{p}, \mathbf{x}^{\prime} \sim \mathbf{q}}\left[\mathbf{k}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)\right]$

Motivation

A Fundamental Task

Given two distributions \mathbf{p} and \mathbf{q}, and a kernel \mathbf{k}, the task is to compute the expected kernel

$$
\mathbb{E}_{\mathbf{x} \sim \mathbf{p}, \mathbf{x}^{\prime} \sim \mathbf{q}}\left[\mathbf{k}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)\right]
$$

\Rightarrow In kernel-based frameworks, expected kernels are omnipresent!

Discrete Kernelized Stein Discrepancy (KDSD)
$\mathbb{E}_{\mathbf{x}, \mathbf{x}^{\prime} \sim \mathbf{q}}\left[\mathbf{k}_{\mathbf{p}}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)\right]$

Challenge

Reliability vs. Flexibility

$$
\mathbb{E}_{\mathbf{x} \sim \mathbf{p}, \mathbf{x}^{\prime} \sim \mathbf{q}}\left[\mathbf{k}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)\right]=\int_{\mathbf{x}, \mathbf{x}^{\prime}} \mathbf{p}(\mathbf{x}) \mathbf{q}\left(\mathbf{x}^{\prime}\right) \mathbf{k}\left(\mathbf{x}, \mathbf{x}^{\prime}\right) d \mathbf{x} d \mathbf{x}^{\prime}
$$

Challenge

Reliability vs. Flexibility

$$
\mathbb{E}_{\mathbf{x} \sim \mathbf{p}, \mathbf{x}^{\prime} \sim \mathbf{q}}\left[\mathbf{k}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)\right]=\int_{\mathbf{x}, \mathbf{x}^{\prime}} \mathbf{p}(\mathbf{x}) \mathbf{q}\left(\mathbf{x}^{\prime}\right) \mathbf{k}\left(\mathbf{x}, \mathbf{x}^{\prime}\right) d \mathbf{x} d \mathbf{x}^{\prime}
$$

p, q, k fully factorized
$\mathbf{p}(\mathbf{x})=\prod_{i} \mathbf{p}\left(x_{i}\right), \mathbf{q}(\mathbf{x})=\prod_{i} \mathbf{q}\left(x_{i}\right)$
$\mathbf{k}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\prod_{i} \mathbf{k}\left(x_{i}, x_{i}^{\prime}\right)$
\Rightarrow expected kernel is tractable
$\prod_{i}\left(\int_{x_{i}, x_{i}^{\prime}} \mathbf{p}\left(x_{i}\right) \mathbf{q}\left(x_{i}^{\prime}\right) \mathbf{k}\left(x_{i}, x_{i}^{\prime}\right)\right)$

Challenge

Reliability vs. Flexibility

$$
\mathbb{E}_{\mathbf{x} \sim \mathbf{p}, \mathbf{x}^{\prime} \sim \mathbf{q}}\left[\mathbf{k}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)\right]=\int_{\mathbf{x}, \mathbf{x}^{\prime}} \mathbf{p}(\mathbf{x}) \mathbf{q}\left(\mathbf{x}^{\prime}\right) \mathbf{k}\left(\mathbf{x}, \mathbf{x}^{\prime}\right) d \mathbf{x} d \mathbf{x}^{\prime}
$$

$\mathbf{p}, \mathbf{q}, \mathbf{k}$ fully factorized
$\mathbf{p}(\mathbf{x})=\prod_{i} \mathbf{p}\left(x_{i}\right), \mathbf{q}(\mathbf{x})=\prod_{i} \mathbf{q}\left(x_{i}\right)$
$\mathbf{k}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\prod_{i} \mathbf{k}\left(x_{i}, x_{i}^{\prime}\right)$
\Rightarrow expected kernel is tractable
$\prod_{i}\left(\int_{x_{i}, x_{i}^{\prime}} \mathbf{p}\left(x_{i}\right) \mathbf{q}\left(x_{i}^{\prime}\right) \mathbf{k}\left(x_{i}, x_{i}^{\prime}\right)\right)$

A computation is tractable if it can be done exactly in polynomial time

Challenge

Reliability vs. Flexibility

$$
\mathbb{E}_{\mathbf{x} \sim \mathbf{p}, \mathbf{x}^{\prime} \sim \mathbf{q}}\left[\mathbf{k}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)\right]=\int_{\mathbf{x}, \mathbf{x}^{\prime}} \mathbf{p}(\mathbf{x}) \mathbf{q}\left(\mathrm{x}^{\prime}\right) \mathbf{k}\left(\mathbf{x}, \mathbf{x}^{\prime}\right) d \mathbf{x} d \mathbf{x}^{\prime}
$$

$\mathbf{p}, \mathbf{q}, \mathbf{k}$ fully factorized
PRO. Tractable exact computation
CON. Model being too restrictive

Challenge

Reliability vs. Flexibility

$$
\mathbb{E}_{\mathbf{x} \sim \mathbf{p}, \mathbf{x}^{\prime} \sim \mathbf{q}}\left[\mathbf{k}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)\right]=\int_{\mathbf{x}, \mathbf{x}^{\prime}} \mathbf{p}(\mathbf{x}) \mathbf{q}\left(\mathbf{x}^{\prime}\right) \mathbf{k}\left(\mathbf{x}, \mathbf{x}^{\prime}\right) d \mathbf{x} d \mathbf{x}^{\prime}
$$

$\mathbf{p}, \mathbf{q}, \mathbf{k}$ fully factorized
PRO. Tractable exact computation
CON. Model being too restrictive

Hard to compute in general.
\Rightarrow approximate with MC or variational inference
PRO. Efficient computation
CON. no guarantees on error bounds

Challenge

Reliability vs. Flexibility

$$
\mathbb{E}_{\mathbf{x} \sim \mathrm{p}, \mathrm{x}^{\prime} \sim \mathbf{q}}\left[\mathbf{k}\left(\mathrm{x}, \mathrm{x}^{\prime}\right)\right]=\int_{\mathrm{x}, \mathrm{x}^{\prime}} \mathbf{p}(\mathrm{x}) \mathbf{q}\left(\mathrm{x}^{\prime}\right) \mathbf{k}\left(\mathrm{x}, \mathrm{x}^{\prime}\right) d \mathbf{x} d \mathrm{x}^{\prime}
$$

$\mathbf{p}, \mathbf{q}, \mathbf{k}$ fully factorized
PRO. Tractable exact computation CON. Model being too restrictive
trade-off? Hard to compute in general. \Rightarrow approximate with MC or variational inference
PRO. Efficient computation
CON. no guarantees on error bounds

Expressive distribution models
 $+$

Exact computation of expected kernels?

