
C H A P T E R E L E V E N

Reflections, Elaborations, and 

Discussions with Readers

As X-rays are to the surgeon,
graphs are for causation.

The author

In this chapter, I reflect back on the material covered in Chapters 1 to 10, discuss issues
that require further elaboration, introduce new results obtained in the past eight years,
and answer questions of general interest posed to me by readers of the first edition.
These range from clarification of specific passages in the text, to conceptual and philo-
sophical issues concerning the controversial status of causation, how it is taught in class-
rooms and how it is treated in textbooks and research articles. 

The discussions follow roughly the order in which these issues are presented in the
book, with section numbers indicating the corresponding chapters.

11.1 CAUSAL, STATISTICAL, AND GRAPHICAL VOCABULARY

11.1.1 Is the Causal–Statistical Dichotomy Necessary? 

Question to Author (from many readers)

Chapter 1 (Section 1.5) insists on a sharp distinction between statistical and causal con-
cepts; the former are definable in terms of a joint distribution function (of observed vari-
ables), the latter are not. Considering that many concepts which the book classifies as
“causal” (e.g., “randomization,” “confounding,” and “instrumental variables”) are com-
monly discussed in the statistical literature, is this distinction crisp? Is it necessary? Is it
useful?

Author Answer

The distinction is crisp,1 necessary, and useful, and, as I tell audiences in all my lectures:
“If you get nothing out of this lecture except the importance of keeping statistical and
causal concepts apart, I would consider it a success.” Here, I would dare go even further:
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1 The basic distinction has been given a variety of other nomenclatures, e.g., descriptive vs. etio-
logical, associational vs. causal, empirical vs. theoretical, observational vs. experimental, and
many others. I am not satisfied with any of these surrogates, partly because they were not as crisply
defined, partly because their boundaries got blurred through the years, and partly because the con-
catenation “nonstatistical” triggers openness to new perspectives.



“If I am remembered for no other contribution except for insisting on the causal–statistical
distinction, I would consider my scientific work worthwhile.”

The distinction is embarrassingly crisp and simple, because it is based on the funda-
mental distinction between statics and kinematics. Standard statistical analysis, typified
by regression, estimation, and hypothesis-testing techniques, aims to assess parameters
of a static distribution from samples drawn of that distribution. With the help of such
parameters, one can infer associations among variables, estimate the likelihood of past
and future events, as well as update the likelihood of events in light of new evidence or
new measurements. These tasks are managed well by standard statistical analysis so
long as experimental conditions remain the same. Causal analysis goes one step further;
its aim is to infer not only the likelihood of events under static conditions, but also the
dynamics of events under changing conditions, for example, changes induced by treat-
ments or external interventions, or by new policies or new experimental designs.

This distinction implies that causal and statistical concepts do not mix. There is noth-
ing in the joint distribution of symptoms and diseases to tell us that curing the former
would or would not cure the latter. More generally, there is nothing in a distribution
function to tell us how that distribution would differ if external conditions were to
change – say, from observational to experimental setup – because the laws of probability
theory do not dictate how one property of a distribution ought to change when another
property is modified. This information must be provided by extra assumptions that iden-
tify what in the distribution remains invariant when the specified modification takes
place. The sum total of these extra assumptions is what we call “causal knowledge.”

These considerations imply that the slogan “correlation does not imply causation”
can be translated into a useful principle: behind every causal conclusion there must lie
some causal assumption that is not discernible from the distribution function.

Take the concept of randomization – why is it not statistical? Assume we are given
a bivariate density function f(x,y), and we are told that one of the variables is random-
ized; can we tell which one it is by just examining f(x, y)? Of course not; therefore, fol-
lowing our definition, randomization is a causal, not a statistical concept. Indeed, every
randomized experiment is based on external intervention; that is, subjects are “forced”
to take one treatment or another in accordance with the experimental protocol, regard-
less of their natural inclination. The presence of intervention immediately qualifies the
experimental setup, as well as all relationships inferred from that setup, as causal.

Note, however, that the purpose of the causal–statistical demarcation line (as stated in
Section 1.4, p. 40) is not to exclude causal concepts from the province of statistical analy-
sis but, rather, to encourage investigators to treat causal concepts distinctly, with the proper
set of mathematical and inferential tools. Indeed, statisticians were the first to conceive of
randomized experiments, and have used them successfully since the time of Fisher (1926).
However, both the assumptions and conclusions in those studies were kept implicit, in the
mind of ingenious investigators; they did not make their way into the mathematics. For
example, one would be extremely hard pressed to find a statistics textbook, even at the
graduate level, containing a mathematical proof that randomization indeed produces unbi-
ased estimates of the quantities we wish estimated – i.e., efficacy of treatments or policies.

As a related example, very few statistics teachers today can write down a formula stat-
ing that “randomized experiments prove drug x1 to be twice as effective as drug x2.”
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Of course, they can write: P( y ƒ x1)/P(y ƒ x2) � 2 (y being the desirable outcome), but then
they must keep in mind that this ratio applies to a specific randomized condition, and
should not be confused with likelihood ratios prevailing in observational studies.
Scientific progress requires that such distinctions be expressed mathematically.2

The most important contribution of causal analysis in the past two decades has been
the emergence of mathematical languages in which not merely the data, but the experi-
mental design itself can be given mathematical description. Such description is essential,
in fact, if one wishes the results of one experiment to serve as premises in another, or to
predict outcomes of one design from data obtained under another, or merely to decide if we
are in possession of sufficient knowledge to render such cross-design predictions possible.

