Scalable Inference and Learning for High-Level Probabilistic Models

Guy Van den Broeck

KU Leuven

Outline

- Motivation
- Why high-level representations?
- Why high-level reasoning?
- Intuition: Inference rules
- Liftability theory: Strengths and limitations
- Lifting in practice
- Approximate symmetries
- Lifted learning

Outline

- Motivation
- Why high-level representations?
- Why high-level reasoning?
- Intuition: Inference rules
- Liftability theory: Strengths and limitations
- Lifting in practice
- Approximate symmetries
- Lifted learning

Graphical Model Learning

Medical Records

Name	Cough	Asthma	Smokes
Alice	1	1	0
Bob	0	0	0
Charlie	0	1	0
Dave	1	0	1
Eve	1	0	0

Graphical Model Learning

Medical Records

Bayesian Network

Name	Cough	Asthma	Smokes
Alice	1	1	0
Bob	0	0	0
Charlie	0	1	0
Dave	1	0	1
Eve	1	0	0

Graphical Model Learning

Medical Records

Bayesian Network

Name	Cough	Asthma	Smokes
Alice	1	1	0
Bob	0	0	0
Charlie	0	1	0
Dave	1	0	1
Eve	1	0	0

Big data

Graphical Model Learning

Medical Records

Bayesian Network

Name	Cough	Asthma	Smokes
Alice	1	1	0
Bob	0	0	0
Charlie	0	1	0
Dave	1	0	1
Eve	1	0	0
Frank	1	$?$	$?$

Graphical Model Learning

Medical Records

Bayesian Network

Name	Cough	Asthma	Smokes
Alice	1	1	0
Bob	0	0	0
Charlie	0	1	0
Dave	1	0	1
Eve	1	0	0

Frank	1	$?$	$?$

Frank	1	0.3	0.2

Graphical Model Learning

Medical Records

Bayesian Network

Graphical Model Learning

Medical Records

Bayesian Network

Graphical Model Learning

Medical Records

Bayesian Network

Graphical Model Learning

Medical Records

Bayesian Network

Name	Cough	Asthma	Smokes
Alice	1	1	0
Bob	0	0	0
Charlie	0	1	0
Dave	1	0	1
Eve	1	0	0
Frank	1	$?$	$?$

Frank	1	0.3	0.2
Frank	1	0.2	0.6

Rows are independent during learning and inference!

Statistical Relational Representations

Augment graphical model with relations between entities (rows).

Statistical Relational Representations

Augment graphical model with relations between entities (rows).

Statistical Relational Representations

Augment graphical model with relations between entities (rows).

Statistical Relational Representations

Augment graphical model with relations between entities (rows).

Equivalent Graphical Model

- Statistical relational model (e.g., MLN)

$$
\text { 1.9 Smokes }(x) \wedge \text { Friends }(x, y) \Rightarrow \text { Smokes }(y)
$$

- Ground atom/tuple = random variable in \{true,false $\}$ e.g., Smokes(Alice), Friends(Alice,Bob), etc.
- Ground formula = factor in propositional factor graph

Research Overview

Bayesian
Networks

Knowledge
Representation

Research Overview

Knowledge
Representation

Research Overview

Probabilistic Databases

- Tuple-independent probabilistic databases

	Name	Prob
	Brando	0.9
	Cruise	0.8
	Coppola	0.1

Actor	Director	Prob
Brando	Coppola	0.9
Coppola	Brando	0.2
Cruise	Coppola	0.1

- Query: SQL or First-order logic

SELECT Actor.name

$$
\mathrm{Q}(\mathrm{x})=\exists \mathrm{y} \text { Actor }(\mathrm{x}) \wedge \text { WorkedFor }(\mathrm{x}, \mathrm{y})
$$

FROM Actor, WorkedFor
WHERE Actor.name = WorkedFor.actor

- Learned from the web, large text corpora, ontologies, etc., using statistical machine learning.

Google Knowledge Graph

Google Knowledge Graph

Research Overview

Research Overview

Probabilistic Programming

- Programming language + random variables
- Reason about distribution over executions

As going from hardware circuits to programming languages

- ProbLog: Probabilistic logic programming/datalog
- Example: Gene/protein interaction networks

Edges (interactions) have probability
"Does there exist a path connecting two proteins?"

```
path(X,Y) :- edge(X,Y).
path(X,Y) :- edge(X,Z), path(Z,Y).
```

Cannot be expressed in first-order logic Need a full-fledged programming language!

Research Overview

Research Overview

Research Overview

Research Overview

Not about: [VdB, et al.; AAAI'10, AAAI'15, ACML'15, DMLG'11], [Gribkoff, Suciu, Vdb; Data Eng.'14], [Gribkoff, VdB, Suciu; UA'14, BUDA'14] , [Kisa, VdB, et al.; KR'14], [Kimmig, VdB, De Raedt; AAAl'11], [Fierens, VdB, et al., PP'12, UA'11, TPLP'15], [Renkens, Kimmig, VdB, De Raedt; AAAI'14], [Nitti, VdB, et al.; ILP'11], [Renkens, VdB, Nijssen; ILP'11, ML'́12], [VHaaren, VdB; ILP'11], [Vlasselaer, VdB, et al.; PLP'14] , [Choi, VdB, Darwiche; KRR'15], [De Raedt et al.;'15], [Kimmig et al.;'15], [VdB, Mohan, et al.;'15]

Outline

- Motivation
- Why high-level representations?
- Why high-level reasoning?
- Intuition: Inference rules
- Liftability theory: Strengths and limitations
- Lifting in practice
- Approximate symmetries
- Lifted learning

A Simple Reasoning Problem

- 52 playing cards
- Let us ask some simple questions

A Simple Reasoning Problem

Probability that Card1 is Q?

A Simple Reasoning Problem

Probability that Card1 is Q?
$1 / 13$

A Simple Reasoning Problem

Probability that Card1 is Hearts?

A Simple Reasoning Problem

Probability that Card1 is Hearts?
1/4

A Simple Reasoning Problem

Probability that Card1 is Hearts given that Card1 is red?

A Simple Reasoning Problem

Probability that Card1 is Hearts given that Card1 is red?
$1 / 2$

A Simple Reasoning Problem

Probability that Card52 is Spades given that Card1 is QH?

A Simple Reasoning Problem

Probability that Card52 is Spades given that Card1 is QH?

13/51

Automated Reasoning

Let us automate this:

1. Probabilistic graphical model (e.g., factor graph)

2. Probabilistic inference algorithm (e.g., variable elimination or junction tree)

Classical Reasoning

Tree

Sparse Graph

Dense Graph

- Higher treewidth
- Fewer conditional independencies
- Slower inference

Is There Conditional Independence?

