Scalable Inference and Learning for High-Level Probabilistic Models

Guy Van den Broeck

KU Leuven

Outline

- Motivation
 - Why high-level representations?
 - Why high-level reasoning?
- Intuition: Inference rules
- Liftability theory: Strengths and limitations
- Lifting in practice
 - Approximate symmetries
 - Lifted learning

Outline

- Motivation
 - Why high-level representations?
 - Why high-level reasoning?
- Intuition: Inference rules
- Liftability theory: Strengths and limitations
- Lifting in practice
 - Approximate symmetries
 - Lifted learning

Medical Records

Name	Cough	Asthma	Smokes
Alice	1	1	0
Bob	0	0	0
Charlie	0	1	0
Dave	1	0	1
Eve	1	0	0

Big data

Augment graphical model with relations between entities (rows).

Markov Logic

Intuition

- + Friends have similar smoking habits
- + Asthma can be hereditary

Augment graphical model with relations between entities (rows).

Markov Logic

Intuition

2.1 Asthma \Rightarrow Cough

3.5 Smokes \Rightarrow Cough

- + Friends have similar smoking habits
- + Asthma can be hereditary

Augment graphical model with relations between entities (rows).

Markov Logic

Intuition

- + Friends have similar smoking habits
- + Asthma can be hereditary

2.1 Asthma(x) \Rightarrow Cough(x)

3.5 Smokes(x) \Rightarrow Cough(x)

Logical variables refer to entities

Augment graphical model with relations between entities (rows).

Markov Logic

Intuition

- + Friends have similar smoking habits
- + Asthma can be hereditary

2.1 Asthma(x) \Rightarrow Cough(x)

3.5 Smokes(x) \Rightarrow Cough(x)

1.9 Smokes(x) ∧ Friends(x,y) \Rightarrow Smokes(y) 1.5 Asthma (x) ∧ Family(x,y) \Rightarrow Asthma (y)

Equivalent Graphical Model

• Statistical relational model (e.g., MLN)

1.9 Smokes(x) \land Friends(x,y) \Rightarrow Smokes(y)

- Ground atom/tuple = random variable in {true,false}
 e.g., Smokes(Alice), Friends(Alice,Bob), etc.
 - Ground formula = factor in propositional factor graph

Probabilistic Databases

Tuple-independent probabilistic databases

	Name	Prob	For	Actor	Director	
	Brando	0.9	kedl	Brando	Coppola	
C Co	Cruise	0.8	Vorl	Coppola	Brando	
	Coppola	0.1	5	Cruise	Coppola	

Query: SQL or First-order logic

SELECT Actor.name FROM Actor, WorkedFor WHERE Actor.name = WorkedFor.actor $Q(x) = \exists y Actor(x) \land WorkedFor(x,y)$

ob

 Learned from the web, large text corpora, ontologies, etc., using statistical machine learning.

Google Knowledge Graph

Google Knowledge Graph

Probabilistic Programming

- Programming language + random variables
- Reason about distribution over executions
 As going from hardware circuits to programming languages
- ProbLog: Probabilistic logic programming/datalog
- Example: Gene/protein interaction networks
 Edges (interactions) have probability

"Does there exist a path connecting two proteins?"

```
path(X,Y) :- edge(X,Y).
path(X,Y) :- edge(X,Z), path(Z,Y).
```

Cannot be expressed in first-order logic Need a full-fledged programming language!

KnowledgeReasoningRepresentation

Representation

Machine Learning

Learning

Representation

Not about: [VdB, et al.; AAAI'10, AAAI'15, ACML'15, DMLG'11], [Gribkoff, Suciu, Vdb; Data Eng.'14], [Gribkoff, VdB, Suciu; UAI'14, BUDA'14], [Kisa, VdB, et al.; KR'14], [Kimmig, VdB, De Raedt; AAAI'11], [Fierens, VdB, et al., PP'12, UAI'11, TPLP'15], [Renkens, Kimmig, VdB, De Raedt; AAAI'14], [Nitti, VdB, et al.; ILP'11], [Renkens, VdB, Nijssen; ILP'11, MLJ'12], [VHaaren, VdB; ILP'11], [Vlasselaer, VdB, et al.; PLP'14], [Choi, VdB, Darwiche; KRR'15], [De Raedt et al.;'15], [Kimmig et al.;'15], [VdB, Mohan, et al.;'15]