Is the Distinction Necessary?

Science thrives on distinctions, especially those that do not readily mix. The distinction
between rational and irrational numbers, for example, is extremely important in number the-
ory, for it spares us futile efforts to define the latter through some arithmetic operations on
the former. The same can be said about the distinctions between prime, composite, alge-
braic, and transcendental numbers. Logicians, among them George Boole (1815–1864)
and Augustus De Morgan (1806–1871), wasted half a century trying to prove syllogisms of
first-order logic (e.g., all men are mortal) using the machinery of propositional logic; the
distinction between the two was made crisp only at the end of the nineteenth century.

A similar situation occurred in the history of causality. Philosophers have struggled for
half a century trying to reduce causality to probabilities (Section 7.5) and have gotten
nowhere, except for traps such as “evidential decision theory” (Section 4.1).
Epidemiologists have struggled for half a century to define “confounding” in the language
of associations (Chapter 6, pp. 183, 194). Some are still struggling (see Section 11.6.4).
This effort could have been avoided by appealing to first principles: If confounding were
a statistical concept, we would have been able to identify confounders from features of
nonexperimental data, adjust for those confounders, and obtain unbiased estimates of
causal effects. This would have violated our golden rule: behind any causal conclusion
there must be some causal assumption, untested in observational studies. That epidemiol-
ogists did not recognize in advance the futility of such attempts is a puzzle that can have
only two explanations: they either did not take seriously the causal–statistical divide, or
were afraid to classify “confounding” – a simple, intuitive concept – as “nonstatistical.”

Divorcing simple concepts from the province of statistics - the most powerful formal
language known to empirical scientists – can be traumatic indeed. Social scientists have
been laboring for half a century to evaluate public policies using statistical analysis,
anchored in regression techniques, and only recently have confessed, with great disap-
pointment, what should have been recognized as obvious in the 1960’s: “Regression analy-
ses typically do nothing more than produce from a data set a collection of conditional
means and conditional variances” (Berk 2004, p. 237). Economists have gone through a
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2 The potential-outcome approach of Neyman (1923) and Rubin (1974) does offer a notational
distinction, by writing for the former, and P(y ƒ x1)/P(y ƒ x2) � 2 for the
latter. However, the opaqueness of this notation and the incomplete state of its semantics (see Sections
3.6.3 and 11.3.2) have prevented it from penetrating classrooms, textbooks, and laboratories.

P(Yx1
� y)/P(Yx2

� y) � 2



similar trauma with the concept of exogeneity (Section 5.4.3). Even those who recognized
that a strand of exogeneity (i.e., superexogeneity) is of a causal variety came back to define
it in terms of distributions (Maddala 1992; Hendry 1995) – crossing the demarcation line
was irresistible. And we understand why; defining concepts in term of prior and condi-
tional distributions – the ultimate oracles of empirical knowledge – was considered a mark
of scientific prudence. We know better now.

Is the Distinction Useful?

I am fairly confident that today, enlightened by failed experiments in philosophy, epi-
demiology, and economics, no reputable discipline would waste half a century chasing
after a distribution-based definition of another causal concept, however tempted by pru-
dence or intuition. Today, the usefulness of the demarcation line lies primarily in help-
ing investigators trace the assumptions that are needed to support various types of
scientific claims. Since every claim invoking causal concepts must rely on some judg-
mental premises that invoke causal vocabulary, and since causal vocabulary can only be
formulated in causally distinct notation, the demarcation line provides notational tools
for identifying the judgmental assumptions to which every causal claim is vulnerable.

Statistical assumptions, even untested, are testable in principle, given a sufficiently
large sample and sufficiently fine measurements. Causal assumptions, in contrast, cannot
be verified even in principle, unless one resorts to experimental control. This difference
stands out in Bayesian analysis. Though the priors that Bayesians commonly assign to
statistical parameters are untested quantities, the sensitivity to these priors tends to dimin-
ish with increasing sample size. In contrast, sensitivity to prior causal assumptions – say,
that treatment does not change gender – remains high regardless of sample size.

This makes it doubly important that the notation we use for expressing causal
assumptions be meaningful and unambiguous so that scientists can clearly judge the
plausibility or inevitability of the assumptions articulated.

How Does One Recognize Causal Expressions in the Statistical Literature?

Those versed in the potential-outcome notation (Neyman 1923; Rubin 1974; Holland
1988) can recognize such expressions through the subscripts that are attached to coun-
terfactual events and variables, e.g., Yx (u) or Zxy. (Some authors use parenthetical expres-
sions, e.g., Y(x, u) or Z(x, y).) (See Section 3.6.3 for semantics.)

Alternatively, this book also uses expressions of the form P(Y � y ƒ do(X � x)) or 
P(Yx � y) to denote the probability (or frequency) that event (Y � y) would occur if
treatment condition X � x were enforced uniformly over the population. (Clearly,
P(Y � y ƒ do(X � x)) is equivalent to P(Yx � y).) Still a third formal notation is provided
by graphical models, where the arrows represent either causal influences, as in
Definition 1.3.1, or functional (i.e., counterfactual) relationships, as in Figure 1.6(c).