$P($ Card52 | Card1 $) \stackrel{?}{=} P($ Card52 | Card1, Card2 $)$

Is There Conditional Independence?

$$
\begin{aligned}
\mathrm{P}(\text { Card52 | Card1 }) & \stackrel{?}{=} \mathrm{P}(\text { Card52 | Card1, Card2 }) \\
? & \stackrel{?}{=} ?
\end{aligned}
$$

Is There Conditional Independence?

$P($ Card52 | Card1 $) \stackrel{?}{=} P($ Card52 | Card1, Card2 $)$
$13 / 51 \stackrel{?}{=}$?

Is There Conditional Independence?

$\mathrm{P}($ Card52 | Card1 $) \stackrel{?}{=} \mathrm{P}($ Card52 | Card1, Card2)
$13 / 51 \stackrel{?}{=}$?

Is There Conditional Independence?

$P($ Card52 | Card1 $) \stackrel{?}{=} P($ Card52 | Card1, Card2 $)$

$$
13 / 51 \neq 12 / 50
$$

Is There Conditional Independence?

P(Card52 | Card1) $\neq \mathrm{P}($ Card52 | Card1, Card2)
$13 / 51 \neq 12 / 50$

Is There Conditional Independence?

$P($ Card52 | Card1) $\neq P($ Card52 | Card1, Card2)
$13 / 51 \neq 12 / 50$
P(Card52 | Card1, Card2) $\stackrel{?}{=} \mathrm{P}($ Card52 | Card1, Card2, Card3)

Is There Conditional Independence?

P(Card52 | Card1) $\neq \mathrm{P}($ Card52 | Card1, Card2)

$$
13 / 51 \neq 12 / 50
$$

P(Card52 | Card1, Card2) $\neq \mathrm{P}($ Card52 | Card1, Card2, Card3)

$$
12 / 50 \neq 12 / 49
$$

Automated Reasoning

Let us automate this:

1. Probabilistic graphical model (e.g., factor graph) is fully connected!

2. Probabilistic inference algorithm (e.g., variable elimination or junction tree) builds a table with 52^{52} rows

What's Going On Here?

Probability that Card52 is Spades given that Card1 is QH?

What's Going On Here?

Probability that Card52 is Spades given that Card1 is QH?

13/51

What's Going On Here?

Probability that Card52 is Spades given that Card2 is QH?

What's Going On Here?

Probability that Card52 is Spades given that Card2 is QH?

13/51

What's Going On Here?

Probability that Card52 is Spades given that Card3 is QH?

What's Going On Here?

Probability that Card52 is Spades given that Card3 is QH?

13/51

Tractable Probabilistic Inference

Which property makes inference tractable?

Traditional belief: Independence
What's going on here?

Tractable Probabilistic Inference

Which property makes inference tractable?

Traditional belief: Independence
What's going on here?

- High-level reasoning
- Symmetry
- Exchangeability

\Rightarrow Lifted Inference

Other Examples of Lifted Inference

- Syllogisms \& First-order resolution
- Reasoning about populations

We are investigating a rare disease. The disease is more rare in women, presenting only in one in every two billion women and one in every billion men. Then, assuming there are 3.4 billion men and 3.6 billion women in the world, the probability that more than five people have the disease is

$$
\begin{gathered}
1-\sum_{n=0}^{5} \sum_{f=0}^{n}\binom{3.6 \cdot 10^{9}}{f}\left(1-0.5 \cdot 10^{-9}\right)^{3.6 \cdot 10^{9}-f}\left(0.5 \cdot 10^{-9}\right)^{f} \\
\quad \times\binom{ 3.4 \cdot 10^{9}}{(n-f)}\left(1-10^{-9}\right)^{3.4 \cdot 10^{9}-(n-f)}\left(10^{-9}\right)^{(n-f)}
\end{gathered}
$$

Equivalent Graphical Model

- Statistical relational model (e.g., MLN)

3.14 FacultyPage $(x) \wedge$ Linked $(x, y) \Rightarrow$ CoursePage(y)

- As a probabilistic graphical model:
- 26 pages; 728 variables; 676 factors
- 1000 pages; 1,002,000 variables; 1,000,000 factors
- Highly intractable?
- Lifted inference in milliseconds!

Outline

- Motivation
- Why high-level representations?
- Why high-level reasoning?
- Intuition: Inference rules
- Liftability theory: Strengths and limitations
- Lifting in practice
- Approximate symmetries
- Lifted learning

Weighted Model Counting

- Model = solution to a propositional logic formula Δ
- Model counting = \#SAT
$\Delta=($ Rain \Rightarrow Cloudy $)$

Rain	Cloudy	Model?
T	T	Yes
T	F	No
F	T	Yes
F	F	Yes
		+\#SAT $=\mathbf{3}$

Weighted Model Counting

- Model = solution to a propositional logic formula Δ
- Model counting = \#SAT
- Weighted model counting (WMC)
- Weights for assignments to variables
- Model weight is product of variable weights w(.)

Weighted Model Counting

- Model = solution to a propositional logic formula Δ
- Model counting = \#SAT
- Weighted model counting (WMC)
- Weights for assignments to variables
- Model weight is product of variable weights w(.)

$$
\begin{aligned}
& \Delta=(\text { Rain } \Rightarrow \text { Cloudy }) \\
& \hline w(R)=1 \\
& w(\neg R)=2 \\
& w(C)=3 \\
& w(\neg C)=5
\end{aligned}
$$

Weight
$1 * 3=3$
$2 * 3=$
$2 * 5=10$
$+\cdots$
WMC $=19$

Assembly language for probabilistic reasoning

Weighted First-Order Model Counting

Model = solution to first-order logic formula Δ

```
\Delta= \foralld (Rain(d)
    => Cloudy(d))
```

Days $=\{$ Monday $\}$

Weighted First-Order Model Counting

Model = solution to first-order logic formula Δ

$\Delta=\forall \mathrm{d}$ (Rain(d$)$	Rain(M)	Cloudy(M)	Model?
\Rightarrow Cloudy(d))	T	T	Yes
	T	F	No
Days $=\{$ Monday $\}$	F	T	Yes
	F	F	Yes

Weighted First-Order Model Counting

Model = solution to first-order logic formula Δ
$\Delta=\forall d($ Rain (d)
$\Rightarrow \operatorname{Cloudy}(\mathrm{d}))$