KnowledgeReasoningMachineRepresentationLearning

Outline

- Motivation
 - Why high-level representations?
 - Why high-level reasoning?
- Intuition: Inference rules
- Liftability theory: Strengths and limitations
- Lifting in practice
 - Approximate symmetries
 - Lifted learning

- 52 playing cards
- Let us ask some simple questions

Probability that Card1 is Q?

Probability that Card1 is Q? 1/13

Probability that Card1 is Hearts?

Probability that Card1 is Hearts? 1/4

Probability that Card1 is Hearts given that Card1 is red?

Probability that Card1 is Hearts given that Card1 is red?

1/2

Probability that Card52 is Spades given that Card1 is QH?

Probability that Card52 is Spades given that Card1 is QH?

13/51

Automated Reasoning

Let us automate this:

1. Probabilistic graphical model (e.g., factor graph)

 Probabilistic inference algorithm (e.g., variable elimination or junction tree)

Classical Reasoning

- Higher treewidth
- Fewer conditional independencies
- Slower inference

$P(Card52 | Card1) \stackrel{?}{=} P(Card52 | Card1, Card2)$

 $P(Card52 | Card1) \stackrel{?}{=} P(Card52 | Card1, Card2)$

? \min ?

$P(Card52 | Card1) \stackrel{?}{=} P(Card52 | Card1, Card2)$

 $13/51 \stackrel{?}{=} ?$

$P(Card52 | Card1) \stackrel{?}{=} P(Card52 | Card1, Card2)$

 $13/51 \stackrel{?}{=} ?$

 $P(Card52 | Card1) \stackrel{?}{=} P(Card52 | Card1, Card2)$

13/51 ≠ 12/50

P(Card52 | Card1) ≠ P(Card52 | Card1, Card2)

13/51 ≠ 12/50

P(Card52 | Card1) ≠ P(Card52 | Card1, Card2)

13/51 ≠ 12/50

 $P(Card52 | Card1, Card2) \stackrel{2}{=} P(Card52 | Card1, Card2, Card3)$

P(Card52 | Card1) ≠ P(Card52 | Card1, Card2)

13/51 ≠ 12/50

P(Card52 | Card1, Card2) ≠ P(Card52 | Card1, Card2, Card3)

12/50 ≠ 12/49

Automated Reasoning

Let us automate this:

1. Probabilistic graphical model (e.g., factor graph) is fully connected!

Probabilistic inference algorithm

 (e.g., variable elimination or junction tree)
 builds a table with 52⁵² rows

Probability that Card52 is Spades given that Card1 is QH?

Probability that Card52 is Spades given that Card1 is QH?

13/51

Probability that Card52 is Spades given that Card2 is QH?

Probability that Card52 is Spades given that Card2 is QH?

13/51

Probability that Card52 is Spades given that Card3 is QH?

Probability that Card52 is Spades given that Card3 is QH?

13/51

Tractable Probabilistic Inference

Which property makes inference tractable? Traditional belief: Independence What's going on here?

[Niepert, Van den Broeck; AAAI'14], [Van den Broeck; AAAI-KRR'15]

Tractable Probabilistic Inference

Which property makes inference tractable?

Traditional belief: Independence

What's going on here?