Expressive distribution models
 $+$

Exact computation of expectated kernels =

Circuits!

Circuits

Probabilistic Circuits

deep generative models + deep guarantees

Circuits

Probabilistic Circuits

deep generative models + deep guarantees

Kernel Circuits

express kernels as circuits

Circuits

Probabilistic Circuits

deep generative models + deep guarantees

Kernel Circuits

$$
\Rightarrow \quad \mathbb{E}_{\mathbf{x} \sim \mathrm{p}, \mathbf{x}^{\prime} \sim \mathrm{q}}\left[\mathbf{k}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)\right]
$$

express kernels as circuits

Probabilistic Circuits (PCs)

Tractable computational graphs

I. A simple tractable distribution is a PC

\Rightarrow e.g., a multivariate Gaussian

Probabilistic Circuits (PCs)

Tractable computational graphs
I. A simple tractable distribution is a PC
II. A convex combination of PCs is a PC \Rightarrow e.g., a mixture model

Probabilistic Circuits (PCs)

Tractable computational graphs
I. A simple tractable distribution is a PC
II. A convex combination of PCs is a PC
III. A product of PCs is a PC

Probabilistic Circuits (PCs)

Tractable computational graphs

Probabilistic Circuits (PCs)

Tractable computational graphs

Probabilistic queries $=$ feedforward evaluation

$$
p\left(X_{1}=-1.85, X_{2}=0.5, X_{3}=-1.3, X_{4}=0.2\right)
$$

Probabilistic queries $=$ feedforward evaluation

$$
p\left(X_{1}=-1.85, X_{2}=0.5, X_{3}=-1.3, X_{4}=0.2\right)
$$

Probabilistic queries $=$ feedforward evaluation

$$
p\left(X_{1}=-1.85, X_{2}=0.5, X_{3}=-1.3, X_{4}=0.2\right)=0.75
$$

PCs = deep learning

PCs are computational graphs

PCs = deep /earning

PCs are computational graphs encoding deep mixture models
\Rightarrow stacking (categorical) latent variables

PCs = deep /earning

PCs are computational graphs encoding deep mixture models
\Rightarrow stacking (categorical) latent variables
PCs compactly represent polynomials with exponentially many terms
\Rightarrow universal approximators

PCs = deep /earning

PCs are computational graphs encoding deep mixture models
\Rightarrow stacking (categorical) latent variables
PCs compactly represent polynomials with exponentially many terms
\Rightarrow universal approximators

PCs are expressive deep generative models!

 we can learn PCs with millions of parameters in minutes on the GPU [Peharz et al. 2020]

On par with intractable models!

How expressive are PCs?

dataset	best circuit	BN	MADE	VAE	dataset	best circuit	BN	MADE	VAE
nitcs	-5.99	-6.02	-6.04	-5.99	dna	-79.88	-80.65	-82.77	-94.56
msnbc	-6.04	-6.04	-6.06	-6.09	kosarek	-10.52	-10.83	-	-10.64
kdd	-2.12	-2.19	-2.07	-2.12	msweb	-9.62	-9.70	-9.59	-9.73
plants	-11.84	-12.65	-12.32	-12.34	book	-33.82	-36.41	-33.95	-33.19
audio	-39.39	-40.50	-38.95	-38.67	movie	-50.34	-54.37	-48.7	-47.43
jester	-51.29	-51.07	-52.23	-51.54	webkb	-149.20	-157.43	-149.59	-146.9
netflix	-55.71	-57.02	-55.16	-54.73	cr52	-81.87	-87.56	-82.80	-81.33
accidents	-26.89	-26.32	-26.42	-29.11	c20ng	-151.02	-158.95	-153.18	-146.9
retail	-10.72	-10.87	-10.81	-10.83	$b b c$	-229.21	-257.86	-242.40	-240.94
pumbs*	-22.15	-21.72	-22.3	-25.16	ad	-14.00	-18.35	-13.65	-18.81

Peharz et al., "Random sum-product networks: A simple but effective approach to probabilistic
deep learning", 2019

Unifying existing tractable models

Chow-Liu trees
[Chow and Liu 1968]

Junction trees
[Bach and Jordan 2001]

HMMs
[Rabiner and Juang 1986]

Classical tractable models can be compactly represented as PCs

Chow-Liu trees
[Chow and Liu 1968]

CNets

[Rahman et al. 2014]

Junction trees
[Bach and Jordan 2001]

SPNs
[Poon et al. 2011]

PSDDs
[Kisa et al. 2014]

HMMs
[Rabiner and Juang 1986]

PDGs

[Jaeger 2004]

PCs = deep learning + deep guarantees

PCs are expressive deep generative models! \&

Certifying tractability for a class of queries
=
verifying structural properties of the graph

Which structural constraints ensure tractability?

decomposable + smooth PCs

A PC is decomposable if all inputs of product units depend on disjoint sets of variables

decomposable circuit

decomposable + smooth PCs

A PC is decomposable if all inputs of product units depend on disjoint sets of variables A PC is smooth if all inputs of sum units depend of the same variable sets

decomposable circuit

smooth circuit

decomposable + smooth PCs = ...

Choi et al., "Probabilistic Circuits: A Unifying Framework for Tractable Probabilistic Modeling",

decomposable + smooth $\mathbf{P C s}=\ldots$

MAR sufficient and necessary conditions for computing any marginal

$$
\begin{aligned}
p(\mathbf{y})=\int_{\mathrm{val}(\mathbf{Z})} p(\mathbf{z}, \mathbf{y}) d \mathbf{Z}, \quad \forall \mathbf{Y} & \subseteq \mathbf{X}, \quad \mathbf{Z}=\mathbf{X} \backslash \mathbf{Y} \\
& \Rightarrow \text { by a single feedforward evaluation }
\end{aligned}
$$

decomposable + smooth $\mathbf{P C s}=\ldots$

MAR sufficient and necessary conditions for computing any marginal $\int p(\mathbf{z}, \mathbf{y}) d \mathbf{Z}$

