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the expected kernel

Ex∼p,x′∼q[k(x,x
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⇒ In kernel-based frameworks, expected kernels are omnipresent!
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Motivation
A Fundamental Task

Given two distributions p and q, and a kernel k, the task is to compute
the expected kernel

Ex∼p,x′∼q[k(x,x
′)]

⇒ In kernel-based frameworks, expected kernels are omnipresent!

Discrete Kernelized Stein Discrepancy (KDSD)
Ex,x′∼q[kp(x,x

′)]
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Challenge
Reliability vs. Flexibility

Ex∼p,x′∼q[k(x,x
′)] =

∫
x,x′

p(x)q(x′)k(x,x′) dx dx′
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′)] =

∫
x,x′

p(x)q(x′)k(x,x′) dx dx′

p,q,k fully factorized
p(x) =

∏
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∏
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∏
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i p(xi), q(x) =

∏
i q(xi)

k(x,x′) =
∏

i k(xi, x
′
i)

⇒ expected kernel is tractable∏
i(
∫
xi,x′

i
p(xi)q(x

′
i)k(xi, x

′
i))

A computation is tractable if it can be
done exactly in polynomial time
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Reliability vs. Flexibility

Ex∼p,x′∼q[k(x,x
′)] =

∫
x,x′

p(x)q(x′)k(x,x′) dx dx′

p,q,k fully factorized

PRO. Tractable exact computation
CON.Model being too restrictive

trade-off? Hard to compute in general.⇒ approximate with MC
or variational inference

PRO. Efficient computation
CON. no guarantees on error bounds

6/40



Expressive distribution models
+

Exact computation of expected kernels?
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Expressive distribution models
+

Exact computation of expectated kernels
=

Circuits!
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Circuits

Probabilistic Circuits
deep generative models + deep guarantees
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Probabilistic Circuits
deep generative models + deep guarantees

Kernel Circuits
express kernels as circuits

⇒ Ex∼p,x′∼q[k(x,x
′)]

9/40



Probabilistic Circuits (PCs)
Tractable computational graphs

X1

10/40

I. A simple tractable distribution is a PC

⇒ e.g., a multivariate Gaussian
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II. A convex combination of PCs is a PC
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I. A simple tractable distribution is a PC

II. A convex combination of PCs is a PC

III. A product of PCs is a PC
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Tractable computational graphs
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× ×

× ×× ×
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Probabilistic queries = feedforward evaluation

p(X1 = −1.85, X2 = 0.5, X3 = −1.3, X4 = 0.2)
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Probabilistic queries = feedforward evaluation

p(X1 = −1.85, X2 = 0.5, X3 = −1.3, X4 = 0.2) = 0.75
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PCs = deep learning

PCs are computational graphs
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PCs = deep learning

PCs are computational graphs encoding deep mixture models
⇒ stacking (categorical) latent variables

PCs compactly represent polynomials with exponentially many terms
⇒ universal approximators

PCs are expressive deep generative models!
⇒ we can learn PCs with millions of parameters in minutes on the GPU [Peharz

et al. 2020]
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On par with intractable models!
How expressive are PCs?

dataset best circuit BN MADE VAE dataset best circuit BN MADE VAE

nltcs -5.99 -6.02 -6.04 -5.99 dna -79.88 -80.65 -82.77 -94.56
msnbc -6.04 -6.04 -6.06 -6.09 kosarek -10.52 -10.83 - -10.64
kdd -2.12 -2.19 -2.07 -2.12 msweb -9.62 -9.70 -9.59 -9.73
plants -11.84 -12.65 -12.32 -12.34 book -33.82 -36.41 -33.95 -33.19
audio -39.39 -40.50 -38.95 -38.67 movie -50.34 -54.37 -48.7 -47.43
jester -51.29 -51.07 -52.23 -51.54 webkb -149.20 -157.43 -149.59 -146.9
netflix -55.71 -57.02 -55.16 -54.73 cr52 -81.87 -87.56 -82.80 -81.33
accidents -26.89 -26.32 -26.42 -29.11 c20ng -151.02 -158.95 -153.18 -146.9
retail -10.72 -10.87 -10.81 -10.83 bbc -229.21 -257.86 -242.40 -240.94
pumbs* -22.15 -21.72 -22.3 -25.16 ad -14.00 -18.35 -13.65 -18.81

Peharz et al., “Random sum-product networks: A simple but effective approach to probabilistic
deep learning”, 2019 13/40



Unifying existing tractable models

X1

X2

X3

X4

X5

Chow-Liu trees
[Chow and Liu 1968]

X1 X2

X1 X3 X4

X3 X5

Junction trees
[Bach and Jordan 2001]

Z1 Z2 Z3

X1 X2 X3

HMMs
[Rabiner and Juang 1986]

Classical tractable models can be compactly represented as PCs

Dang et al., “Strudel: Learning Structured-Decomposable Probabilistic Circuits”, 2020 14/40
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[Jaeger 2004]
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PCs = deep learning + deep guarantees

PCs are expressive deep generative models!