These notational devices are extremely useful for detecting and tracing the causal
premises with which every causal inference study must commence. Any causal premise
that is cast in standard probability expressions, void of graphs, counterfactual subscripts,
or do(*) operators, can safely be discarded as inadequate. Consequently, any article describ-
ing an empirical investigation that does not commence with expressions involving graphs,
counterfactual subscripts, or do(*) can safely be proclaimed as inadequately written.
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While this harsh verdict may condemn valuable articles in the empirical literature to

the province of inadequacy, it can save investigators endless hours of confusion and

argumentation in deciding whether causal claims from one study are relevant to another.

More importantly, the verdict should encourage investigators to visibly explicate causal

premises, so that they can be communicated unambiguously to other investigators and

invite professional scrutiny, deliberation, and refinement.

11.1.2 d-Separation without Tears (Chapter 1, pp. 16–18)

At the request of many who have had difficulties switching from algebraic to graphical

thinking, I am including a gentle introduction to d-separation, supplementing the formal

definition given in Chapter 1, pp. 16–18. (See also Hayduk et al. 2003.)

Introduction

d-separation is a criterion for deciding, from a given causal graph, whether a set X of

variables is independent of another set Y, given a third set Z. The idea is to associate

“dependence” with “connectedness” (i.e., the existence of a connecting path) and “inde-

pendence” with “unconnectedness” or “separation.” The only twist on this simple idea

is to define what we mean by “connecting path,” given that we are dealing with a sys-

tem of directed arrows in which some vertices (those residing in Z) correspond to meas-

ured variables, whose values are known precisely. To account for the orientations of the

arrows we use the terms “d-separated” and “d-connected” (d connotes “directional”). We

start by considering separation between two singleton variables, x and y; the extension

to sets of variables is straightforward (i.e., two sets are separated if and only if each ele-

ment in one set is separated from every element in the other).

Unconditional Separation

Rule 1: x and y are d-connected if there is an unblocked path between them.

By a “path” we mean any consecutive sequence of edges, disregarding their directional-

ities. By “unblocked path” we mean a path that can be traced without traversing a pair

of arrows that collide “head-to-head.” In other words, arrows that meet head-to-head do

not constitute a connection for the purpose of passing information; such a meeting will

be called a “collider.”

Example 11.1.1 The graph in Figure 11.1 contains one collider, at t. The path 

x – r – s – t is unblocked, hence x and t are d-connected. So also is the path t – u – v –

y, hence t and y are d-connected, as well as the pairs u and y, t and v, t and u, x and s,

etc. However, x and y are not d-connected; there is no way of tracing a path from x
to y without traversing the collider at t. Therefore, we conclude that x and y are 

d-separated, as well as x and v, s and u, r and u, etc. (In linear models, the ramifica-

tion is that the covariance terms corresponding to these pairs of variables will be

zero, for every choice of model parameters.)
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Figure 11.1 A graph containing a 

collider at t.
x r s t u v y



Blocking by Conditioning

Motivation: When we measure a set Z of variables, and take their values as given,
the conditional distribution of the remaining variables changes character; some
dependent variables become independent, and some independent variables
become dependent. To represent this dynamic in the graph, we need the notion of
“conditional d-connectedness” or, more concretely, “d-connectedness, conditioned
on a set Z of measurements.”

Rule 2: x and y are d-connected, conditioned on a set Z of nodes, if there is a col-
lider-free path between x and y that traverses no member of Z. If no such path
exists, we say that x and y are d-separated by Z. We also say then that every path
between x and y is “blocked” by Z.

Example 11.1.2 Let Z be the set 5r, y6 (marked by circles in Figure 11.2). Rule 2
tells us that x and y are d-separated by Z, and so also are x and s, u and y, s and u, etc.
The path x – r – s is blocked by Z, and so also are the paths u – y – y and s – t – u.
The only pairs of unmeasured nodes that remain d-connected in this example, con-
ditioned on Z, are s and t and u and t. Note that, although t is not in Z, the path s – t – u
is nevertheless blocked by Z, since t is a collider, and is blocked by Rule 1.

Conditioning on Colliders

Motivation: When we measure a common effect of two independent causes, the causes
become dependent, because finding the truth of one makes the other less likely (or
“explained away,” p. 17), and refuting one implies the truth of the other. This phe-
nomenon (known as Berkson paradox, or “explaining away”) requires a slightly
special treatment when we condition on colliders (representing common effects)
or on any descendant of a collider (representing evidence for a common effect).

Rule 3: If a collider is a member of the conditioning set Z, or has a descendant in Z,
then it no longer blocks any path that traces this collider. 

Example 11.1.3 Let Z be the set 5r, p6 (again, marked with circles in Figure 11.3).
Rule 3 tells us that s and y are d-connected by Z, because the collider at t has a
descendant (p) in Z, which unblocks the path s – t – u – y – y. However, x and u are
still d-separated by Z, because although the linkage at t is unblocked, the one at r is
blocked by Rule 2 (since r is in Z).

This completes the definition of d-separation, and readers are invited to try it on
some more intricate graphs, such as those shown in Chapter 1, Figure 1.3.
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r s t u v yx Figure 11.2 The set Z � 5r, y6 d-separates x
from t and t from y.

r qp

x r s t u v y
Figure 11.3 s and y are d-connected given p, a
descendant of the collider t.