Days $=\{$ Monday Tuesday\}

Rain(M)	Cloudy(M)
T	T
T	F
F	T
F	F

Rain(T)	Cloudy(T)
T	T
T	T
T	T
T	T

Model?
Yes
No
Yes
Yes

T	T
T	F
F	T
F	F

T	F
T	F
T	F
T	F

No
No
No
No

T	T
T	F
F	T
F	F

F	T
F	T
F	T
F	T

T	T
T	F
F	T
F	F

F	F
F	F
F	F
F	F

Yes
No
Yes
Yes

Weighted First-Order Model Counting

Model = solution to first-order logic formula Δ

$\Delta=\forall d$
$($ Rain (d)
$\Rightarrow \operatorname{Cloudy}(\mathrm{d}))$

Days $=\{$ Monday Tuesday\}

Rain(M)	Cloudy(M)
T	T
T	F
F	T
F	F

Rain(T)	Cloudy(T)
T	T
T	T
T	T
T	T

Model?
Yes
No
Yes
Yes

T	T
T	F
F	T
F	F

T	F
T	F
T	F
T	F

No
No
No
No

T	T
T	F
F	T
F	F

F	T
F	T
F	T
F	T

Yes
No
Yes
Yes

T	T
T	F
F	T
F	F

F	F
F	F
F	F
F	F

Yes
No
Yes
Yes

Weighted First-Order Model Counting

Model = solution to first-order logic formula Δ
$\Delta=\forall d$ (Rain(d)
$\Rightarrow \operatorname{Cloudy}(\mathrm{d}))$

Days $=\{$ Monday Tuesday\}

$$
\begin{aligned}
w(R) & =1 \\
w(\neg R) & =2 \\
w(C) & =3 \\
w(\neg C) & =5
\end{aligned}
$$

Rain(M)	Cloudy(M)	Rain(T)	Cloudy(T)	Model?	Weight
T	T	T	T	Yes	$1 * 1 * 3 * 3=9$
T	F	T	T	No	0
F	T	T	T	Yes	$2 * 1 * 3 * 3=18$
F	F	T	T	Yes	$2 * 1 * 5 * 3=30$
T	T	T	F	No	0
T	F	T	F	No	0
F	T	T	F	No	0
F	F	T	F	No	0
T	T	F	T	Yes	$1 * 2 * 3 * 3=18$
T	F	F	T	No	0
F	T	F	T	Yes	2 * 2 * 3 * $3=36$
F	F	F	T	Yes	2 * 2 * 5 * $3=60$
T	T	F	F	Yes	$1 * 2 * 3 * 5=30$
T	F	F	F	No	0
F	T	F	F	Yes	2 * 2 * 3 * $5=60$
F	F	F	F	Yes	2 * 2 * 5 * $5=100$

Weighted First-Order Model Counting

Model = solution to first-order logic formula Δ
$\Delta=\forall d$ (Rain(d)
$\Rightarrow \operatorname{Cloudy}(\mathrm{d}))$

Days $=\{$ Monday Tuesday\}

$$
\begin{aligned}
w(R) & =1 \\
w(\neg R) & =2 \\
w(C) & =3 \\
w(\neg C) & =5
\end{aligned}
$$

Rain(M)	Cloudy(M)	Rain(T)	Cloudy(T)	Model?	Weight
T	T	T	T	Yes	$1 * 1 * 3 * 3=9$
T	F	T	T	No	0
F	T	T	T	Yes	$2 * 1 * 3 * 3=18$
F	F	T	T	Yes	2*1*5*3 = 30
T	T	T	F	No	0
T	F	T	F	No	0
F	T	T	F	No	0
F	F	T	F	No	0
T	T	F	T	Yes	$1 * 2 * 3 * 3=18$
T	F	F	T	No	0
F	T	F	T	Yes	2 * 2 * 3 * $3=36$
F	F	F	T	Yes	2 * 2 * 5 * $3=60$
T	T	F	F	Yes	1*2*3*5 $=30$
T	F	F	F	No	0
F	T	F	F	Yes	2 * 2 * 3 * $5=60$
F	F	F	F	Yes	2 * 2 * 5 * $5=100$

Assembly language for

 high-level probabilistic reasoning
[VdB et al.; IJCAl'11, PhD'13, KR'14, UAl'14]

WFOMC Inference: Example

- FO-Model Counting: $w(R)=w(\neg R)=1$
- Apply inference rules backwards (step 4-3-2-1)

WFOMC Inference: Example

- FO-Model Counting: $w(R)=w(\neg R)=1$
- Apply inference rules backwards (step 4-3-2-1)

4. $\Delta=($ Stress(Alice $) \Rightarrow$ Smokes(Alice) $)$

WFOMC Inference: Example

- FO-Model Counting: $w(R)=w(\neg R)=1$
- Apply inference rules backwards (step 4-3-2-1)

4. $\Delta=($ Stress(Alice) \Rightarrow Smokes(Alice) $)$
$\rightarrow 3$ models

WFOMC Inference: Example

- FO-Model Counting: $w(R)=w(\neg R)=1$
- Apply inference rules backwards (step 4-3-2-1)

4. $\Delta=($ Stress(Alice) \Rightarrow Smokes(Alice))
```
Domain \(=\{\) Alice \(\}\)
```

$\rightarrow 3$ models
3. $\Delta=\forall x,(\operatorname{Stress}(x) \Rightarrow \operatorname{Smokes}(\mathrm{x}))$

WFOMC Inference: Example

- FO-Model Counting: $w(R)=w(\neg R)=1$
- Apply inference rules backwards (step 4-3-2-1)

4. $\Delta=($ Stress(Alice $) \Rightarrow$ Smokes(Alice) $)$
$\rightarrow 3$ models
5. $\Delta=\forall x,(\operatorname{Stress}(x) \Rightarrow \operatorname{Smokes}(x))$
$\rightarrow 3^{n}$ models

WFOMC Inference: Example

3. $\Delta=\forall x,(\operatorname{Stress}(\mathrm{x}) \Rightarrow \operatorname{Smokes}(\mathrm{x}))$
$\rightarrow 3^{n}$ models

WFOMC Inference: Example

3. $\Delta=\forall x,(\operatorname{Stress}(\mathrm{x}) \Rightarrow \operatorname{Smokes}(\mathrm{x}))$
$\rightarrow 3^{n}$ models
4. $\Delta=\forall y$, (ParentOf $(\mathrm{y}) \wedge$ Female \Rightarrow MotherOf $(\mathrm{y}))$

WFOMC Inference: Example

3. $\Delta=\forall x,(\operatorname{Stress}(\mathrm{x}) \Rightarrow \operatorname{Smokes}(\mathrm{x}))$
$\rightarrow 3^{n}$ models
4. $\Delta=\forall y,($ ParentOf $(\mathrm{y}) \wedge$ Female \Rightarrow MotherOf(y$))$
$D=\{n$ people $\}$