&

Certifying tractability for a class of queries

=
verifying structural properties of the graph

16/40



Which structural constraints
ensure tractability?
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decomposable + smooth PCs

A PC is decomposable if all inputs of product units depend on disjoint sets of variables

×

X1 X2 X3

decomposable circuit

Darwiche and Marquis, “A knowledge compilation map”, 2002 18/40



decomposable + smooth PCs

A PC is decomposable if all inputs of product units depend on disjoint sets of variables
A PC is smooth if all inputs of sum units depend of the same variable sets

×

X1 X2 X3

decomposable circuit

X1 X1

w1 w2

smooth circuit

Darwiche and Marquis, “A knowledge compilation map”, 2002 18/40



decomposable + smooth PCs = …

Choi et al., “Probabilistic Circuits: A Unifying Framework for Tractable Probabilistic Modeling”,
2020 19/40



decomposable + smooth PCs = …

MAR sufficient and necessary conditions for computing any marginal

p(y) =

∫
val(Z)

p(z,y) dZ, ∀Y ⊆ X, Z = X \Y

⇒ by a single feedforward evaluation

Choi et al., “Probabilistic Circuits: A Unifying Framework for Tractable Probabilistic Modeling”,
2020 19/40



decomposable + smooth PCs = …

MAR sufficient and necessary conditions for computing any marginal
∫
p(z,y) dZ

CON sufficient and necessary conditions for any conditional distribution

p(y | z) =

∫
val(H)

p(z,y,h) dH∫
val(H)

∫
val(Y)

p(z,y,h) dH dY
, ∀Z,Y ⊆ X

⇒ by two feedforward evaluations

Choi et al., “Probabilistic Circuits: A Unifying Framework for Tractable Probabilistic Modeling”,
2020 19/40



decomposable + smooth PCs = …

MAR sufficient and necessary conditions for computing any marginal
∫
p(z,y) dZ

CON sufficient and necessary conditions for any conditional
∫
p(z,y,h) dH∫ ∫
p(z,y,h) dH dY

? What about the expected kernel Ex∼p,x′∼q[k(x,x
′)]?

Choi et al., “Probabilistic Circuits: A Unifying Framework for Tractable Probabilistic Modeling”,
2020 19/40



Can we represent kernels as circuits
to characterize tractability of its queries?

20/40



Kernel Circuits (KCs)

Exa. Radial basis function (RBF) kernel k(x,x′) = exp (−
∑4

i=1 | Xi −X ′
i |2)

exp(−|X1 −X ′
1|2)

exp(−|X2 −X ′
2|2)

× ×

exp(−|X3 −X ′
3|2)

×

exp(−|X4 −X ′
4|2)

1 1 1
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Kernel Circuits (KCs)

Exa. Radial basis function (RBF) kernel k(x,x′) = exp (−
∑4

i=1 | Xi −X ′
i |2)

exp(−|X1 −X ′
1|2)

exp(−|X2 −X ′
2|2)

× ×

exp(−|X3 −X ′
3|2)

×

exp(−|X4 −X ′
4|2)

1 1 1

decomposable if all inputs of product units depend on disjoint sets of variables

smooth if all inputs of sum units depend of the same variable sets
21/40



Kernel Circuits (KCs)

Common kernels can be compactly represented as
decomposable + smooth KCs:

RBF, (exponentiated) Hamming, polynomial ...