Typical application: Consider Example 11.1.3. Suppose we form the regression of y
on p, r, and x,

,

and wish to predict which coefficient in this regression is zero. From the discus-

sion above we can conclude immediately that c3 is zero, because y and x are d-

separated given p and r, hence y is independent of x given p and r, or, x cannot

offer any information about y once we know p and r. (Formally, the partial corre-

lation between y and x, conditioned on p and r, must vanish.) c1 and c2, on the other

hand, will in general not be zero, as can be seen from the graph: Z � 5r, x6 does not 

d-separate y from p, and Z � 5p, x6 does not d-separate y from r.

Remark on correlated errors: Correlated exogenous variables (or error terms) need no

special treatment. These are represented by bi-directed arcs (double-arrowed), and

their arrowheads are treated as any other arrowheads for the purpose of path tracing.

For example, if we add to the graph in Figure 11.3 a bi-directed arc between x and t,
then y and x will no longer be d-separated (by Z � 5r, p6), because the path x – t – 
u – y – y is d-connected – the collider at t is unblocked by virtue of having a descen-

dant, p, in Z.

11.2 REVERSING STATISTICAL TIME (CHAPTER 2, pp. 58–59)

Question to Author:

Keith Markus requested a general method of achieving time reversal by changing coor-

dinate systems or, in the specific example of equation (2.3), a general method of solving

for the parameters a, b, c, and d to make the statistical time run opposite to the physical

time (p. 59).

Author’s Reply:

Consider any two time-dependent variables X(t) and Y(t). These may represent the posi-

tion of two particles in one dimension, temperature and pressure, sales and advertising

budget, and so on.

Assume that temporal variation of X(t) and Y(t) is governed by the equations:

,
(11.1)

with and being mutually and serially uncorrelated noise terms.

In this coordinate system, we find that the two components of the current state, X(t)
and Y(t), are uncorrelated conditioned on the components of the previous state, X(t � 1)

and Y(t � 1). Simultaneously, the components of the current state, X(t) and Y(t), are cor-

related conditioned on the components of the future state, X(t � 1) and Y(t � 1). Thus,

according to Definition 2.8.1 (p. 58), the statistical time coincides with the physical time.

Now let us rotate the coordinates using the transformation

.
(11.2)

Y�(t) � cX(t) � dY(t)

X�(t) � aX(t) � bY(t)

h(t)P(t)

Y(t) � gX(t � 1) � dY(t � 1) � h(t)

X(t) � �X(t � 1) � �Y(t � 1) � P(t)

y � c1p � c2r � c3x � P
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The governing physical equations remain the same as equation (11.1), but, written in the
new coordinate system, they read

.
(11.3)

The primed coefficients can be obtained from the original (unprimed) coefficients by
matrix multiplication. Likewise, we have:

.

Since and are uncorrelated, and will be correlated, and we no
longer have the condition that the components of the current state, and are
uncorrelated conditioned on the components of the previous state, and

Thus, the statistical time (if there is one) no longer runs along the physical
time.

Now we need to show that we can choose the parameters a, b, c, and d in such a way
as to have the statistical time run opposite to the physical time, namely, to make the com-
ponents of the current state, and uncorrelated conditioned on the components
of the future state, and 

By inverting equation (11.3) we can express and in terms of lin-
ear combinations of , and Clearly, since e(t) and h(t) are uncorre-
lated, we can choose a, b, c, d in such a way that the noise term appearing in the

equation is uncorrelated with the one appearing in the equation.
(This is better demonstrated in matrix calculus.)

Thus, the general principle for selecting the alternative coordinate system is to
diagonalize the noise correlation matrix in the reverse direction.

I hope that readers will undertake the challenge of testing the Temporal Bias Con-
jecture (p. 59):

“In most natural phenomenon, the physical time coincides with at least one
statistical time.”

Alex Balke (personal communication) tried to test it with economic time series, but the
results were not too conclusive, for lack of adequate data. I still believe the conjecture
to be true, and I hope readers will have better luck.

11.3 ESTIMATING CAUSAL EFFECTS

11.3.1 The Intuition behind the Back-Door Criterion (Chapter 3, p. 79)

Question to Author:

In the definition of the back-door condition (p. 79, Definition 3.3.1), the exclusion of X’s
descendants (Condition (i)) seems to be introduced as an after fact, just because we get
into trouble if we don’t. Why can’t we get it from first principles; first define sufficiency
of Z in terms of the goal of removing bias, and then show that, to achieve this goal, we
neither want nor need descendants of X in Z.

Y�(t � 1)X�(t � 1)

h�(t).X�(t), Y�(t), P�(t)
Y�(t � 1)X�(t � 1)

Y�(t � 1).X�(t � 1)
Y�(t),X�(t)

Y�(t � 1).
X�(t � 1)

Y�(t),X�(t)
h�(t)P�(t)h(t)P(t)

h�(t) � cP(t) � dh(t)

P�(t) � aP(t) � bh(t)

Y�(t) � g�X�i(t � 1) � d�Y�(t � 1) � h�(t)

X�(t) � ��X�(t � 1) � ��Y(t � 1) � P�(t)
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Author’s Answer:

The exclusion of descendants from the back-door criterion is indeed based on first prin-
ciples, in terms of the goal of removing bias. The principles are as follows: We wish to
measure a certain quantity (causal effect) and, instead, we measure a dependency P(y ƒ x)
that results from all the paths in the diagram; some are spurious (the back-door paths),
and some are genuinely causal (the directed paths from X to Y). Thus, to remove bias,
we need to modify the measured dependency and make it equal to the desired quantity.
To do this systematically, we condition on a set Z of variables while ensuring that:

1. We block all spurious paths from X to Y,

2. We leave all directed paths unperturbed,

3. We create no new spurious paths.

Principles 1 and 2 are accomplished by blocking all back-door paths and only those
paths, as articulated in condition (ii). Principle 3 requires that we do not condition on
descendants of X, even those that do not block directed paths, because such descendants
may create new spurious paths between X and Y. To see why, consider the graph

.