If Female = true?
$\Delta=\forall y,($ ParentOf $(y) \Rightarrow$ MotherOf $(y))$
$\rightarrow 3^{n}$ models

WFOMC Inference: Example

3. $\Delta=\forall x,(\operatorname{Stress}(\mathrm{x}) \Rightarrow \operatorname{Smokes}(\mathrm{x}))$
$\rightarrow 3^{n}$ models
4. $\Delta=\forall y$, (ParentOf $(\mathrm{y}) \wedge$ Female \Rightarrow MotherOf $(\mathrm{y}))$
$D=\{n$ people $\}$

If Female = true?
$\Delta=\forall y,($ ParentOf $(\mathrm{y}) \Rightarrow$ MotherOf $(\mathrm{y}))$
$\Delta=$ true
$\rightarrow 3^{n}$ models
$\rightarrow 4^{\mathrm{n}}$ models

WFOMC Inference: Example

3. $\Delta=\forall x,(\operatorname{Stress}(x) \Rightarrow \operatorname{Smokes}(\mathrm{x}))$ Domain $=\{n$ people $\}$
$\rightarrow 3^{n}$ models
4. $\Delta=\forall y,(\operatorname{ParentOf}(\mathrm{y}) \wedge$ Female \Rightarrow MotherOf(y$))$
$D=\{n$ people $\}$
$\begin{array}{lll}\text { If Female }=\text { true } ? & \Delta=\forall y,(\text { ParentOf }(y) \Rightarrow \text { MotherOf }(y)) & \rightarrow 3^{n} \text { models } \\ \text { If Female }=\text { false } ? & \Delta=\text { true } & \rightarrow 4^{n} \text { models } \\ & & \rightarrow 3^{n}+4^{n} \text { models }\end{array}$

WFOMC Inference: Example

3. $\Delta=\forall x,(\operatorname{Stress}(\mathrm{x}) \Rightarrow \operatorname{Smokes}(\mathrm{x}))$
$\rightarrow 3^{n}$ models
4. $\Delta=\forall y,(\operatorname{ParentOf}(\mathrm{y}) \wedge$ Female \Rightarrow MotherOf(y$))$
$D=\{n$ people $\}$
$\begin{array}{lll}\text { If Female }=\text { true } ? & \Delta=\forall y,(\text { ParentOf }(y) \Rightarrow \text { MotherOf }(y)) & \rightarrow 3^{n} \text { models } \\ \text { If Female }=\text { false? } & \Delta=\text { true } & \rightarrow 4^{n} \text { models } \\ & & \rightarrow 3^{n}+4^{n} \text { models }\end{array}$
5. $\Delta=\forall x, y,(\operatorname{ParentOf}(x, y) \wedge$ Female $(x) \Rightarrow$ MotherOf $(x, y))$
$D=\{n$ people $\}$

WFOMC Inference: Example

3. $\Delta=\forall x,(\operatorname{Stress}(x) \Rightarrow \operatorname{Smokes}(\mathrm{x}))$
$\rightarrow 3^{n}$ models
4. $\Delta=\forall y,(\operatorname{ParentOf}(\mathrm{y}) \wedge$ Female \Rightarrow MotherOf(y$))$
$D=\{n$ people $\}$
$\begin{array}{lll}\text { If Female }=\text { true ? } & \Delta=\forall y,(\text { ParentOf }(y) \Rightarrow \text { MotherOf }(y)) & \rightarrow 3^{n} \text { models } \\ \text { If Female }=\text { false? } & \Delta=\text { true } & \rightarrow 4^{n} \text { models } \\ & & \rightarrow 3^{n}+4^{n} \text { models }\end{array}$
5. $\Delta=\forall x, y,(\operatorname{ParentOf}(x, y) \wedge$ Female $(x) \Rightarrow$ MotherOf $(x, y))$
$D=\{n$ people $\}$
$\rightarrow\left(3^{n}+4^{n}\right)^{n}$ models

Atom Counting: Example

$\Delta=\forall x, y,(\operatorname{Smokes}(x) \wedge$ Friends $(x, y) \Rightarrow \operatorname{Smokes}(\mathrm{y}))$

Atom Counting: Example

$\Delta=\forall x, y,(\operatorname{Smokes}(x) \wedge$ Friends $(x, y) \Rightarrow \operatorname{Smokes}(\mathrm{y}))$

$$
\text { Domain }=\{n \text { people }\}
$$

- If we know precisely who smokes, and there are k smokers?

```
Database:
    Smokes(Alice) = 1
    Smokes(Bob) = 0
    Smokes(Charlie) = 0
    Smokes(Dave) = 1
    Smokes(Eve) = 0
```

Smokes

Friends
Smokes

Atom Counting: Example

$\Delta=\forall x, y,(\operatorname{Smokes}(x) \wedge$ Friends $(x, y) \Rightarrow \operatorname{Smokes}(\mathrm{y}))$

$$
\text { Domain }=\{n \text { people }\}
$$

- If we know precisely who smokes, and there are k smokers?

Database:

Smokes(Alice) = 1
Smokes(Bob) = 0
Smokes(Charlie) $=0$
Smokes(Dave) = 1
Smokes(Eve) = 0

Smokes

Friends

Atom Counting: Example

$\Delta=\forall x, y,(\operatorname{Smokes}(x) \wedge$ Friends $(x, y) \Rightarrow \operatorname{Smokes}(\mathrm{y}))$

$$
\text { Domain }=\{n \text { people }\}
$$

- If we know precisely who smokes, and there are k smokers?

Database:

Smokes(Alice) = 1
Smokes(Bob) = 0
Smokes(Charlie) $=0$
Smokes(Dave) = 1
Smokes(Eve) = 0

Smokes

Friends

Atom Counting: Example

$\Delta=\forall x, y,(\operatorname{Smokes}(x) \wedge$ Friends $(x, y) \Rightarrow \operatorname{Smokes}(y))$

$$
\text { Domain }=\{n \text { people }\}
$$

- If we know precisely who smokes, and there are k smokers?

Database:

Smokes(Alice) = 1
Smokes(Bob) =0
Smokes(Charlie) $=0$
Smokes(Dave) = 1
Smokes(Eve) = 0

Smokes

Friends

Atom Counting: Example

$\Delta=\forall x, y,(\operatorname{Smokes}(x) \wedge$ Friends $(x, y) \Rightarrow \operatorname{Smokes}(\mathrm{y}))$

$$
\text { Domain }=\{n \text { people }\}
$$

- If we know precisely who smokes, and there are k smokers?