22/40



Expected Kernel
tractable computation via circuit operations

i) PCs p and q, and KC k are decomposable + smooth
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Expected Kernel
tractable computation via circuit operations

i) PCs p and q, and KC k are decomposable + smooth

ii) PCs p and q, and KC k are compatible

⇒ decompose in the same way

23/40



Expected Kernel
tractable computation via circuit operations

i) PCs p and q, and KC k are decomposable + smooth

ii) PCs p and q, and KC k are compatible
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k

{(X1, X′
1)}{(X2, X′

2)}
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i) PCs p and q, and KC k are decomposable + smooth

ii) PCs p and q, and KC k are compatible
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Expected Kernel
tractable computation via circuit operations

i) PCs p and q, and KC k are decomposable + smooth

ii) PCs p and q, and KC k are compatible
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Expected Kernel
tractable computation via circuit operations

i) PCs p and q, and KC k are decomposable + smooth

ii) PCs p and q, and KC k are compatible
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Expected Kernel
tractable computation via circuit operations

i) PCs p and q, and KC k are decomposable + smooth

ii) PCs p and q, and KC k are compatible

Then computing expected kernels can be done tractably by a forward pass
⇒ product of the sizes of each circuit!

25/40



smooth + decomposable + compatible = tractable E[k]

[Sum Nodes] p(X) =
∑

i wipi(X), q(X′) =
∑

j w
′
jqj(X

′), and kernel k(X,X′) =
∑

l w
′′
l kl(X,X′):
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exp(−|X2 −X ′
2|2)

× ×
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3|2)

×

exp(−|X4 −X ′
4|2)

k
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i,j,l wiw
′
jw
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l pi(x)qj(x)kl(x,x
′)
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⇒ expectation is “pushed down” to children
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smooth + decomposable + compatible = tractable E[k]

[Product Nodes] p×(X) =
∏

i pi(Xi), q×(X′) =
∏

i qj(X
′
i), and kernel k×(X,X′) =
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X1

X2

X2

×

×

X3

X3

×

×

X4

X4

×

× p

X ′
1

X ′
1

X ′
2

X ′
2

×

×

×

×

×

×

X ′
3

X ′
3

×

X ′
4

q

exp(−|X1 −X ′
1|2)

exp(−|X2 −X ′
2|2)

× ×

exp(−|X3 −X ′
3|2)

×

exp(−|X4 −X ′
4|2)

k

Ep×,q× [k×(x,x
′)] =

∏
i Ep,q[k(xi,x

′
i)]

⇒ expectation decomposes into easier ones
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smooth + decomposable + compatible = tractable E[k]

Algorithm 1 Epn,qm [kl]— Computing the expected kernel

Input: Two compatible PCs pn and qm, and a KC kl that is
kernel-compatible with the PC pair pn and qm.

1: if m,n, l are input nodes then
2: return Epn,qm [kl]
3: else if m,n, l are sum nodes then
4: return

∑
i∈in(n),j∈in(m),c∈in(l) wiw

′
jw

′′
c Epi,qj

[kc]
5: else if m,n, l are product nodes then
6: return EpnL

,qmL
[kL] · EpnR

,qmR
[kR]

Computation can be done in
one forward pass!
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smooth + decomposable + compatible = tractable E[k]

Algorithm 2 Epn,qm [kl]— Computing the expected kernel

Input: Two compatible PCs pn and qm, and a KC kl that is
kernel-compatible with the PC pair pn and qm.

1: if m,n, l are input nodes then
2: return Epn,qm [kl]
3: else if m,n, l are sum nodes then
4: return

∑
i∈in(n),j∈in(m),c∈in(l) wiw

′
jw

′′
c Epi,qj

[kc]
5: else if m,n, l are product nodes then
6: return EpnL

,qmL
[kL] · EpnR

,qmR
[kR]

Computation can be done in
one forward pass!

⇒ squared maximum mean discrepancyMMD [p,q] [Gretton et al. 2012]

⇒ + determinism, kernelized discrete Stein discrepancy (KDSD) [Yang et al. 2018]
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Applications

Support vector regression with missing features
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Support vector regression with missing features
Given training data,

we can learn a support vector regression (SVR) model f(x) =
∑m

i=1wik(xi,x) + b;

also we can learn a generative model for features in PC p(X).
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Support vector regression with missing features
Given training data,

we can learn a support vector regression (SVR) model f(x) =
∑m

i=1wik(xi,x) + b;

also we can learn a generative model for features in PC p(X).