CON sufficient and necessary conditions for any conditional distribution

$$
\begin{array}{r}
p(\mathbf{y} \mid \mathbf{z})=\frac{\int_{\operatorname{val}(\mathbf{H})} p(\mathbf{z}, \mathbf{y}, \mathbf{h}) d \boldsymbol{H}}{\int_{\operatorname{val}(\mathbf{H})} \int_{\operatorname{val}(\mathbf{Y})} p(\mathbf{z}, \mathbf{y}, \mathbf{h}) d \mathbf{H} d \mathbf{Y}}, \quad \forall \mathbf{Z}, \mathbf{Y} \subseteq \mathbf{X} \\
\Rightarrow \text { by two feedforward evaluations }
\end{array}
$$

decomposable + smooth $\mathbf{P C s}=\ldots$

MAR sufficient and necessary conditions for computing any marginal $\int p(\mathbf{z}, \mathbf{y}) d \mathbf{Z}$
CON sufficient and necessary conditions for any conditional $\frac{\int p(\mathbf{z}, \mathbf{y}, \mathbf{h}) d \boldsymbol{H}}{\iint p(\mathbf{z}, \mathbf{y}, \mathbf{h}) d \mathbf{H} d \mathbf{Y}}$
? What about the expected kernel $\mathbb{E}_{\mathrm{x} \sim \mathrm{p}, \mathrm{x}^{\prime} \sim \mathrm{q}}\left[\mathbf{k}\left(\mathrm{x}, \mathrm{x}^{\prime}\right)\right]$?

Choi et al., "Probabilistic Circuits: A Unifying Framework for Tractable Probabilistic Modeling",

Can we represent kernels as circuits to characterize tractability of its queries?

Kernel Circuits (KCs)

Exa. Radial basis function (RBF) kernel $\mathbf{k}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\exp \left(-\sum_{i=1}^{4}\left|X_{i}-X_{i}^{\prime}\right|^{2}\right)$

Kernel Circuits (KCs)

Exa. Radial basis function (RBF) kernel $\mathbf{k}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\exp \left(-\sum_{i=1}^{4}\left|X_{i}-X_{i}^{\prime}\right|^{2}\right)$

decomposable if all inputs of product units depend on disjoint sets of variables

Kernel Circuits (KCs)

Exa. Radial basis function (RBF) kernel $\mathbf{k}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\exp \left(-\sum_{i=1}^{4}\left|X_{i}-X_{i}^{\prime}\right|^{2}\right)$

decomposable if all inputs of product units depend on disjoint sets of variables
smooth if all inputs of sum units depend of the same variable sets

Kernel Circuits (KCs)

Common kernels can be compactly represented as decomposable + smooth KCs:
RBF, (exponentiated) Hamming, polynomial ...

Expected Kernel

tractable computation via circuit operations
i) PCs p and \mathbf{q}, and KC \mathbf{k} are decomposable + smooth

Expected Kernel

tractable computation via circuit operations
i) PCs p and \mathbf{q}, and KC \mathbf{k} are decomposable + smooth
ii) PCs \mathbf{p} and \mathbf{q}, and $K C \mathbf{k}$ are compatible
\Rightarrow decompose in the same way

Expected Kernel

tractable computation via circuit operations
i) PCs p and \mathbf{q}, and KC \mathbf{k} are decomposable + smooth
ii) PCs \mathbf{p} and \mathbf{q}, and $K C \mathbf{k}$ are compatible

$\left\{X_{1}\right\}\left\{X_{2}\right\}$

$\left\{\left(X_{1}, X_{1}^{\prime}\right)\right\}\left\{\left(X_{2}, X_{2}^{\prime}\right)\right\}$

Expected Kernel

tractable computation via circuit operations
i) PCs p and \mathbf{q}, and KC \mathbf{k} are decomposable + smooth
ii) PCs \mathbf{p} and \mathbf{q}, and $K C \mathbf{k}$ are compatible

$\left\{X_{1}, X_{2}\right\}\left\{X_{3}\right\}$

$\left\{\left(X_{1}, X_{1}^{\prime}\right),\left(X_{2}, X_{2}^{\prime}\right)\right\}\left\{\left(X_{3}, X_{3}^{\prime}\right)\right\}$
$\left\{x_{1}, X_{2}\right.$
$\left\{X_{1}^{\prime}, X_{2}^{\prime}\right\}\left\{X_{3}^{\prime}\right\}$

Expected Kernel

tractable computation via circuit operations
i) PCs p and \mathbf{q}, and KC \mathbf{k} are decomposable + smooth
ii) PCs \mathbf{p} and \mathbf{q}, and $K C \mathbf{k}$ are compatible

Expected Kernel

tractable computation via circuit operations
i) PCs p and \mathbf{q}, and KC \mathbf{k} are decomposable + smooth
ii) PCs \mathbf{p} and \mathbf{q}, and KC \mathbf{k} are compatible

Expected Kernel

tractable computation via circuit operations
i) PCs p and \mathbf{q}, and KC \mathbf{k} are decomposable + smooth
ii) PCs \mathbf{p} and \mathbf{q}, and $K C \mathbf{k}$ are compatible

Then computing expected kernels can be done tractably by a forward pass
\Rightarrow product of the sizes of each circuit!

smooth + decomposable + compatible = tractable F[k]

[Sum Nodes] $\mathrm{p}(\mathbf{X})=\sum_{i} w_{i} \mathrm{p}_{i}(\mathbf{X}), \mathrm{q}\left(\mathbf{X}^{\prime}\right)=\sum_{j} w_{j}^{\prime} \mathrm{q}_{j}\left(\mathbf{X}^{\prime}\right)$, and kernel $\mathrm{k}\left(\mathbf{X}, \mathbf{X}^{\prime}\right)=\sum_{l} w_{l}{ }^{\prime \prime} \mathrm{k}_{l}\left(\mathbf{X}, \mathbf{X}^{\prime}\right)$:

smooth + decomposable + compatible = tractable E[k]

[Sum Nodes] $\mathrm{p}(\mathbf{X})=\sum_{i} w_{i} \mathrm{p}_{i}(\mathbf{X}), \mathrm{q}\left(\mathbf{X}^{\prime}\right)=\sum_{j} w_{j}^{\prime} \mathrm{q}_{j}\left(\mathbf{X}^{\prime}\right)$, and kernel $\mathrm{k}\left(\mathbf{X}, \mathbf{X}^{\prime}\right)=\sum_{l} w_{l}{ }^{\prime \prime} \mathrm{k}_{l}\left(\mathbf{X}, \mathbf{X}^{\prime}\right)$:

${ }^{\mathrm{q}}=\sum_{i, j, l} w_{i} w_{j}^{\prime} w_{l}^{\prime \prime} \mathrm{p}_{i}(\mathbf{x}) \mathrm{q}_{j}(\mathbf{x}) \mathrm{k}_{l}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)$

smooth + decomposable + compatible = tractable E[k]

[Sum Nodes] $\mathrm{p}(\mathbf{X})=\sum_{i} w_{i} \mathrm{p}_{i}(\mathbf{X}), \mathrm{q}\left(\mathbf{X}^{\prime}\right)=\sum_{j} w_{j}^{\prime} \mathrm{q}_{j}\left(\mathbf{X}^{\prime}\right)$, and kernel $\mathrm{k}\left(\mathbf{X}, \mathbf{X}^{\prime}\right)=\sum_{l} w_{l}{ }^{\prime \prime} \mathrm{k}_{l}\left(\mathbf{X}, \mathbf{X}^{\prime}\right)$:

$\mathbb{E}_{\mathrm{p}, \mathrm{q}}\left[\mathrm{k}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)\right]=\sum_{i, j, l} w_{i} w_{j}^{\prime} w_{l}^{\prime \prime} \mathbb{E}_{\mathrm{p}_{i}, \mathrm{q}_{j}}\left[\mathrm{k}_{l}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)\right]$
\Rightarrow expectation is "pushed down" to children

smooth + decomposable + compatible = tractable E[k]

[Product Nodes] $\mathrm{p}_{\times}(\mathbf{X})=\prod_{i} \mathrm{p}_{i}\left(\mathbf{X}_{i}\right), \mathrm{q}_{\times}\left(\mathbf{X}^{\prime}\right)=\prod_{i} \mathrm{q}_{j}\left(\mathbf{X}_{i}^{\prime}\right)$, and kernel $\mathrm{k}_{\times}\left(\mathbf{X}, \mathbf{X}^{\prime}\right)=\prod_{i} \mathrm{k}_{i}\left(\mathbf{X}_{i}, \mathbf{X}_{i}^{\prime}\right)$:

smooth + decomposable + compatible $=$ tractable F[k]

[Product Nodes] $\mathrm{p}_{\times}(\mathbf{X})=\prod_{i} \mathrm{p}_{i}\left(\mathbf{X}_{i}\right), \mathrm{q}_{\times}\left(\mathbf{X}^{\prime}\right)=\prod_{i} \mathrm{q}_{j}\left(\mathbf{X}_{i}^{\prime}\right)$, and kernel $\mathrm{k}_{\times}\left(\mathbf{X}, \mathbf{X}^{\prime}\right)=\prod_{i} \mathrm{k}_{i}\left(\mathbf{X}_{i}, \mathbf{X}_{i}^{\prime}\right)$:

$$
\begin{aligned}
& \sum_{\mathbf{x}, \mathbf{x}^{\prime}} \mathrm{p}_{\times}(\mathbf{x}) \mathrm{q}_{\times}\left(\mathbf{x}^{\prime}\right) \mathrm{k}_{\times}\left(\mathbf{x}, \mathbf{x}^{\prime}\right) \\
= & \left.\sum_{\mathbf{x}, \mathbf{x}^{\prime}} \prod_{i} \mathrm{p}\left(\mathbf{x}_{i}\right) \mathrm{q}\left(\mathbf{x}_{i}\right) \mathrm{k}_{i} \mathbf{x}_{i}, \mathbf{x}_{i}^{\prime}\right) \\
= & \prod_{i}\left(\sum_{\mathbf{x}_{i}, \mathbf{x}_{i}^{\prime}} \mathrm{p}\left(\mathbf{x}_{i}\right) \mathrm{q}\left(\mathbf{x}_{i}\right) \mathrm{k}_{i}\left(\mathbf{x}_{i}, \mathbf{x}_{i}^{\prime}\right)\right)
\end{aligned}
$$

smooth + decomposable + compatible = tractable E[k]

[Product Nodes] $\mathrm{p}_{\times}(\mathbf{X})=\prod_{i} \mathrm{p}_{i}\left(\mathbf{X}_{i}\right), \mathrm{q}_{\times}\left(\mathbf{X}^{\prime}\right)=\prod_{i} \mathrm{q}_{j}\left(\mathbf{X}_{i}^{\prime}\right)$, and kernel $\mathrm{k}_{\times}\left(\mathbf{X}, \mathbf{X}^{\prime}\right)=\prod_{i} \mathrm{k}_{i}\left(\mathbf{X}_{i}, \mathbf{X}_{i}^{\prime}\right)$:

$$
\mathbb{E}_{\mathrm{p}_{\times}, \mathrm{q}_{\times}}\left[\mathrm{k}_{\times}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)\right]=\prod_{i} \mathbb{E}_{\mathrm{p}, \mathrm{q}}\left[\mathrm{k}\left(\mathbf{x}_{i}, \mathbf{x}_{i}^{\prime}\right)\right]
$$

\Rightarrow expectation decomposes into easier ones

smooth + decomposable + compatible $=$ tractable E[k]

```
Algorithm \(1 \mathbb{E}_{\mathbf{p}_{n}, \mathbf{q}_{m}}\left[\mathbf{k}_{l}\right]\) - Computing the expected kernel
Input: Two compatible PCs \(\mathbf{p}_{n}\) and \(\mathbf{q}_{m}\), and a KC \(\mathbf{k}_{l}\) that is
kernel-compatible with the PC pair \(\mathbf{p}_{n}\) and \(\mathbf{q}_{m}\).
1: if \(m, n, l\) are input nodes then
2: return \(\mathbb{E}_{\mathbf{p}_{n}, \mathbf{q}_{m}}\left[\mathbf{k}_{l}\right]\)
3: else if \(m, n, l\) are sum nodes then
4: return \(\sum_{i \in \operatorname{in}(n), j \in \operatorname{in}(m), c \in \mathbf{i n}(l)} w_{i} w_{j}^{\prime} w_{c}^{\prime \prime} \mathbb{E}_{\mathbf{p}_{i}, \mathbf{q}_{j}}\left[\mathbf{k}_{c}\right]\)
5: else if \(m, n, l\) are product nodes then
6: return \(\mathbb{E}_{\mathbf{p}_{n_{L}}, \mathbf{q}_{m_{\mathrm{L}}}}\left[\mathbf{k}_{\mathrm{L}}\right] \cdot \mathbb{E}_{\mathbf{p}_{n_{\mathrm{R}}}, \mathbf{q}_{m_{\mathrm{R}}}}\left[\mathbf{k}_{\mathrm{R}}\right]\)
```