Database:

Smokes(Alice) = 1
Smokes(Bob) = 0
Smokes(Charlie) $=0$
Smokes(Dave) = 1
Smokes(Eve) = 0

Smokes

Friends

Atom Counting: Example

$\Delta=\forall x, y,(\operatorname{Smokes}(x) \wedge$ Friends $(x, y) \Rightarrow \operatorname{Smokes}(y))$

$$
\text { Domain }=\{n \text { people }\}
$$

- If we know precisely who smokes, and there are k smokers?

Database:

Smokes(Alice) $=1$

Smokes(Bob) $=0$
Smokes(Charlie) = 0
Smokes(Dave) = 1
Smokes(Eve) = 0

Smokes

Friends

Atom Counting: Example

$\Delta=\forall x, y,(\operatorname{Smokes}(x) \wedge$ Friends $(x, y) \Rightarrow \operatorname{Smokes}(\mathrm{y}))$

$$
\text { Domain }=\{n \text { people }\}
$$

- If we know precisely who smokes, and there are k smokers?

Database:

Smokes(Alice) = 1
Smokes(Bob) = 0
Smokes(Charlie) $=0$
Smokes(Dave) = 1
Smokes(Eve) = 0

Smokes

Atom Counting: Example

$\Delta=\forall x, y,(\operatorname{Smokes}(x) \wedge$ Friends $(x, y) \Rightarrow \operatorname{Smokes}(\mathrm{y}))$

$$
\text { Domain }=\{n \text { people }\}
$$

- If we know precisely who smokes, and there are k smokers?

Database:

Smokes(Alice) $=1$

Smokes(Bob) = 0
Smokes(Charlie) = 0
Smokes(Dave) = 1
Smokes(Eve) $=0$

Atom Counting: Example

$\Delta=\forall x, y,(\operatorname{Smokes}(x) \wedge$ Friends $(x, y) \Rightarrow \operatorname{Smokes}(\mathrm{y}))$

$$
\text { Domain }=\{n \text { people }\}
$$

- If we know precisely who smokes, and there are k smokers?

Database:

Smokes(Alice) $=1$

Smokes(Bob) = 0
Smokes(Charlie) = 0
Smokes(Dave) = 1
Smokes(Eve) $=0$

Atom Counting: Example

$\Delta=\forall x, y,(\operatorname{Smokes}(x) \wedge$ Friends $(x, y) \Rightarrow \operatorname{Smokes}(\mathrm{y}))$

$$
\text { Domain }=\{n \text { people }\}
$$

- If we know precisely who smokes, and there are k smokers?

Database:

Smokes(Alice) $=1$

Smokes(Bob) = 0
Smokes(Charlie) = 0
Smokes(Dave) = 1
Smokes(Eve) $=0$

$$
\rightarrow 2^{n^{2}-k(n-k)} \text { models }
$$

Smokes

Atom Counting: Example

$\Delta=\forall x, y,(\operatorname{Smokes}(x) \wedge$ Friends $(x, y) \Rightarrow \operatorname{Smokes}(\mathrm{y}))$

$$
\text { Domain }=\{n \text { people }\}
$$

- If we know precisely who smokes, and there are k smokers?

Database:

Smokes(Alice) = 1
Smokes(Bob) $=0$
Smokes(Charlie) $=0$
Smokes(Dave) = 1
Smokes(Eve) = 0

$$
\rightarrow 2^{n^{2}-k(n-k)} \text { models }
$$

Smokes

- If we know that there are k smokers?

Atom Counting: Example

$\Delta=\forall x, y,(\operatorname{Smokes}(x) \wedge$ Friends $(x, y) \Rightarrow \operatorname{Smokes}(\mathrm{y}))$

$$
\text { Domain }=\{n \text { people }\}
$$

- If we know precisely who smokes, and there are k smokers?

Database:

Smokes(Alice) $=1$
Smokes(Bob) $=0$
Smokes(Charlie) $=0$
Smokes(Dave) = 1
Smokes(Eve) $=0$

$$
\rightarrow 2^{n^{2}-k(n-k)} \text { models }
$$

- If we know that there are k smokers?

$\rightarrow\binom{n}{k} 2^{n^{2}-k(n-k)}$ models

Atom Counting: Example

$\Delta=\forall x, y,(\operatorname{Smokes}(x) \wedge$ Friends $(x, y) \Rightarrow \operatorname{Smokes}(\mathrm{y}))$

$$
\text { Domain }=\{n \text { people }\}
$$

- If we know precisely who smokes, and there are k smokers?

Database:

Smokes(Alice) = 1
Smokes(Bob) $=0$
Smokes(Charlie) $=0$
Smokes(Dave) = 1
Smokes(Eve) $=0$
$\rightarrow 2^{n^{2}-k(n-k)}$ models

- If we know that there are k smokers?

Atom Counting: Example

$\Delta=\forall x, y,(\operatorname{Smokes}(x) \wedge$ Friends $(x, y) \Rightarrow \operatorname{Smokes}(y))$

$$
\text { Domain }=\{n \text { people }\}
$$

- If we know precisely who smokes, and there are k smokers?

Database:

Smokes(Alice) = 1
Smokes(Bob) $=0$
Smokes(Charlie) $=0$
Smokes(Dave) = 1
Smokes(Eve) $=0$
$\rightarrow 2^{n^{2}-k(n-k)}$ models

- If we know that there are k smokers?
- In total...

$$
\rightarrow \quad \sum_{k=0}^{n}\binom{n}{k} 2^{n^{2}-k(n-k)} \text { models }
$$

First-Order Knowledge Compilation

Markov Logic 3.14 Smokes $(x) \wedge$ Friends $(x, y) \Rightarrow \operatorname{Smokes}(y)$

First-Order Knowledge Compilation

Markov Logic
3.14 Smokes(x) ^Friends(x, y) \Rightarrow Smokes(y)

Weight Function

$$
\begin{array}{r}
w(\text { Smokes })=1 \\
w(\neg \text { Smokes })=1 \\
w(\text { Friends })=1 \\
w(\neg \text { Friends })=1 \\
w(F)=3.14 \\
w(\neg F)=1
\end{array}
$$

$\forall x, y, F(x, y) \Leftrightarrow[$ Smokes $(x) \wedge$ Friends $(x, y) \Rightarrow \operatorname{Smokes}(y)]$
[Van den Broeck et al.; IJCAl'11, NIPS'11, PhD'13, KR'14]