At deployment time, in the case when only featuresXo = xo are observed
and featuresXm are missing, withX = (Xo,Xm), the expected
prediction is

Exm∼p(Xm|xo)[f(xo,xm)] =
m∑
i=1

wiExm∼p(Xm|xo)[k(xi, (xo,xm))] + b
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Support vector regression with missing features
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⇒ Expected prediction improves over the baselines
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Applications

Support vector regression with missing features

Collapsed black-box importance sampling
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Recap Black-box Importance Sampling [Liu et al. 2016]

Empirical KDSD S({w(i)

weights

, x(i)

samples

}ni=1 ∥ p)

S2({w(i),x(i)}ni=1 ∥ p) = w⊤Kpw, with [Kp]ij = kp(x
(i),x(j))

Given a distribution p, and samples {x(i)}ni=1, the black-box importance sampling
obtains weights by solving optimization problem

w∗ = argmin
w

{
w⊤Kpw

∣∣∣∣∣
n∑

i=1

wi = 1, wi ≥ 0

}

34/40



Recap Black-box Importance Sampling [Liu et al. 2016]

Empirical KDSD S({w(i)

weights

, x(i)

samples

}ni=1 ∥ p)

S2({w(i),x(i)}ni=1 ∥ p) = w⊤Kpw, with [Kp]ij = kp(x
(i),x(j))

Given a distribution p, and samples {x(i)}ni=1, the black-box importance sampling
obtains weights by solving optimization problem

w∗ = argmin
w

{
w⊤Kpw

∣∣∣∣∣
n∑

i=1

wi = 1, wi ≥ 0

}

34/40



Recap Black-box Importance Sampling [Liu et al. 2016]

Empirical KDSD S({w(i)

weights

, x(i)

samples

}ni=1 ∥ p)

S2({w(i),x(i)}ni=1 ∥ p) = w⊤Kpw, with [Kp]ij = kp(x
(i),x(j))

Given a distribution p, and samples {x(i)}ni=1, the black-box importance sampling
obtains weights by solving optimization problem

w∗ = argmin
w

{
w⊤Kpw

∣∣∣∣∣
n∑

i=1

wi = 1, wi ≥ 0

}
Can we use less samples but maintain the same or even better performance?

34/40
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Empirical KDSD S({w(i)

weights

, x(i)

samples

}ni=1 ∥ p)

S2({w(i),x(i)}ni=1 ∥ p) = w⊤Kpw, with [Kp]ij = kp(x
(i),x(j))

Given a distribution p, and samples {x(i)}ni=1, the black-box importance sampling
obtains weights by solving optimization problem

w∗ = argmin
w

{
w⊤Kpw

∣∣∣∣∣
n∑

i=1

wi = 1, wi ≥ 0

}
Can we use less samples but maintain the same or even better performance?

⇒ Collapsed samples!
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Collapsed Black-box Importance Sampling

Given partial samples {xs
(i)}ni=1, with (Xs,Xc) a partition ofX,

Represent the conditional distributions p(Xc | xs
(i)) as PCs pi by knowledge

compilation [Shen et al. 2016]

Compile the kernel function k(Xc,Xc
′) as KC k

Empirical KDSD between collapsed samples and the target distribution p

S2
s({xs

(i), wi} ∥ p) = w⊤Kp,sw

with [Kp,s]ij = Exc∼pi,x
′
c∼pj

[kp(x,x
′)]

Finally, obtain the importance weightsw by solving

w∗ = argmin
w

{
w⊤Kp,sw

∣∣∣∣∣
n∑

i=1

wi = 1, wi ≥ 0

}
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Collapsed Black-box Importance Sampling
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⇒ methods with collapsed samples all outperform their non-collapsed counterparts
⇒ CBBIS performs equally well or better than other baselines

Friedman and Broeck, “Approximate Knowledge Compilation by Online Collapsed Importance
Sampling”, 2018
Liu and Lee, “Black-box importance sampling”, 2016 36/40



Applications

Support vector regression with missing features

Collapsed black-box importance sampling
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Conclusion
Takeaways

#1: you can be both tractable and expressive
#2: circuits are a foundation for tractable inference over kernels

What else?

What other applications would benefit from the tractable computation
of the expected kernels?
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More on circuits ...

Probabilistic Circuits: A Unifying Framework for Tractable Probabilistic Models
starai.cs.ucla.edu/papers/ProbCirc20.pdf

Probabilistic Circuits: Representations, Inference, Learning and Theory
youtube.com/watch?v=2RAG5-L9R70

Probabilistic Circuits
arranger1044.github.io/probabilistic-circuits/

Foundations of Sum-Product Networks for probabilistic modeling
tinyurl.com/w65po5d
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Questions?
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