smooth + decomposable + compatible $=$ tractable E[k]

```
Algorithm \(2 \mathbb{E}_{\mathbf{p}_{n}, \mathbf{q}_{m}}\left[\mathbf{k}_{l}\right]\) - Computing the expected kernel
Input: Two compatible PCs \(\mathbf{p}_{n}\) and \(\mathbf{q}_{m}\), and a KC \(\mathbf{k}_{l}\) that is
kernel-compatible with the PC pair \(\mathbf{p}_{n}\) and \(\mathbf{q}_{m}\).
1: if \(m, n, l\) are input nodes then
2: return \(\mathbb{E}_{\mathbf{p}_{n}, \mathbf{q}_{m}}\left[\mathbf{k}_{l}\right]\)
3: else if \(m, n, l\) are sum nodes then
4: return \(\sum_{i \in \operatorname{in}(n), j \in \operatorname{in}(m), c \in \operatorname{in}(l)} w_{i} w_{j}^{\prime} w_{c}^{\prime \prime} \mathbb{E}_{\mathbf{p}_{i}, \mathbf{q}_{j}}\left[\mathbf{k}_{c}\right]\)
5: else if \(m, n, l\) are product nodes then
6: return \(\mathbb{E}_{\mathbf{p}_{n_{\mathrm{L}}}, \mathbf{q}_{m_{\mathrm{L}}}}\left[\mathbf{k}_{\mathrm{L}}\right] \cdot \mathbb{E}_{\mathbf{p}_{n_{\mathrm{R}}}, \mathbf{q}_{m_{\mathrm{R}}}}\left[\mathbf{k}_{\mathrm{R}}\right]\)
```

\Rightarrow squared maximum mean discrepancy $M M D[\mathbf{p}, \mathbf{q}]$ [Gretton et al. 2012]
$\Longrightarrow \quad+$ determinism, kernelized discrete Stein discrepancy (KDSD) [Yang et al. 2018]

Applications

\square Support vector regression with missing features

Support vector regression with missing features

Given training data,we can learn a support vector regression (SVR) model $f(\mathbf{x})=\sum_{i=1}^{m} w_{i} \mathrm{k}\left(\mathbf{x}_{i}, \mathbf{x}\right)+b$;also we can learn a generative model for features in $P C \mathbf{p}(\mathbf{X})$.
Support vector regression with missing features

- Given training data,
we can learn a support vector regression (SVR) model $f(\mathrm{x})=\sum_{i=1}^{m} w_{i} \mathrm{k}\left(\mathrm{x}_{i}, \mathrm{x}\right)+b_{\text {; }}$
- also we can learn a generative model for features in PC p(X).

Support vector regression with missing features

- Given training data,
- we can learn a support vector regression (SVR) model $f(\mathbf{x})=\sum_{i=1}^{m} w_{i} \mathbf{k}\left(\mathbf{x}_{i}, \mathbf{x}\right)+b$;
- also we can learn a generative model for features in PC p(X).

Support vector regression with missing features

- Given training data,
\square we can learn a support vector regression (SVR) model $f(\mathbf{x})=\sum_{i=1}^{m} w_{i} \mathbf{k}\left(\mathbf{x}_{i}, \mathbf{x}\right)+b$;
- also we can learn a generative model for features in PC $\mathbf{p}(\mathbf{X})$.

Support vector regression with missing features

- Given training data,
\square we can learn a support vector regression (SVR) model $f(\mathbf{x})=\sum_{i=1}^{m} w_{i} \mathbf{k}\left(\mathbf{x}_{i}, \mathbf{x}\right)+b$;
\square also we can learn a generative model for features in PC $\mathbf{p}(\mathbf{X})$.

At deployment time, what happen if we observe partial features and some are missing?

Support vector regression with missing features

- Given training data,
\square we can learn a support vector regression (SVR) model $f(\mathbf{x})=\sum_{i=1}^{m} w_{i} \mathbf{k}\left(\mathbf{x}_{i}, \mathbf{x}\right)+b$;
\square also we can learn a generative model for features in PC $\mathbf{p}(\mathbf{X})$.

At deployment time, what happen if we observe partial features and some are missing?

Support rector regression whth missing fedtures

- Given training data,
\square we can learn a support vector regression (SVR) model $f(\mathbf{x})=\sum_{i=1}^{m} w_{i} \mathbf{k}\left(\mathbf{x}_{i}, \mathbf{x}\right)+b$;
\square also we can learn a generative model for features in PC $\mathbf{p}(\mathbf{X})$.
At deployment time, in the case when only features $\mathbf{X}_{o}=\mathbf{x}_{o}$ are observed and features \mathbf{X}_{m} are missing, with $\mathbf{X}=\left(\mathbf{X}_{o}, \mathbf{X}_{m}\right)$, the expected prediction is

Support vector regression with missing features

- Given training data,
\square we can learn a support vector regression (SVR) model $f(\mathbf{x})=\sum_{i=1}^{m} w_{i} \mathbf{k}\left(\mathbf{x}_{i}, \mathbf{x}\right)+b$;
\square also we can learn a generative model for features in PC $\mathbf{p}(\mathbf{X})$.
At deployment time, in the case when only features $\mathbf{X}_{o}=\mathbf{x}_{o}$ are observed and features \mathbf{X}_{m} are missing, with $\mathbf{X}=\left(\mathbf{X}_{o}, \mathbf{X}_{m}\right)$, the expected prediction is

$$
\mathbb{E}_{\mathbf{x}_{m} \sim \mathbf{p}\left(\mathbf{X}_{m} \mid \mathbf{x}_{o}\right)}\left[f\left(\mathbf{x}_{o}, \mathbf{x}_{m}\right)\right]
$$

Support rector regression with missing features

- Given training data,
\square we can learn a support vector regression (SVR) model $f(\mathbf{x})=\sum_{i=1}^{m} w_{i} \mathbf{k}\left(\mathbf{x}_{i}, \mathbf{x}\right)+b$;
- also we can learn a generative model for features in PC $\mathbf{p}(\mathbf{X})$.