The intermediate variables, S1, S2,…, (as well as Y) are affected by noise factors e0, el,
e2,. . . which are not shown explicitly in the diagram. However, under magnification, the
chain unfolds into the graph in Figure 11.4.

Now imagine that we condition on a descendant Z of S1 as shown in Figure 11.5.
Since S1 is a virtual collider, this creates dependency between X and e1 which acts like a
back-door path

.

By principle 3, such paths should not be created, for they introduce spurious dependence
between X and Y.

Note that a descendant Z of X that is not also a descendant of some Si (or some ei,
i > 0) escapes this exclusion; it can safely be conditioned on without introducing bias
(though it may decrease the efficiency of the associated estimator of the causal effect of

X 4 e1 S S1 S S2 S S3 S Y

X S S1 S S2 S S3 S Y

11.3 Estimating Causal Effects 339

e1e0 e4

1 S2 S3

e3e2

S YX

Figure 11.4 Showing the noise factors on the
path from X to Y.

Z

e0 e4e1

1 S2 S3

e3e2

X S Y

Figure 11.5 Conditioning on Z creates
dependence between X and e1, which biases the
estimated effect of X on Y.

 



X on Y). Section 11.3.3 provides an alternative proof of the back-door criterion where the

need to exclude descendants of X is even more transparent.

It is also important to note that the danger of creating new bias by adjusting for

wrong variables can threaten randomized trials as well. In such trials, investigators may

wish to adjust for covariates despite the fact that, asymptotically, randomization neu-

tralizes both measured and unmeasured confounders. Adjustment may be sought either

to improve precision (Cox 1958, pp. 48–55), or to match imbalanced samples, or to

obtain covariate-specific causal effects. Randomized trials are immune to adjustment-

induced bias when adjustment is restricted to pre-treatment covariates, but adjustment

for post-treatment variables may induce bias by the mechanism shown in Figure 11.5 or,

more severely, when correlation exists between the adjusted variable Z and some factor

that affects outcome (e.g., e4 in Figure 11.5).

As an example, suppose treatment has a side effect (e.g., headache) in patients who

are predisposed to disease Y. If we wish to adjust for disposition and adjust instead for

its proxy, headache, a bias would emerge through the spurious path: treatment S
headache d predisposition S disease. However, if we are careful never to adjust for

consequences of treatment that open such spurious paths (not only those that are on the

causal pathway to disease), no bias will emerge in randomized trials.

Further Questions from This Reader:

This explanation for excluding descendants of X is reasonable, but it has two short-

comings:

1. It does not address cases such as

,

which occur frequently in epidemiology, and where tradition permits the adjust-

ment for Z � 5C, F6.

2. The explanation seems to redefine confounding and sufficiency to represent

something different from what they have meant to epidemiologists in the past

few decades. Can we find something in graph theory that is closer to their tradi-

tional meaning?

Author’s Answer

1. Epidemiological tradition permits the adjustment for Z � (C, F) for the task of

testing whether X has a causal effect on Y, but not for estimating the magnitude

of that effect. In the former case, while conditioning on F creates a spurious path

between C and the noise factor affecting Y, that path is blocked upon condition-

ing on C. Thus, conditioning on Z � 5C, F6 leaves X and Y independent. If we

happen to measure such dependence in any stratum of Z, it must be that the

model is wrong, i.e., either there is a direct causal effect of X on Y, or some other

paths exist that are not shown in the graph.

Thus, if we wish to test the (null) hypothesis that there is no causal effect of X
on Y, adjusting for Z � 5C, F6 is perfectly legitimate, and the graph shows it

(i.e., C and F are nondescendant of X). However, adjusting for Z is not legiti-

mate for assessing the causal effect of X on Y when such effect is suspected,

X d C S Y S F
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because the graph applicable for this task is given in Figure 11.6; F becomes a
descendant of X, and is excluded by the back-door criterion.

2. If the explanation of confounding and sufficiency sounds at variance with tradi-
tional epidemiology, it is only because traditional epidemiologists did not have
proper means of expressing the operations of blocking or creating dependencies.
They might have had a healthy intuition about dependencies, but graphs trans-
late this intuition into a formal system of closing and opening paths.

We should also note that before 1985, causal analysis in epidemiology was in a
state of confusion, because the healthy intuitions of leading epidemiologists had
to be expressed in the language of associations – an impossible task. Even the
idea that confounding stands for “bias,” namely, a “difference between two
dependencies, one that we wish to measure, the other that we do measure,” was
resisted by many (see Chapter 6), because they could not express the former
mathematically.3

Therefore, instead of finding “something in graph language that is closer to tra-
ditional meaning,” we can do better: explicate what that “traditional meaning”
ought to have been.