First-Order Knowledge Compilation

$w(\neg$ Friends $)=1$

$$
\begin{array}{r}
w(F)=3.14 \\
w(\neg F)=1
\end{array}
$$

First-Order d-DNNF Circuit

First-Order Knowledge Compilation

$$
\begin{aligned}
& \text { Markov Logic } \\
& \text { Weight Function } \\
& \begin{array}{r}
\text { w(Smokes) }=1 \\
w(\neg \text { Smokes })=1 \\
w(\text { Friends })=1 \\
w(\neg \text { Friends })=1 \\
w(F)=3.14 \\
w(\neg F)=1
\end{array}
\end{aligned}
$$

Domain

Alice
Bob
Charlie

$$
\forall x, y, F(x, y) \Leftrightarrow[\operatorname{Smokes}(x) \wedge \text { Friends }(x, y) \Rightarrow \operatorname{Smokes}(y)]
$$

\downarrow Compile
First-Order d-DNNF Circuit

First-Order Knowledge Compilation

FOL Sentence

$$
\forall x, y, F(x, y) \Leftrightarrow[\operatorname{Smokes}(x) \wedge \text { Friends }(x, y) \Rightarrow \operatorname{Smokes}(y)]
$$

Compile

Weight Function

$$
\begin{array}{r}
w(\text { Smokes })=1 \\
w(\neg \text { Smokes })=1 \\
w(\text { Friends })=1 \\
w(\neg \text { Friends })=1 \\
w(F)=3.14 \\
w(\neg F)=1
\end{array}
$$

Domain

First-Order d-DNNF Circuit

[Van den Broeck et al.; IJCAl'11, NIPS'11, PhD'13, KR'14]

Let us automate this:

- Relational model

$$
\begin{gathered}
\forall \mathrm{p}, \exists \mathrm{c}, \operatorname{Card}(\mathrm{p}, \mathrm{c}) \\
\forall \mathrm{c}, \exists \mathrm{p}, \operatorname{Card}(\mathrm{p}, \mathrm{c}) \\
\forall \mathrm{p}, \forall \mathrm{c}, \forall \mathrm{c}^{\prime}, \operatorname{Card}(\mathrm{p}, \mathrm{c}) \wedge \operatorname{Card}\left(\mathrm{p}, \mathrm{c}^{\prime}\right) \Rightarrow \mathrm{c}=\mathrm{c}^{\prime}
\end{gathered}
$$

- Lifted probabilistic inference algorithm

Playing Cards Revisited

Let us automate this:

$\forall p, \exists c, \operatorname{Card}(p, c)$
$\forall c, \exists p, \operatorname{Card}(p, c)$
$\forall p, \forall c, \forall c^{\prime}, \operatorname{Card}(p, c) \wedge \operatorname{Card}\left(p, c^{\prime}\right) \Rightarrow c=c^{\prime}$

Playing Cards Revisited

Let us automate this:

$$
\begin{gathered}
\forall \mathrm{p}, \exists \mathrm{c}, \operatorname{Card}(\mathrm{p}, \mathrm{c}) \\
\forall \mathrm{c}, \exists \mathrm{p}, \operatorname{Card}(\mathrm{p}, \mathrm{c}) \\
\forall \mathrm{p}, \forall \mathrm{c}, \forall \mathrm{c}^{\prime}, \operatorname{Card}(\mathrm{p}, \mathrm{c}) \wedge \operatorname{Card}\left(\mathrm{p}, \mathrm{c}^{\prime}\right) \Rightarrow \mathrm{c}=\mathrm{c}^{\prime}
\end{gathered}
$$

$$
\text { \#SAT }=\sum_{k=0}^{n}\binom{n}{k} \sum_{l=0}^{n}\binom{n}{l}(l+1)^{k}(-1)^{2 n-k-l}=\mathrm{n}!
$$

Playing Cards Revisited

Let us automate this:

$$
\begin{gathered}
\forall p, \exists c, \operatorname{Card}(\mathrm{p}, \mathrm{c}) \\
\forall \mathrm{c}, \exists \mathrm{p}, \operatorname{Card}(\mathrm{p}, \mathrm{c}) \\
\forall \mathrm{p}, \forall \mathrm{c}, \forall \mathrm{c}^{\prime}, \operatorname{Card}(\mathrm{p}, \mathrm{c}) \wedge \operatorname{Card}\left(\mathrm{p}, \mathrm{c}^{\prime}\right) \Rightarrow \mathrm{c}=\mathrm{c}^{\prime}
\end{gathered}
$$

$$
\text { \#SAT }=\sum_{k=0}^{n}\binom{n}{k} \sum_{l=0}^{n}\binom{n}{l}(l+1)^{k}(-1)^{2 n-k-l}=\mathrm{n}!
$$

Computed in time polynomial in n

Outline

- Motivation
- Why high-level representations?
- Why high-level reasoning?
- Intuition: Inference rules
- Liftability theory: Strengths and limitations
- Lifting in practice
- Approximate symmetries
- Lifted learning

Theory of Inference

Goal:

Understand complexity of probabilistic reasoning

- Low-level graph-based concepts (treewidth)
\Rightarrow inadequate to describe high-level reasoning
- Need to develop "liftability theory"
- Deep connections to
- database theory, finite model theory, 0-1 laws,
- counting complexity

Lifted Inference: Definition

- Informal [Poolé03, etc.]

Exploit symmetries, Reason at first-order level, Reason about groups of objects, Scalable inference, High-level probabilistic reasoning, etc.

- A formal definition: Domain-lifted inference

> Inference runs in time polynomial in the number of entities in the domain.

Lifted Inference: Definition

- Informal [Poolé03, etc.]

Exploit symmetries, Reason at first-order level, Reason about groups of objects, Scalable inference, High-level probabilistic reasoning, etc.

- A formal definition: Domain-lifted inference

Inference runs in time polynomial in the number of entities in the domain.

- Polynomial in \#rows, \#entities, \#people, \#webpages, \#cards
- ~ data complexity in databases

Lifted Inference: Definition

- Informal [Poole'03, etc.]

Exploit symmetries, Reason at first-order level, Reason about groups of objects, Scalable inference, High-level probabilistic reasoning, etc.

- A formal definition: Domain-lifted inference

Inference runs in time polynomial in the number of entities in the domain.

- Polynomial in \#rows, \#entities, \#people, \#webpages, \#cards
- ~ data complexity in databases

Lifted Inference: Definition

- Informal [Poole'03, etc.]

Exploit symmetries, Reason at first-order level, Reason about groups of objects, Scalable inference, High-level probabilistic reasoning, etc.

- A formal definition: Domain-lifted inference

Inference runs in time polynomial in the number of entities in the domain.