- High-level reasoning
- Symmetry
- Exchangeability

⇒ Lifted Inference

[Niepert, Van den Broeck; AAAI'14], [Van den Broeck; AAAI-KRR'15]

Other Examples of Lifted Inference

- Syllogisms & First-order resolution
- Reasoning about populations

We are investigating a rare disease. The disease is more rare in women, presenting only in **one in every two billion women** and **one in every billion men**. Then, assuming there are **3.4 billion men** and **3.6 billion women** in the world, the probability that **more than five people** have the disease is

$$\begin{split} 1 &- \sum_{n=0}^{5} \sum_{f=0}^{n} \binom{3.6 \cdot 10^{9}}{f} \left(1 - 0.5 \cdot 10^{-9} \right)^{3.6 \cdot 10^{9} - f} \left(0.5 \cdot 10^{-9} \right)^{f} \\ &\times \binom{3.4 \cdot 10^{9}}{(n-f)} \left(1 - 10^{-9} \right)^{3.4 \cdot 10^{9} - (n-f)} \left(10^{-9} \right)^{(n-f)} \end{split}$$

[Van den Broeck; AAAI-KRR'15], [Van den Broeck; PhD'13]

Equivalent Graphical Model

• Statistical relational model (e.g., MLN)

3.14 FacultyPage(x) \land Linked(x,y) \Rightarrow CoursePage(y)

- As a probabilistic graphical model:
 - 26 pages; 728 variables; 676 factors
 - 1000 pages; 1,002,000 variables;
 1,000,000 factors
- Highly intractable?
 - Lifted inference in milliseconds!

Outline

- Motivation
 - Why high-level representations?
 - Why high-level reasoning?
- Intuition: Inference rules
- Liftability theory: Strengths and limitations
- Lifting in practice
 - Approximate symmetries
 - Lifted learning

Weighted Model Counting

- Model = solution to a propositional logic formula Δ
- Model counting = #SAT

#SAT = 3

Weighted Model Counting

- Model = solution to a propositional logic formula Δ
- Model counting = #SAT
- Weighted model counting (WMC)
 - Weights for assignments to variables
 - Model weight is product of variable weights w(.)

Weighted Model Counting

- Model = solution to a propositional logic formula Δ
- Model counting = #SAT
- Weighted model counting (WMC)
 - Weights for assignments to variables
 - Model weight is product of variable weights w(.)

Assembly language for probabilistic reasoning

Model = solution to first-order logic formula Δ

Model = solution to first-order logic formula Δ

Model = solution to first-order logic formula Δ

Model = solution to first-order logic formula Δ

#SAT = 9

Model = solution to first-order logic formula Δ

#SAT = 9
Weighted First-Order Model Counting

Model = solution to first-order logic formula Δ

Assembly language for high-level probabilistic reasoning

[VdB et al.; IJCAI'11, PhD'13, KR'14, UAI'14]

- FO-Model Counting: $w(R) = w(\neg R) = 1$
- Apply inference rules backwards (step 4-3-2-1)

- FO-Model Counting: $w(R) = w(\neg R) = 1$
- Apply inference rules backwards (step 4-3-2-1)

4.
$$\Delta = (\text{Stress}(\text{Alice}) \Rightarrow \text{Smokes}(\text{Alice}))$$

Domain = {Alice}

- FO-Model Counting: $w(R) = w(\neg R) = 1$
- Apply inference rules backwards (step 4-3-2-1)

4.
$$\Delta = (\text{Stress}(\text{Alice}) \Rightarrow \text{Smokes}(\text{Alice}))$$

Domain = {Alice}

 \rightarrow 3 models

- FO-Model Counting: $w(R) = w(\neg R) = 1$
- Apply inference rules backwards (step 4-3-2-1)

4.
$$\Delta = (\text{Stress}(\text{Alice}) \Rightarrow \text{Smokes}(\text{Alice}))$$

$$\rightarrow$$
 3 models

3.
$$\Delta = \forall x, (Stress(x) \Rightarrow Smokes(x))$$

Domain = {n people}

- FO-Model Counting: $w(R) = w(\neg R) = 1$
- Apply inference rules backwards (step 4-3-2-1)