In other words, traditional meaning was informal and occasionally misguided,
while graphical criteria are formal and mathematically proven.

Chapter 6 (pp. 183, 194) records a long history of epidemiological intuitions,
some by prominent epidemiologists, that have gone astray when confronted with
questions of confounding and adjustment (see Greenland and Robins 1986;
Wickramaratne and Holford 1987; Weinberg 1993). Although most leading epi-
demiologists today are keenly attuned to modern developments in causal analy-
sis, (e.g., Glymour and Greenland 2008), epidemiological folklore is still per-
meated with traditional intuitions that are highly suspect. (See Section 6.5.2.)

In summary, graphical criteria, as well as principles 1–3 above, give us a sensi-
ble, friendly, and unambiguous interpretation of the “traditional meaning of epi-
demiological concepts.”

11.3.2 Demystifying “Strong Ignorability”

Researchers working within the confines of the potential-outcome language express the
condition of “zero bias” or “no-confounding” using an independence relationship called
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3 Recall that Greenland and Robins (1986) were a lone beacon of truth for many years, and even
they had to resort to the “black-box” language of “exchangeability” to define “bias,” which dis-
couraged intuitive interpretations of confounding (see Section 6.5.3). Indeed, it took epidemiolo-
gists another six years (Weinberg 1993) to discover that adjusting for factors affected by the exposure
(e.g., Z in Figure 11.5) would introduce bias.

X Y F

C

Figure 11.6 Graph applicable for accessing the effect of X on Y.



“strong ignorability” (Rosenbaum and Rubin 1983). Formally, if X is a binary treatment
(or action), strong ignorability is written as:

, (11.4)

where Y(0) and Y(1) are the (unobservable) potential outcomes under actions do(X � 0)
and do(X � 1), respectively (see equation (3.51) for definition), and Z is a set of meas-
ured covariates. When “strong ignorability” holds, Z is admissible, or deconfounding,
that is, treatment effects can be estimated without bias using the adjustment estimand,
as shown in the derivation of equation (3.54).

Strong ignorability, as the derivation shows, is a convenient syntactic tool for manip-
ulating counterfactual formulas, as well as a convenient way of formally assuming
admissibility (of Z) without having to justify it. However, as we have noted several times
in this book, hardly anyone knows how to apply it in practice, because the counterfactu-
al variables Y(0) and Y(l) are unobservable, and scientific knowledge is not stored in a
form that allows reliable judgment about conditional independence of counterfactuals. It
is not surprising, therefore, that “strong ignorability” is used almost exclusively as a sur-
rogate for the assumption “Z is admissible,” that is,

(11.5)

and rarely, if ever, as a criterion to protect us from bad choices of Z.4

Readers enlightened by graphical models would recognize immediately that equa-
tion (11.4) must mirror the back-door criterion (p. 79, Definition 3.3.1), since the latter too
entails admissibility. This recognition allows us not merely to pose equation (11.4) as a
claim, or an assumption, but also to reason about the cause–effect relationships that ren-
der it valid.

The question arises, however, whether the variables Y(0) and Y(l) could be represent-
ed in the causal graph in a way that would allow us to test equation (11.4) by graphical
means, using d-separation. In other words, we seek a set W of nodes such that Z would
d-separate X from W if and only if Z satisfies equation (11.4).

The answer follows directly from the rules of translation between graphs and poten-
tial outcome (Section 3.6.3). According to this translation, 5Y(0), Y(l)6 represents the
sum total of all exogenous variables, latent as well as observed, which can influence Y
through paths that avoid X. The reason is as follows: according to the structural definition
of 5Y(0),Y(1)6 (equation (3.51)), Y(0) (similarly Y(l)) represents the value of Y under a
condition where all arrows entering X are severed, and X is held constant at X � 0.
Statistical variations of Y(0) would therefore be governed by all exogenous ancestors of
Y in the mutilated graphs with the arrows entering X removed.

In Figure 11.4, for example, 5Y(0), Y(l)6 will be represented by the exogenous variables
5e1, e2, e3, e46. In Figure 3.4, as another example, 5Y(0), Y(1)6 will be represented by the
noise factors (not shown in the graph) that affect variables X4, X1, X2, X5, and X6. However,

P(y � do(x)) � a
z

P(y � z, x)P(z),

5Y(0), Y(1)6 �� X � Z
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4 In fact, in the rare cases where “strong ignorability” is used to guide the choice of covariates, the
guidelines issued are wrong or inaccurate, perpetuating myths such as: “there is no reason to avoid
adjustment for a variable describing subjects before treatment,” “a confounder is any variable asso-
ciated with both treatment and disease,” and “strong ignorability requires measurement of all
covariates related to both treatment and outcome” (citations withheld to spare embarrassment).



since variables X4 and X5 summarize (for Y) the variations of their ancestors, a sufficient set
for representing 5Y(0), Y(l)6 would be X4, X1 and the noise factors affecting Y and X6.

In summary, the potential outcomes 5Y(0), Y(l)6 are represented by the observed and
unobserved parents5 of all nodes on paths from X to Y. Schematically, we can represent these
parents as in Figure 11.7(a). It is easy to see that, with this interpretation of 5Y(0), Y(1)6, a
set of covariates Z d-separates W from X if and only if Z satisfies the back-door criterion. 