At deployment time, in the case when only features $\mathbf{X}_{o}=\mathbf{x}_{o}$ are observed and features \mathbf{X}_{m} are missing, with $\mathbf{X}=\left(\mathbf{X}_{o}, \mathbf{X}_{m}\right)$, the expected prediction is

$$
\mathbb{E}_{\mathbf{x}_{m} \sim \mathbf{p}\left(\mathbf{X}_{m} \mid \mathbf{x}_{o}\right)}\left[f\left(\mathbf{x}_{o}, \mathbf{x}_{m}\right)\right]=\sum_{i=1}^{m} w_{i} \mathbb{E}_{\mathbf{x}_{m} \sim \mathbf{p}\left(\mathbf{X}_{m} \mid \mathbf{x}_{o}\right)}\left[\mathbf{k}\left(\mathbf{x}_{i},\left(\mathbf{x}_{o}, \mathbf{x}_{m}\right)\right)\right]+b
$$

Support rector regression with missing features

\Rightarrow Expected prediction improves over the baselines

Applications

\square Support vector regression with missing features
\square Collapsed black-box importance sampling

Recap Black-box Importance Sampling [Liu et al. 2016]

\square Empirical KDSD $\left.\mathbb{S}\left(\underset{\text { weights }}{\left\{w^{(i)}\right.}, \mathbf{x}^{\mathbf{x}^{(i)}}\right\}_{i=1}^{n} \| \mathbf{p}\right)$

$$
\mathbb{S}^{2}\left(\left\{w^{(i)}, \mathbf{x}^{(i)}\right\}_{i=1}^{n} \| \mathbf{p}\right)=\boldsymbol{w}^{\top} \boldsymbol{K}_{\boldsymbol{p}} \boldsymbol{w}, \text { with }\left[\boldsymbol{K}_{p}\right]_{i j}=k_{p}\left(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}\right)
$$

Given a distribution \mathbf{p}, and samples $\left\{\mathbf{x}^{(i)}\right\}_{i=1}^{n}$, the black-box importance sampling obtains weights by solving optimization problem

Recap Black-box Importance Sampling [Liu et al. 2016]

$$
\mathbb{S}^{2}\left(\left\{w^{(i)}, \mathbf{x}^{(i)}\right\}_{i=1}^{n} \| \mathbf{p}\right)=\boldsymbol{w}^{\top} \boldsymbol{K}_{\boldsymbol{p}} \boldsymbol{w}, \text { with }\left[\boldsymbol{K}_{p}\right]_{i j}=k_{p}\left(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}\right)
$$

\square Given a distribution \mathbf{p}, and samples $\left\{\mathbf{x}^{(i)}\right\}_{i=1}^{n}$, the black-box importance sampling obtains weights by solving optimization problem

$$
\boldsymbol{w}^{*}=\underset{\boldsymbol{w}}{\operatorname{argmin}}\left\{\boldsymbol{w}^{\top} \boldsymbol{K}_{\boldsymbol{p}} \boldsymbol{w} \mid \sum_{i=1}^{n} w_{i}=1, w_{i} \geq 0\right\}
$$

Recap Black-box Importance Sampling [Liu et al. 2016]

\square Empirical KDSD $\left.\mathbb{S}\left(\underset{\text { weights }}{\left\{w^{(i)}\right.}, \mathbf{x}^{\mathbf{x}^{(i)}}\right\}_{i=1}^{n} \| \mathbf{p}\right)$

$$
\mathbb{S}^{2}\left(\left\{w^{(i)}, \mathbf{x}^{(i)}\right\}_{i=1}^{n} \| \mathbf{p}\right)=\boldsymbol{w}^{\top} \boldsymbol{K}_{\boldsymbol{p}} \boldsymbol{w}, \text { with }\left[\boldsymbol{K}_{p}\right]_{i j}=k_{p}\left(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}\right)
$$

\square Given a distribution \mathbf{p}, and samples $\left\{\mathbf{x}^{(i)}\right\}_{i=1}^{n}$, the black-box importance sampling obtains weights by solving optimization problem

$$
\boldsymbol{w}^{*}=\underset{\boldsymbol{w}}{\operatorname{argmin}}\left\{\boldsymbol{w}^{\top} \boldsymbol{K}_{\boldsymbol{p}} \boldsymbol{w} \mid \sum_{i=1}^{n} w_{i}=1, w_{i} \geq 0\right\}
$$

Can we use less samples but maintain the same or even better performance?

Recap Black-box Importance Sampling [Liu et al. 2016]

\square Empirical KDSD $\left.\mathbb{S}\left(\underset{\text { weights samples }}{w^{(i)}}, \mathbf{x}^{(i)}\right\}_{i=1}^{n} \| \mathbf{p}\right)$

$$
\mathbb{S}^{2}\left(\left\{w^{(i)}, \mathbf{x}^{(i)}\right\}_{i=1}^{n} \| \mathbf{p}\right)=\boldsymbol{w}^{\top} \boldsymbol{K}_{\boldsymbol{p}} \boldsymbol{w}, \text { with }\left[\boldsymbol{K}_{p}\right]_{i j}=k_{p}\left(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}\right)
$$

\square Given a distribution \mathbf{p}, and samples $\left\{\mathbf{x}^{(i)}\right\}_{i=1}^{n}$, the black-box importance sampling obtains weights by solving optimization problem

$$
\boldsymbol{w}^{*}=\underset{\boldsymbol{w}}{\operatorname{argmin}}\left\{\boldsymbol{w}^{\top} \boldsymbol{K}_{\boldsymbol{p}} \boldsymbol{w} \mid \sum_{i=1}^{n} w_{i}=1, w_{i} \geq 0\right\}
$$

Can we use less samples but maintain the same or even better performance?