4.
$$\Delta = (\text{Stress}(\text{Alice}) \Rightarrow \text{Smokes}(\text{Alice}))$$

$$\rightarrow$$
 3 models

Domain = {Alice}

3. $\Delta = \forall x, (Stress(x) \Rightarrow Smokes(x))$

Domain = {n people}

 \rightarrow 3ⁿ models

3.
$$\Delta = \forall x, (Stress(x) \Rightarrow Smokes(x))$$

 \rightarrow 3ⁿ models

Domain = {n people}

3.
$$\Delta = \forall x, (Stress(x) \Rightarrow Smokes(x))$$

 \rightarrow 3ⁿ models

2. $\Delta = \forall y$, (ParentOf(y) \land Female \Rightarrow MotherOf(y))

Domain = {n people}

D = {n people}

3.
$$\Delta = \forall x, (Stress(x) \Rightarrow Smokes(x))$$

 \rightarrow 3ⁿ models

2. $\Delta = \forall y$, (ParentOf(y) \land Female \Rightarrow MotherOf(y))

D = {n people}

Domain = {n people}

If Female = true? $\Delta = \forall y$, (ParentOf(y) \Rightarrow MotherOf(y)) $\rightarrow 3^n$ models

3.
$$\Delta = \forall x, (Stress(x) \Rightarrow Smokes(x))$$

 \rightarrow 3ⁿ models

2. $\Delta = \forall y$, (ParentOf(y) \land Female \Rightarrow MotherOf(y))

D = {n people}

 $\rightarrow 4^{n}$ models

Domain = {n people}

If Female = true? $\Delta = \forall y$, (ParentOf(y) \Rightarrow MotherOf(y)) $\Rightarrow 3^{n}$ models

If Female = false? Δ = true

3.
$$\Delta = \forall x, (Stress(x) \Rightarrow Smokes(x))$$

 \rightarrow 3ⁿ models

2. $\Delta = \forall y$, (ParentOf(y) \land Female \Rightarrow MotherOf(y))

D = {n people}

If Female = true? $\Delta = \forall y$, (ParentOf(y) \Rightarrow MotherOf(y)) $\Rightarrow 3^{n}$ models If Female = false? $\Delta = true$ $\Rightarrow 4^{n}$ models

 \rightarrow 3ⁿ + 4ⁿ models

Domain = {n people}

3.
$$\Delta = \forall x, (Stress(x) \Rightarrow Smokes(x))$$

 \rightarrow 3ⁿ models

2. $\Delta = \forall y$, (ParentOf(y) \land Female \Rightarrow Mother	rOf(y))
--	---------

 $D = \{n \text{ people}\}$

If Female = true? $\Delta = \forall y$, (ParentOf(y) \Rightarrow MotherOf(y)) $\Rightarrow 3^{n}$ models

If Female = false? Δ = true \rightarrow 4ⁿ models

 \rightarrow 3ⁿ + 4ⁿ models

Domain = {n people}

1. $\Delta = \forall x, y, (ParentOf(x, y) \land Female(x) \Rightarrow MotherOf(x, y))$

D = {n people}

3.
$$\Delta = \forall x, (Stress(x) \Rightarrow Smokes(x))$$

 \rightarrow 3ⁿ models

If Female = false?

2.	$\Delta = \forall y$, (ParentOf(y) \land Female \Rightarrow MotherOf(y))	
----	---	--

D = {n people}

If Female = true? $\Delta = \forall y$, (ParentOf(y) \Rightarrow MotherOf(y)) $\Rightarrow 3^{n}$ models

 \rightarrow 4ⁿ models

 \rightarrow 3ⁿ + 4ⁿ models

Domain = {n people}

1. $\Delta = \forall x, y, (ParentOf(x, y) \land Female(x) \Rightarrow MotherOf(x, y))$

 $\Delta = true$

D = {n people}

 \rightarrow (3ⁿ + 4ⁿ)ⁿ models

 $\Delta = \forall x, y, (Smokes(x) \land Friends(x, y) \Rightarrow Smokes(y))$

Domain = {n people}

 $\Delta = \forall x, y, (Smokes(x) \land Friends(x, y) \Rightarrow Smokes(y))$

Domain = {n people}

• If we know precisely who smokes, and there are k smokers?

Database:

...

 $\Delta = \forall x, y, (Smokes(x) \land Friends(x, y) \Rightarrow Smokes(y))$

Domain = {n people}

• If we know precisely who smokes, and there are k smokers?