- Polynomial in \#rows, \#entities, \#people, \#webpages, \#cards
- ~ data complexity in databases

Name	Cough	Asthma	Smokes
Alice	1	1	0
Bob	0	0	0
Charlie	0	1	0

\downarrow Big data

First-Order Knowledge Compilation

\section*{| Markov Logic | $3.14 \operatorname{Smokes}(x) \wedge$ Friends $(x, y) \Rightarrow \operatorname{Smokes}(y)$ |
| :--- | :--- | :--- |}

Weight Function

$$
\begin{array}{r}
w(\text { Smokes })=1 \\
w(\neg \text { Smokes })=1 \\
w(\text { Friends })=1 \\
w(\neg \text { Friends })=1 \\
w(F)=3.14 \\
w(\neg F)=1
\end{array}
$$

Domain
Alice Bob Charlie
$w($ Smokes $)=1$
$w(\neg$ Smokes $)=1$
$w($ Friends $)=1$
$w(\neg$ Friends $)=1$
$w(F)=3.14$
$w(\neg F)=1$

$\left.\begin{array}{c}\text { Alice } \\ \text { Bob } \\ \text { Charlie }\end{array}\right\}$

First-Order d-DNNF Circuit

First-Order Knowledge Compilation

Markov Logic $3.14 \operatorname{Smokes}(x) \wedge$ Friends $(x, y) \Rightarrow \operatorname{Smokes}(y)$

Weight Function
$w($ Smokes $)=1$
$w(-$ Smokes $)=1$
$w($ Friends $)=1$
$w(-$ Friends $)=1$
$w(F)=3.14$
$w(-F)=1$

Domain
Alice
Bob
Charlie

FOL Sentence

$$
\forall x, y, F(x, y) \Leftrightarrow[\operatorname{Smokes}(x) \wedge \operatorname{Friends}(x, y) \Rightarrow \operatorname{Smokes}(y)]
$$

Compile?
First-Order d-DNNF Circuit

First-Order Knowledge Compilation

Markov Logic $3.14 \operatorname{Smokes}(x) \wedge$ Friends $(x, y) \Rightarrow \operatorname{Smokes}(y)$

Weight Function
$w($ Smokes $)=1$
$w(-$ Smokes $)=1$
$w($ Friends $)=1$
$w(-$ Friends $)=1$
$w(F)=3.14$
$w(-F)=1$

Domain
Alice
Bob
Charlie

FOL Sentence

$$
\forall x, y, F(x, y) \Leftrightarrow[\operatorname{Smokes}(x) \wedge \operatorname{Friends}(x, y) \Rightarrow \operatorname{Smokes}(y)]
$$

Compile?
First-Order d-DNNF Circuit

Evaluation in time polynomial in domain size
Domain-lifted!

First-Order Knowledge Compilation

Markov Logic 3.14 Smokes $(x) \wedge$ Friends $(x, y) \Rightarrow \operatorname{Smokes}(y)$

Weight Function

$$
\begin{array}{r}
\mathrm{w}(\text { Smokes })=1 \\
\mathrm{w}(\neg \text { Smokes })=1 \\
\mathrm{w}(\text { Friends })=1 \\
\mathrm{w}(\neg \text { Friends })=1 \\
\mathrm{w}(\mathrm{~F})=3.14 \\
\mathrm{w}(\neg \mathrm{~F})=1 \\
\hline
\end{array}
$$

First-Order d-DNNF Circuit

$$
\forall x, y, F(x, y) \Leftrightarrow[\operatorname{Smokes}(x) \wedge \text { Friends }(x, y) \Rightarrow \operatorname{Smokes}(y)]
$$

\downarrow Compile?

Domain-lifted!
[Van den Broeck.; NIPS'11]

What Can Be Lifted?

Theorem: WFOMC for FO^{2} is liftable

What Can Be Lifted?

Theorem: WFOMC for FO^{2} is liftable

Corollary: Markov logic with two logical variables per formula is liftable.

What Can Be Lifted?

Theorem: WFOMC for FO^{2} is liftable

Corollary: Markov logic with two logical variables per formula is liftable.

Corollary: Tight probabilistic logic programs with two logical variables are liftable.

FO^{2} is liftable!

FO^{2} is liftable!

FO^{2} is liftable!

"Smokers are more likely to be friends with other smokers." "Colleagues of the same age are more likely to be friends." "People are either family or friends, but never both." "If X is family of Y, then Y is also family of X." "If X is a parent of Y, then Y cannot be a parent of X."

FO^{2} is liftable!

Name	Cough	Asthma	Smokes
Alice	1	1	0
Bob	0	0	0
Charlie	0	1	0
Dave	1	0	1
Eve	1	0	0
Frank	1	$?$	$?$

Statistical Relational Model in FO^{2}

> 2.1 Asthma $(x) \Rightarrow \operatorname{Cough}(x)$
> 3.5 Smokes $(x) \Rightarrow \operatorname{Cough}(x)$
> 1.9 Smokes $(x) \wedge$ Friends (x, y) $\Rightarrow \operatorname{Smokes}(y)$
> 1.5 Asthma $(x) \wedge$ Family (x, y)
> \Rightarrow Asthma (y)

Frank	1	0.2	0.6

FO^{2} is liftable!

Can Everything Be Lifted?

Can Everything Be Lifted?

Theorem: There exists an FO^{3} sentence Θ_{1} for which first-order model counting is $\# \mathrm{P}_{1}$-complete in the domain size.

Can Everything Be Lifted?

Theorem: There exists an FO^{3} sentence Θ_{1} for which first-order model counting is $\# \mathrm{P}_{1}$-complete in the domain size.

A counting Turing machine is a nondeterministic TM that prints the number of its accepting computations.

The class $\# P_{1}$ consists of all functions computed by a polynomial-time counting TM with unary input alphabet.

Proof: Encode a universal $\# \mathrm{P}_{1}-\mathrm{TM}$ in FO^{3}

Fertile Ground

Fertile Ground

[VdB; NIPS'11], [VdB et al.; KR'14], [Gribkoff, VdB, Suciu; UAl'15], [Beame, VdB, Gribkoff, Suciu; PODS'15], etc.