Collapsed Black-box Importance Sampling

- Given partial samples $\left\{\mathbf{X}_{\mathbf{S}}{ }^{(i)}\right\}_{i=1}^{n}$, with $\left(\mathbf{X}_{\mathbf{S}}, \mathbf{X}_{\mathrm{C}}\right)$ a partition of \mathbf{X},
- Represent the conditional distributions $\mathbf{p}\left(\mathbf{X}_{\mathbf{c}} \mid \mathbf{x}_{\mathbf{s}}{ }^{(i)}\right)$ as PCs p_{i} by knowledge compilation [Shen et al. 2016]
- Compile the kernel function $\mathrm{k}\left(\mathbf{X}_{\mathrm{C}}, \mathbf{X}_{\mathrm{C}}{ }^{\prime}\right)$ as KC kEmpirical KDSD between collapsed samples and the target distribution \mathbf{p}

$$
\mathbb{S}_{\mathrm{s}}^{2}\left(\left\{\mathrm{x}_{\mathrm{s}}{ }^{(i)}, w_{i}\right\} \| p\right)=w^{\top} \boldsymbol{K}_{p, \mathrm{~s}} w
$$

with $\left[\boldsymbol{K}_{p, \mathbf{s}}\right]_{i j}=\mathbb{E}_{\mathbf{x}_{\mathbf{c}} \sim \mathrm{p}_{i}, \mathbf{x}_{\mathbf{c}}^{\prime} \sim \mathrm{p}_{j}}\left[\mathbf{k}_{p}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)\right]$
\square Finally, obtain the importance weights \boldsymbol{w} by solving

Collapsed Black-box Importance Sampling

\square Given partial samples $\left\{\mathbf{x}_{\mathbf{s}}{ }^{(i)}\right\}_{i=1}^{n}$, with $\left(\mathbf{X}_{\mathbf{s}}, \mathbf{X}_{\mathbf{c}}\right)$ a partition of \mathbf{X},
Represent the conditional distributions $\mathbf{p}\left(\mathbf{X}_{\mathrm{c}} \mid \mathrm{x}_{\mathrm{s}}{ }^{(i)}\right)$ as PCs p_{i} by knowledge compilation [Shen et al. 2016]
\square Compile the kernel function $\mathbf{k}\left(\mathrm{X}_{\mathrm{C}}, \mathrm{X}_{\mathrm{C}}{ }^{\prime}\right)$ as KC kEmpirical KDSD between collapsed samples and the target distribution p

$$
\mathbb{S}_{\mathbf{s}}^{2}\left(\left\{\mathbf{x}_{\mathbf{s}}{ }^{(i)}, w_{i}\right\} \| p\right)=\boldsymbol{w}^{\top} \boldsymbol{K}_{p, \mathbf{s}} \boldsymbol{w}
$$

with $\left[\boldsymbol{K}_{p, \mathbf{s}}\right]_{i j}=\mathbb{E}_{\mathbf{x}_{\mathbf{c}} \sim p_{i}, \mathbf{x}_{\mathbf{c}}^{\prime} \sim \mathrm{p}_{j}}\left[\mathbf{k}_{p}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)\right]$
\square Finally, obtain the importance weights \boldsymbol{w} by solving

Collapsed Black-box Importance Sampling

\square Given partial samples $\left\{\mathbf{x}_{\mathbf{s}}{ }^{(i)}\right\}_{i=1}^{n}$, with $\left(\mathbf{X}_{\mathbf{s}}, \mathbf{X}_{\mathbf{c}}\right)$ a partition of \mathbf{X},
\square Represent the conditional distributions $\mathbf{p}\left(\mathbf{X}_{\mathbf{c}} \mid \mathbf{x}_{\mathbf{s}}{ }^{(i)}\right)$ as PCs p_{i} by knowledge compilation [Shen et al. 2016]

- Compile the kernel function $\mathrm{k}\left(\mathbf{X}_{\mathrm{c}}, \mathbf{X}_{\mathrm{c}}{ }^{\prime}\right)$ as KC k
\square Empirical KDSD between collapsed samples and the target distribution \mathbf{p}

$$
\mathbb{S}_{\mathrm{s}}^{2}\left(\left\{\mathrm{x}_{\mathrm{s}}{ }^{(i)}, w_{i}\right\} \| p\right)=w^{\top} \boldsymbol{K}_{p, \mathrm{~s}} w
$$

with $\left[\boldsymbol{K}_{p, \mathbf{s}}\right]_{i j}=\mathbb{E}_{\mathbf{x}_{\mathrm{c}} \sim \mathrm{p}_{i}, \mathbf{x}_{\mathrm{c}}^{\prime} \sim \mathrm{p}_{j}}\left[\mathbf{k}_{p}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)\right]$
\square Finally, obtain the importance weights \boldsymbol{w} by solving

Collapsed Black-box Importance Sampling

\square Given partial samples $\left\{\mathbf{x}_{\mathbf{s}}{ }^{(i)}\right\}_{i=1}^{n}$, with $\left(\mathbf{X}_{\mathbf{s}}, \mathbf{X}_{\mathbf{c}}\right)$ a partition of \mathbf{X},
\square Represent the conditional distributions $\mathbf{p}\left(\mathbf{X}_{\mathbf{c}} \mid \mathbf{x}_{\mathbf{s}}{ }^{(i)}\right)$ as PCs p_{i} by knowledge compilation [Shen et al. 2016]
\square Compile the kernel function $\mathbf{k}\left(\mathbf{X}_{\mathbf{c}}, \mathbf{X}_{\mathbf{c}}{ }^{\prime}\right)$ as $\mathrm{KC} \mathbf{k}$
Empirical KDSD between collapsed samples and the target distribution p

$$
\mathbb{S}_{\mathbf{s}}^{2}\left(\left\{\mathbf{x}_{\mathbf{s}}{ }^{(i)}, w_{i}\right\} \| p\right)=\boldsymbol{w}^{\top} \boldsymbol{K}_{p, \mathbf{s}} \boldsymbol{w}
$$

\square Finally, obtain the importance weights \boldsymbol{w} by solving

Collapsed Black-box Importance Sampling

\square Given partial samples $\left\{\mathbf{x}_{\mathbf{s}}{ }^{(i)}\right\}_{i=1}^{n}$, with $\left(\mathbf{X}_{\mathbf{s}}, \mathbf{X}_{\mathbf{c}}\right)$ a partition of \mathbf{X},
\square Represent the conditional distributions $\mathbf{p}\left(\mathbf{X}_{\mathbf{c}} \mid \mathbf{x}_{\mathbf{s}}{ }^{(i)}\right)$ as PCs p_{i} by knowledge compilation [Shen et al. 2016]
\square Compile the kernel function $\mathbf{k}\left(\mathbf{X}_{\mathbf{c}}, \mathbf{X}_{\mathbf{c}}{ }^{\prime}\right)$ as $\mathrm{KC} \mathbf{k}$
\square Empirical KDSD between collapsed samples and the target distribution \mathbf{p}

$$
\mathbb{S}_{\mathbf{s}}^{2}\left(\left\{\mathbf{x}_{\mathbf{s}}{ }^{(i)}, w_{i}\right\} \| p\right)=\boldsymbol{w}^{\top} \boldsymbol{K}_{p, \mathbf{s}} \boldsymbol{w}
$$

with $\left[\boldsymbol{K}_{p, \mathbf{s}}\right]_{i j}=\mathbb{E}_{\mathbf{x}_{\mathbf{c}} \sim \mathbf{p}_{i}, \mathbf{x}_{\mathbf{c}}^{\prime} \sim \mathbf{p}_{j}}\left[\mathbf{k}_{p}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)\right]$
. Finally, obtain the importance weights w by solving