Database:

...

 $\Delta = \forall x, y, (Smokes(x) \land Friends(x, y) \Rightarrow Smokes(y))$

Domain = {n people}

• If we know precisely who smokes, and there are k smokers?

Database:

...

 $\Delta = \forall x, y, (Smokes(x) \land Friends(x, y) \Rightarrow Smokes(y))$

Domain = {n people}

• If we know precisely who smokes, and there are k smokers?

Database:

...

 $\Delta = \forall x, y, (Smokes(x) \land Friends(x, y) \Rightarrow Smokes(y))$

Domain = {n people}

• If we know precisely who smokes, and there are k smokers?

Database:

...

 $\Delta = \forall x, y, (Smokes(x) \land Friends(x, y) \Rightarrow Smokes(y))$

Domain = {n people}

• If we know precisely who smokes, and there are k smokers?

Database:

...

 $\Delta = \forall x, y, (Smokes(x) \land Friends(x, y) \Rightarrow Smokes(y))$

Domain = {n people}

• If we know precisely who smokes, and there are k smokers?

Database:

...

 $\Delta = \forall x, y, (Smokes(x) \land Friends(x, y) \Rightarrow Smokes(y))$

Domain = {n people}

• If we know precisely who smokes, and there are k smokers?

Database:

...

 $\Delta = \forall x, y, (Smokes(x) \land Friends(x, y) \Rightarrow Smokes(y))$

Domain = {n people}

• If we know precisely who smokes, and there are k smokers?

Database:

...

 $\Delta = \forall x, y, (Smokes(x) \land Friends(x, y) \Rightarrow Smokes(y))$

Domain = {n people}

• If we know precisely who smokes, and there are k smokers?

Database:

$$ightarrow 2^{n^2 - k(n-k)}$$
 models

 $\Delta = \forall x, y, (Smokes(x) \land Friends(x, y) \Rightarrow Smokes(y))$

Domain = {n people}

• If we know precisely who smokes, and there are k smokers?

Database:

Smokes(Alice) = 1 Smokes(Bob) = 0 Smokes(Charlie) = 0 Smokes(Dave) = 1 Smokes(Eve) = 0 ... $\rightarrow 2^{n^2 - k(n-k)}$ models

• If we know that there are *k* smokers?

 $\Delta = \forall x, y, (Smokes(x) \land Friends(x, y) \Rightarrow Smokes(y))$

Domain = {n people}

If we know precisely who smokes, and there are k smokers? •

Smokes(Alice) = 1Smokes(Bob) = 0Smokes(Charlie) = 0 Smokes(Dave) = 1 Smokes(Eve) = 0... $\rightarrow 2^{n^2 - k(n-k)}$ models

 $\Delta = \forall x, y, (Smokes(x) \land Friends(x, y) \Rightarrow Smokes(y))$

Domain = {n people}

If we know precisely who smokes, and there are k smokers? •

Smokes(Alice) = 1Smokes(Bob) = 0Smokes(Charlie) = 0 Smokes(Dave) = 1 Smokes(Eve) = 0... $\rightarrow 2^{n^2 - k(n-k)}$ models

models

In total... •

 $\Delta = \forall x, y, (Smokes(x) \land Friends(x, y) \Rightarrow Smokes(y))$

Domain = {n people}

• If we know precisely who smokes, and there are k smokers?

• If we know that there are *k* smokers?

Smokes Friends Smokes

 $\rightarrow {\binom{n}{k}} 2^{n^2 - k(n-k)}$ models

$$\sum_{k=0}^n \binom{n}{k} 2^{n^2 - k(n-k)} \quad \text{models}$$

• In total...