It should be noted that the set of observable variables designated W in Figure 11.7(a)
are merely surrogates of the unobservable counterfactuals 5Y(0), Y(l)6 for the purpose of
confirming conditional independencies (e.g., equation (11.4)) in the causal graph (via 
d-separation.) A more accurate allocation of 5Y(0), Y(l)6 is given in Figure 11.7(b),
where they are shown as (dummy) parents of Y that are functions of, though not identi-
cal to, the actual (observable) parents of Y and S.

Readers versed in structural equation modeling would recognize the graphical
representations 5Y(0), Y(1)6 as a refinement of the classical economentric notion of “dis-
turbance,” or “error term” (in the equation for Y), and “strong ignorability” as the
requirement that, for X to be “exogenous,” it must be independent of this “disturbance”
(see Section 5.4.3). This notion fell into ill repute in the 1970s (Richard 1980) together
with the causal interpretation of econometric equations, and I have predicted its re-
acceptance (p. 170) in view of the clarity that graphical models shine on the structural
equation formalism. Figure 11.7 should further help this acceptance.

Having translated “strong ignorability” into a simple separation condition in a model
that encodes substantive process knowledge should demystify the nebulous concept of
“strong ignorability” and invite investigators who speak “ignorability” to benefit from
its graphical interpretation.

This interpretation permits researchers to understand what conditions covariates must
fulfill before they eliminate bias, what to watch for and what to think about when covari-
ates are selected, and what experiments we can do to test, at least partially, if we have the
knowledge needed for covariate selection. Section 11.3.4 exemplifies such considerations.

One application where the symbiosis between the graphical and counterfactual
frameworks has been useful is in estimating the effect of treatments on the treated:
ETT = (see Sections 8.2.5 and 11.9.1). This counterfactual quantity (e.g.,
the probability that a treated person would recover if not treated, or the rate of
disease among the exposed, had the exposure been avoided) is not easily analyzed in the
do-calculus notation. The counterfactual notation, however, allows us to derive a

P(Yx� � y � x)
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Figure 11.7 Graphical interpretation of counterfactuals 5Y(0), Y(l)6 in the “strong ignorability”
condition.

5 The reason for explicitly including latent parents is explained in Section 11.3.1.



useful conclusion: Whenever a set of covariates Z exists that satisfies the back-door

criterion, ETT can be estimated from observational studies. This follows directly from

which allows us to write

The graphical demystification of “strong ignorability” also helps explain why the prob-

ability of causation and, in fact, any counterfactual expression condi-

tioned on y, would not permit such a derivation and is, in general, non-identifiable (see

Chapter 9 and Shpitser and Pearl 2007).

11.3.3 Alternative Proof of the Back-Door Criterion

The original proof of the back-door criterion (Theorem 3.3.2) used an auxiliary inter-

vention node F (Figure 3.2) and was rather indirect. An alternative proof is presented

below, where the need for restricting Z to nondescendants of X is transparent.

Proof of the Back-Door Criterion

Consider a Markovian model G in which T stands for the set of parents of X. From equa-

tion (3.13), we know that the causal effect of X on Y is given by

. (11.6)

Now assume some members of T are unobserved. We seek another set Z of observed

variables, to replace T so that 

. (11.7)

It is easily verified that (11.7) follow from (11.6) if Z satisfies:

(i)

(ii)

Indeed, conditioning on Z, (i) permits us to rewrite (11.6) as

and (ii) further yields P(z ƒ t, x) � P(z ƒ t), from which (11.7) follows.

It is now a purely graphical exercise to prove that the back-door criterion implies (i)

and (ii). Indeed, (ii) follows directly from the fact that Z consists of nondescendants of X,

while the blockage of all back-door paths by Z implies hence (i). This

follows from observing that any path from Y to T in G that is unblocked by 5X, Z6 can

be extended to a back-door path from Y to X, unblocked by Z.

(Y��T � X, Z)G,

P(y � x̂) � a
t

P(t)a
z

P(y � z, x)P(z � t, x),

(X �� Z � T).

(Y �� T � X, Z)

P(y � x̂) � a
z�Z

P(y � x, z)P(z)

P(y � x̂) � a
t�T

P(y � x, t)P(t)

P(Yx� � y� � x, y)

 �a z
 P(y � x�,  z)P(z � x).

 �a z
 P(Yx� � y � x�,  z)P(z � x)

 �a z P(Yx� � y � x, z)P(z � x)

ETT � P(Yx� � y � x)

(Y �� X � Z)GX
 1  Yx� �� X � Z,
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On Recognizing Admissible Sets of Deconfounders

Note that conditions (i) and (ii) allow us to recognize a set Z as admissible (i.e., satisfy-
ing equation (11.7)) starting from any other admissible T, not necessarily the parents of
X. The parenthood status of T was used merely to established (11.6) but played no role
in replacing T with Z to establish (11.7). Still, starting with the parent set T has the
unique advantage of allowing us to recognize every other admissible set Z via (i) and (ii).
For any other starting set, T, there exists an admissible Z that does not satisfy (i) and (ii).
For an obvious example, choosing X’s parents for Z would violate (i) and (ii) because
no set can d-separate X from its parents as would be required by (i).