Collapsed Black-box Importance Sampling

\square Given partial samples $\left\{\mathbf{x}_{\mathbf{s}}{ }^{(i)}\right\}_{i=1}^{n}$, with $\left(\mathbf{X}_{\mathbf{s}}, \mathbf{X}_{\mathbf{c}}\right)$ a partition of \mathbf{X},
\square Represent the conditional distributions $\mathbf{p}\left(\mathbf{X}_{\mathbf{c}} \mid \mathbf{x}_{\mathbf{s}}{ }^{(i)}\right)$ as PCs p_{i} by knowledge compilation [Shen et al. 2016]
\square Compile the kernel function $\mathbf{k}\left(\mathbf{X}_{\mathbf{c}}, \mathbf{X}_{\mathbf{c}}{ }^{\prime}\right)$ as $\mathrm{KC} \mathbf{k}$
\square Empirical KDSD between collapsed samples and the target distribution \mathbf{p}

$$
\mathbb{S}_{\mathbf{s}}^{2}\left(\left\{\mathbf{x}_{\mathbf{s}}{ }^{(i)}, w_{i}\right\} \| p\right)=\boldsymbol{w}^{\top} \boldsymbol{K}_{p, \mathbf{s}} \boldsymbol{w}
$$

with $\left[\boldsymbol{K}_{p, \mathbf{s}}\right]_{i j}=\mathbb{E}_{\mathbf{x}_{\mathbf{c}} \sim \mathrm{p}_{i}, \mathbf{x}_{\mathbf{c}}^{\prime} \sim \mathbf{p}_{j}}\left[\mathbf{k}_{p}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)\right]$
\square Finally, obtain the importance weights \boldsymbol{w} by solving

$$
\boldsymbol{w}^{*}=\underset{\boldsymbol{w}}{\operatorname{argmin}}\left\{\boldsymbol{w}^{\top} \boldsymbol{K}_{p, \mathbf{s}} \boldsymbol{w} \mid \sum_{i=1}^{n} w_{i}=1, w_{i} \geq 0\right\}
$$

Collapsed Black-box Importance Sampling

\Rightarrow methods with collapsed samples all outperform their non-collapsed counterparts \Rightarrow CBBIS performs equally well or better than other baselines

[^0]
Applications

\square Support vector regression with missing features
\square Collapsed black-box importance sampling

Conclusion

Takeaways

\#1: you can be both tractable and expressive
\#2: circuits are a foundation for tractable inference over kernels

What else?

What other applications would benefit from the tractable computation of the expected kernels?

More on circulits ...

Probabilistic Circuits: A Unifying Framework for Tractable Probabilistic Models starai.cs.ucla.edu/papers/ProbCirc20.pdf

Probabilistic Circuits: Representations, Inference, Learning and Theory youtube.com/watch?v=2RAG5-L9R70

Probabilistic Circuits

arranger1044.github.io/probabilistic-circuits/
Foundations of Sum-Product Networks for probabilistic modeling tinyurl.com/w65po5d

Questions?

References I

\oplus Chow, C and C Liu (1968). "Approximating discrete probability distributions with dependence trees". In: IEEE Transactions on Information Theory 14.3, pp. 462-467
\oplus Rabiner, Lawrence and Biinghwang Juang (1986). "An introduction to hidden Markov models". In: ieee assp magazine 3.1, pp. 4-16.
\oplus Bach, Francis R. and Michael I. Jordan (2001). "Thin Junction Trees". In: Advances in Neural Information Processing Systems 14. MIT Press, pp. 569-576.
(1) Darwiche, Adnan and Pierre Marquis (2002). "A knowledge compilation map". In: Journal of Artificial Intelligence Research 17, pp. 229-264.
\oplus Jaeger, Manfred (2004). "Probabilistic decision graphs-combining verification and Al techniques for probabilistic inference". In: International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 12.supp01, pp. 19-42.
\oplus Kisa, Doga, Guy Van den Broeck, Arthur Choi, and Adnan Darwiche (July 2014). "Probabilistic sentential decision diagrams". In: Proceedings of the 14th International Conference on Principles of Knowledge Representation and Reasoning (KR). Vienna, Austria. URL: http://starai.cs.ucla.edu/papers/KisaKR14.pdf.
(1) Liu, Qiang and Jason D Lee (2016). "Black-box importance sampling". In: arXiv preprint arXiv:1610.05247.
\oplus Friedman, Tal and Guy Van den Broeck (Dec. 2018). "Approximate Knowledge Compilation by Online Collapsed Importance Sampling". In: Advances in Neural Information Processing Systems 31 (NeurIPS). URL: http://starai.cs.ucla.edu/papers/FriedmanNeurIPS18.pdf.
$\oplus \quad$ Peharz, Robert, Antonio Vergari, Karl Stelzner, Alejandro Molina, Xiaoting Shao, Martin Trapp, Kristian Kersting, and Zoubin Ghahramani (2019). "Random sum-product networks: A simple but effective approach to probabilistic deep learning". In: UAI.
\oplus Choi, YooJung, Antonio Vergari, and Guy Van den Broeck (2020). "Probabilistic Circuits: A Unifying Framework for Tractable Probabilistic Modeling". In:
\oplus Dang, Meihua, Antonio Vergari, and Guy Van den Broeck (2020). "Strudel: Learning Structured-Decomposable Probabilistic Circuits". In: PGM abs/2007.09331.

References II

 Networks: Fast and Scalable Learning of Tractable Probabilistic Circuits". In: International Conference of Machine Learning.
[^0]: Friedman and Broeck, "Approximate Knowledge Compilation by Online Collapsed Importance Sampling", 2018
 Liu and Lee, "Black-box importance sampling", 2016