Markov Logic

3.14 Smokes(x) \land Friends(x,y) \Rightarrow Smokes(y)

First-Order Knowledge CompilationMarkov Logic3.14 $Smokes(x) \land Friends(x,y) \Rightarrow Smokes(y)$ Weight FunctionFOL Sentencew(Smokes)=1
w(Friends)=1
w(-Friends)=1 $\forall x, y, F(x, y) \Leftrightarrow [Smokes(x) \land Friends(x, y) \Rightarrow Smokes(y)]$

w(F)=3.14

w(¬F)=1

Let us automate this:

– Relational model

 $\begin{array}{l} \forall p, \ \exists c, \ Card(p,c) \\ \forall c, \ \exists p, \ Card(p,c) \\ \forall p, \ \forall c, \ \forall c', \ Card(p,c) \land \ Card(p,c') \Rightarrow c = c' \end{array}$

Lifted probabilistic inference algorithm

Playing Cards Revisited

Let us automate this:

 $\begin{array}{l} \forall p, \exists c, Card(p,c) \\ \forall c, \exists p, Card(p,c) \\ \forall p, \forall c, \forall c', Card(p,c) \land Card(p,c') \Rightarrow c = c' \end{array}$

[Van den Broeck.; AAAI-KR'15]

#SAT =
$$\sum_{k=0}^{n} {n \choose k} \sum_{l=0}^{n} {n \choose l} (l+1)^{k} (-1)^{2n-k-l} = n!$$

[Van den Broeck.; AAAI-KR'15]

$$\oint \#SAT = \sum_{k=0}^{n} {n \choose k} \sum_{l=0}^{n} {n \choose l} (l+1)^{k} (-1)^{2n-k-l} = n!$$

Computed in time polynomial in n

[Van den Broeck.; AAAI-KR'15]

Outline

- Motivation
 - Why high-level representations?
 - Why high-level reasoning?
- Intuition: Inference rules
- Liftability theory: Strengths and limitations
- Lifting in practice
 - Approximate symmetries
 - Lifted learning

Theory of Inference

Goal:

Understand complexity of probabilistic reasoning

- Low-level graph-based concepts (treewidth)
 ⇒ inadequate to describe high-level reasoning
- Need to develop "liftability theory"
- Deep connections to
 - database theory, finite model theory, 0-1 laws,
 - counting complexity

[Van den Broeck.; NIPS'11], [Van den Broeck, Jaeger.; StarAl'12]

• Informal [Poole'03, etc.]

Exploit symmetries, Reason at first-order level, Reason about groups of objects, Scalable inference, High-level probabilistic reasoning, etc.

• A formal definition: **Domain-lifted inference**

Inference runs in time **polynomial** in the number of entities in the **domain**.

• Informal [Poole'03, etc.]

Exploit symmetries, Reason at first-order level, Reason about groups of objects, Scalable inference, High-level probabilistic reasoning, etc.

• A formal definition: **Domain-lifted inference**

Inference runs in time **polynomial** in the number of entities in the **domain**.

- Polynomial in #rows, #entities, #people, #webpages, #cards
- ~ data complexity in databases

• Informal [Poole'03, etc.]

Exploit symmetries, Reason at first-order level, Reason about groups of objects, Scalable inference, High-level probabilistic reasoning, etc.

• A formal definition: **Domain-lifted inference**

Inference runs in time **polynomial** in the number of entities in the **domain**.

- Polynomial in #rows, #entities, #people, #webpages, #cards
- ~ data complexity in databases

• Informal [Poole'03, etc.]

Exploit symmetries, Reason at first-order level, Reason about groups of objects, Scalable inference, High-level probabilistic reasoning, etc.

• A formal definition: **Domain-lifted inference**

Inference runs in time **polynomial** in the number of entities in the **domain**.

- Polynomial in #rows, #entities, #people, #webpages, #cards
- ~ data complexity in databases

Cough	Asthma	Smokes
1	1	0
0	0	0
0	1	0
	Cough 1 0 0	Cough Asthma 1 1 0 0 0 1

, Big data

Evaluation in time polynomial in domain size

Evaluation in time polynomial in domain size

Domain-lifted!

Evaluation in time polynomial in domain size

Domain-lifted!

What Can Be Lifted?

Theorem: WFOMC for FO² is liftable

What Can Be Lifted?

Theorem: WFOMC for FO² is liftable

Corollary: Markov logic with two logical variables per formula is liftable.