Statistical Properties

1. Independence

2. Partial Exchangeability

Name	Cough	Asthma	Smokes	Name	Cough	Asthma	Smokes
Alice	1	1	0	Charlie	1	1	0
Bob	0	0	0	Alice	0	0	0
Charlie	0	1	0	Bob	0	1	0

3. Independent and identically distributed (i.i.d.)
= Independence + Partial Exchangeability

Statistical Properties for Tractability

- Tractable classes independent of representation
- Traditionally:
- Tractable learning from i.i.d. data
- Tractable inference when cond. independence
- New understanding:
- Tractable learning from exchangeable data
- Tractable inference when
- Conditional independence
- Conditional exchangeability
- A combination

Outline

- Motivation
- Why high-level representations?
- Why high-level reasoning?
- Intuition: Inference rules
- Liftability theory: Strengths and limitations
- Lifting in practice
- Approximate symmetries
- Lifted learning

Approximate Symmetries

- What if not liftable? Asymmetric graph?
- Exploit approximate symmetries:
- Exact symmetry $\mathrm{g}: \operatorname{Pr}(\mathbf{x})=\operatorname{Pr}\left(\mathbf{x}^{\mathrm{g}}\right)$
E.g. Ising model
without external field
- Approximate symmetry $\mathrm{g}: \operatorname{Pr}(\mathbf{x}) \approx \operatorname{Pr}\left(\mathbf{x}^{\mathrm{g}}\right)$
E.g. Ising model with external field

Example: Statistical Relational Model

- WebKB: Classify pages given links and words
- Very large Markov logic network
1.3 Page (x, Faculty) \Rightarrow HasWord (x, Hours)
1.5 Page (x, Faculty) $\wedge \operatorname{Link}(x, y) \Rightarrow \operatorname{Page}(y$, Course $)$ and 5000 more ...
- No symmetries with evidence on Link or Word
- Where do approx. symmetries come from?

Over-Symmetric Approximations

- OSA makes model more symmetric
- E.g., low-rank Boolean matrix factorization

```
Link ("aaai.org", "google.com")
Link ("google.com", "aaai.org")
Link ("google.com", "gmail.com")
Link ("ibm.com", "aaai.org")
\begin{tabular}{|c|}
\hline Link ("aaai.org", "google.com") \\
\hline Link ("google.com", "aaai.org") \\
\hline - Link ("google.com", "gmail.com") \\
\hline + Link ("aaai.org", "ibm.com") \\
\hline Link ("ibm.com", "aaai.org") \\
\hline
\end{tabular}
```

google.com and ibm.com become symmetric!

Experiments: WebKB

[Van den Broeck, Niepert; AAAI'15]

Outline

- Motivation
- Why high-level representations?
- Why high-level reasoning?
- Intuition: Inference rules
- Liftability theory: Strengths and limitations
- Lifting in practice
- Approximate symmetries
- Lifted learning

Lifted Weight Learning

- Given: A set of first-order logic formulas
w FacultyPage $(x) \wedge$ Linked $(x, y) \Rightarrow$ CoursePage (y)
A set of training databases
- Learn: The associated maximum-likelihood weights

$$
\begin{aligned}
& \frac{\partial}{\partial w_{j}} \log \operatorname{Pr}_{w}(d b)=n_{j}(d b)-\mathbb{E}_{w}\left[n_{j}\right] \\
& \begin{array}{c}
\text { Count in databases } \\
\text { Efficient }
\end{array} \mathbb{E}_{w}\left[n_{F}\right]=\begin{array}{c}
\text { Expected counts } \\
\text { Requires inference }
\end{array} \\
& \operatorname{Pr}\left(F \theta_{1}\right)+\cdots+\operatorname{Pr}\left(F \theta_{m}\right)
\end{aligned}
$$

- Idea: Lift the computation of $\mathbb{E}_{w}\left[n_{j}\right]$

Learning Time

w Smokes $(x) \wedge$ Friends $(x, y) \Rightarrow \operatorname{Smokes}(y)$

Big data

Learns a model over 900,030,000 random variables

Learning Time

w Smokes $(x) \wedge$ Friends $(x, y) \Rightarrow \operatorname{Smokes}(y)$

Big ứcia
 Big models

Learns a model over 900,030,000 random variables

Lifted Structure Learning

- Given: A set of training databases
- Learn: A set of first-order logic formulas The associated maximum likelihood weights
- Idea: Learn liftable models (regularize with symmetry)

	IMDb			UWCSE		
	Baseline	Lifted Weight Learning	Lifted Structure Learning	Baseline	Lifted Weight Learning	Lifted Structure Learning
Fold 1	-548	-378	$-\mathbf{- 3 0 6}$	$-1,860$	$-1,524$	$\mathbf{- 1 , 4 7 7}$
Fold 2	-689	-390	-309	-594	-535	-511
Fold 3	$-1,157$	-851	-733	$-1,462$	$-1,245$	$\mathbf{- 1 , 1 6 7}$
Fold 4	-415	-285	$\mathbf{- 2 2 4}$	$-2,820$	$-2,510$	$\mathbf{- 2 , 4 4 2}$
Fold 5	-413	-267	$\mathbf{- 2 1 6}$	$-2,763$	$-2,357$	$\mathbf{- 2 , 2 2 7}$

Outline

- Motivation
- Why high-level representations?
- Why high-level reasoning?
- Intuition: Inference rules
- Liftability theory: Strengths and limitations
- Lifting in practice
- Lifted learning
- Approximate symmetries

Conclusions

- A radically new reasoning paradigm
- Lifted inference is frontier and integration of $A I, K R, M L$, DBs, theory, etc.
- We need
- relational databases and logic
- probabilistic models and statistical learning
- algorithms that scale
- Many theoretical open problems
- It works in practice

Long-Term Outlook

Probabilistic inference and learning exploit
~ 1988: conditional independence
~ 2000: contextual independence (local structure)

Long-Term Outlook

Probabilistic inference and learning exploit
~ 1988: conditional independence
~ 2000: contextual independence (local structure)
~ 201?: symmetry \& exchangeability

Collaborators

KU Leuven	
Luc De Raedt	Siegfried Nijssen
Wannes Meert	Jessa Bekker
Jesse Davis	Ingo Thon
Hendrik Blockeel	Bernd Gutmann
Daan Fierens	Vaishak Belle
Angelika Kimmig	Joris Renkens
Nima Taghipour	Davide Nitti
Kurt Driessens	Bart Bogaerts
Jan Ramon	Jonas Vlasselaer
Maurice Bruynooghe	Jan Van Haaren

UCLA
Adnan Darwiche
Arthur Choi
Doga Kisa
Karthika Mohan
Judea Pearl
Univ. Washington
Mathias Niepert
Dan Suciu
Eric Gribkoff
Paul Beame

Indiana Univ.

Sriraam Natarajan

UBC

David Poole

Univ. Dortmund
Kristian Kersting

Aalborg Univ.

Manfred Jaeger

Trento Univ.

Andrea Passerini

Prototype Implementation

http://dtai.cs.kuleuven.be/wfomc

Thanks