What Can Be Lifted?

Theorem: WFOMC for FO² is liftable

Corollary: Markov logic with two logical variables per formula is liftable.

Corollary: Tight probabilistic logic programs with two logical variables are liftable.

. . .

"Smokers are more likely to be friends with other smokers." "Colleagues of the same age are more likely to be friends." "People are either family or friends, but never both." "If X is family of Y, then Y is also family of X." "If X is a parent of Y, then Y cannot be a parent of X."

Can Everything Be Lifted?

[Beame, Van den Broeck, Gribkoff, Suciu; PODS'15]

Can Everything Be Lifted?

Theorem: There exists an FO³ sentence Θ_1 for which first-order model counting is #P₁-complete in the domain size.

[Beame, Van den Broeck, Gribkoff, Suciu; PODS'15]

Can Everything Be Lifted?

Theorem: There exists an FO³ sentence Θ_1 for which first-order model counting is $\#P_1$ -complete in the domain size.

A counting Turing machine is a nondeterministic TM that prints the number of its accepting computations.

The class #P₁ consists of all functions computed by a polynomial-time counting TM with unary input alphabet.

<u>Proof</u>: Encode a universal #P₁-TM in FO³

[Beame, Van den Broeck, Gribkoff, Suciu; PODS'15]

[VdB; NIPS'11], [VdB et al.; KR'14], [Gribkoff, VdB, Suciu; UAI'15], [Beame, VdB, Gribkoff, Suciu; PODS'15], etc.

[VdB; NIPS'11], [VdB et al.; KR'14], [Gribkoff, VdB, Suciu; UAI'15], [Beame, VdB, Gribkoff, Suciu; PODS'15], etc.

Statistical Properties

P(|

Alice

1

1

X P(Bob 0 0 0)

x P(Charlie

0

0

1

0

1. Independence

	Name	Cough	Asthma	Smokes	
	Alice	1	1	0	١.
Ρ(Bob	0	0	0)
	Charlie	0	1	0	

2. Partial Exchangeability

Р(Name	Cough	Asthma	Smokes)= P(Name	Cough	Asthma	Smokes
	Alice	1	1	0		Charlie	1	1	0
	Bob	0	0	0		Alice	0	0	0
	Charlie	0	1	0		Bob	0	1	0

=

3. Independent and identically distributed (i.i.d.)= Independence + Partial Exchangeability

Statistical Properties for Tractability

- Tractable classes independent of representation
- Traditionally:
 - Tractable learning from i.i.d. data
 - Tractable inference when cond. independence
- New understanding:
 - Tractable learning from exchangeable data
 - Tractable inference when
 - Conditional independence
 - Conditional exchangeability
 - A combination

Outline

- Motivation
 - Why high-level representations?
 - Why high-level reasoning?
- Intuition: Inference rules
- Liftability theory: Strengths and limitations
- Lifting in practice
 - Approximate symmetries
 - Lifted learning

Approximate Symmetries

- What if not liftable? Asymmetric graph?
- Exploit approximate symmetries:
 - Exact symmetry g: Pr(x) = Pr(x^g)

E.g. Ising model without external field

- Approximate symmetry g: $Pr(\mathbf{x}) \approx Pr(\mathbf{x}^g)$
 - E.g. Ising model with external field

[Van den Broeck, Darwiche; NIPS'13], [Van den Broeck, Niepert; AAAI'15]

Example: Statistical Relational Model

- WebKB: Classify pages given links and words
- Very large Markov logic network

1.3 $Page(x, Faculty) \Rightarrow HasWord(x, Hours)$

1.5 $Page(x, Faculty) \land Link(x, y) \Rightarrow Page(y, Course)$

and 5000 more ...

- No symmetries with evidence on Link or Word
- Where do approx. symmetries come from?

Over-Symmetric Approximations

- OSA makes model more symmetric
- E.g., low-rank Boolean matrix factorization

Link ("aaai.org", "google.com") Link ("google.com", "aaai.org") Link ("google.com", "gmail.com") Link ("ibm.com", "aaai.org") Link ("aaai.org", "google.com") Link ("google.com", "aaai.org") - Link ("google.com", "gmail.com") + Link ("aaai.org", "ibm.com") Link ("ibm.com", "aaai.org")

google.com and ibm.com become symmetric!

[Van den Broeck, Darwiche; NIPS'13]

Experiments: WebKB

[Van den Broeck, Niepert; AAAI'15]

Outline

- Motivation
 - Why high-level representations?
 - Why high-level reasoning?
- Intuition: Inference rules
- Liftability theory: Strengths and limitations
- Lifting in practice
 - Approximate symmetries
 - Lifted learning

Lifted Weight Learning

• Given: A set of first-order logic formulas

w FacultyPage(x) \land Linked(x,y) \Rightarrow CoursePage(y)

A set of training databases

• Learn: The associated maximum-likelihood weights

• Idea: Lift the computation of $\mathbb{E}_w[n_j]$

[Van den Broeck et al.; StarAl'13]

Learning Time

w Smokes(x) \land Friends(x,y) \Rightarrow Smokes(y)

[Van den Broeck et al.; StarAl'13]

Learning Time

w Smokes(x) \land Friends(x,y) \Rightarrow Smokes(y)

[Van den Broeck et al.; StarAl'13]
Lifted Structure Learning

- Given: A set of training databases
- Learn: A set of first-order logic formulas The associated maximum likelihood weights
- Idea: Learn liftable models (regularize with symmetry)

	IMDb			UWCSE		
	Baseline	Lifted Weight	Lifted Structure	Baseline	Lifted Weight	Lifted Structure
Eold 1	5/10	270	206	1 960	1 52/	1 /77
	-540	-576	-300	-1,000	-1,524	-1,4//
Fold 2	-689	-390	-309	-594	-535	-511
Fold 3	-1,157	-851	-733	-1,462	-1,245	-1,167
Fold 4	-415	-285	-224	-2,820	-2,510	-2,442
Fold 5	-413	-267	-216	-2,763	-2,357	-2,227

[VHaaren, Van den Broeck, et al.;'15]

Outline

- Motivation
 - Why high-level representations?
 - Why high-level reasoning?
- Intuition: Inference rules
- Liftability theory: Strengths and limitations
- Lifting in practice
 - Lifted learning
 - Approximate symmetries

Conclusions

- A radically new reasoning paradigm
- Lifted inference is **frontier** and **integration** of AI, KR, ML, DBs, theory, etc.
- We need
 - relational databases and logic
 - probabilistic models and statistical learning
 - algorithms that scale
- Many theoretical open problems
- It works in practice

Long-Term Outlook

Probabilistic inference and learning exploit

- ~ 1988: conditional independence
- ~ 2000: contextual independence (local structure)

Long-Term Outlook

Probabilistic inference and learning exploit

- ~ 1988: conditional independence
- ~ 2000: contextual independence (local structure)
- ~ 201?: symmetry & exchangeability

Collaborators

KU Leuven			
Luc De Raedt	Siegfried Nijssen		
Wannes Meert	Jessa Bekker		
Jesse Davis	Ingo Thon		
Hendrik Blockeel	Bernd Gutmann		
Daan Fierens	Vaishak Belle		
Angelika Kimmig	Joris Renkens		
Nima Taghipour	Davide Nitti		
Kurt Driessens	Bart Bogaerts		
Jan Ramon	Jonas Vlasselaer		
Maurice Bruynooghe	Jan Van Haaren		

UCLA

Adnan Darwiche

Arthur Choi

Doga Kisa

Karthika Mohan

Judea Pearl

Univ. Washington Mathias Niepert Dan Suciu Eric Gribkoff Paul Beame Indiana Univ.

Sriraam Natarajan

UBC

David Poole

Univ. Dortmund

Kristian Kersting

Aalborg Univ.

Manfred Jaeger

Trento Univ.

Andrea Passerini

Prototype Implementation

http://dtai.cs.kuleuven.be/wfomc

Thanks