Note also that conditions (i) and (ii) are purely statistical, invoking no knowledge of
the graph or any other causal assumption. It is interesting to ask, therefore, whether there
are general independence conditions, similar to (i) and (ii), that connect any two admissi-
ble sets, S1 and S2. A partial answer is given by the Stone–Robins criterion (page 187) for
the case where S1 is a subset of S2; another is provided by the following observation.

Define two subsets, S1 and S2, as c-equivalent (“c” connotes “confounding”) if the
following equality holds:

(11.8)

This equality guarantees that, if adjusted for, sets S1 and S2 would produce the same bias
relative to estimating the causal effect of X on Y.
Claim: A sufficient condition for c-equivalence of S1 and S2 is that either one of the fol-
lowing two conditions holds:

C1 : and
C2 : and

C1 permits us to derive the right-hand side of equation (11.8) from the left-hand side,
while C2 permits us to go the other way around. Therefore, if S1 is known to be admis-
sible, the admissibility of S2 can be confirmed by either C1 or C2. This broader condi-
tion allows us, for example, to certify S2 � PAX as admissible from any other admissi-
ble set S1, since condition C2 would be satisfied by any such choice.

This broader condition still does not characterize all c-equivalent pairs, S1 and S2.
For example, consider the graph in Figure 11.8(a), in which each of S1 � 5Z1, W26 and

Y �� S2 � S1, X.X �� S1 � S2

Y �� S1 � S2, XX �� S2 � S1

a
s1

P(y � x, s1)P(s1) � a
s2

P(y � x, s2)P(s2).
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Y YX X

Figure 11.8 (a) S1 � 5Z1, W26 and S2 � 5Z2, W16 are each admissible yet not satisfying C1 or C2.
(b) No subset of C � 5Z1, Z2, W1, W2, V6 is admissible.



S2 5 5Z2, W26 is admissible (by virtue of satisfying the back-door criterion), hence S1
and S2 are c-equivalent. Yet neither C1 nor C2 holds in this case.

A natural attempt would be to impose the condition that S1 and S2 each be c-equiva-
lent to and invoke the criterion of  Stone (1993)  and Robins (1997) for the
required set-subset equivalence. The resulting criterion, while valid, is still not complete;
there are cases where S1 and S2 are c-equivalent yet not c-equivalent to their union. A the-
orem by Pearl and Paz (2010) provides a complete criterion for c-equivalence.

Having given a conditional-independence characterization of c-equivalence does not
solve, of course, the problem of identifying admissible sets; the latter is a causal notion
and cannot be given statistical characterization. 

The graph depicted in Figure 11.8(b) demonstrates the difficulties commonly faced
by social and health scientists. Suppose our target is to estimate P(y ƒ do(x)) given
measurements on 5X, Y, Z1, Z2, W1, W2, V6, but having no idea of the underlying graph
structure. The conventional wisdom is to start with all available covariates C 5 5Z1, Z2,
W1, W2, V6, and test if a proper subset of C would yield an equivalent estimand upon
adjustment. Statistical methods for such reduction are described in Greenland et al.
(1999b), Geng et al. (2002), and Wang et al. (2008). For example, V and Z2 can be
removed from C by successively applying conditions C1 and C2, thus producing an 
irreducible subset, {Z1, W1, W2}, c-equivalent to the original covariate set C. However,
this subset is inadmissible for adjustment because, like C, it does not satisfy the back-
door criterion. While a theorem due to Tian et al. (1998) assures us that any c-equiva-
lent subset of a set C can be reached from C by a step-at-a-time removal method, going
through a sequence of c-equivalent subsets, the problem of covariate selection is that,
lacking the graph structure, we do not know which (if any) of the many subsets of C
is admissible. The next subsection discusses how external knowledge, as well as more
refined analysis of the data at hand, can be brought to bear on the problem.

11.3.4 Data vs. Knowledge in Covariate Selection

What then can be done in the absence of a causal graph? One way is to postulate a 
plausible graph, based on one’s understanding of the domain, and check if the data refutes
any of the statistical claims implied by that graph. In our case, the graph of Figure 
11.8(b) advertises several such claims, cast as conditional independence constraints, each
associated with a missing arrow in the graph:

Satisfying these constraints does not establish, of course, the validity of the causal
model postulated because, as we have seen in Chapter 2, alternative models may exist
which satisfy the same independence constraints yet embody markedly different causal
structures, hence, markedly different admissible sets and effect estimands. A trivial
example would be a complete graph, with arbitrary orientation of arrows which, with a
clever choice of parameters, can emulate any other graph. A less trivial example, one
that is not sensitive to choice of parameters, lies in the class of equivalent structures, in

V '' Y Z{Z2, W2, Z1, W1}Z2 '' {W1, Z1, X}Z{V, W2}
V '' Y Z{X, Z2, W2, Z1, W1}Z1 '' {W2, Z2}Z{V, W1}
X '' {V, Z2}Z{Z1, W2, W1}V '' {W1, W2}

S1 < S2
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which all conditional independencies emanate from graph separations. The search tech-

niques developed in Chapter 2 provide systematic ways of representing all equivalent

models compatible with a given set of conditional independence relations.

The model depicted in Figure 11.9 is a tough contender to that of Figure 11.8(b); 

it satisfies all the conditional independencies implied by the latter, plus one more:

which is not easy to detect or test. Yet, contrary to Figure 11.8(b),

it deems three sets 5Z1, W1, W26, 5V, W1, W26, and 5Z2, W1, W26 to be admissible, hence

c-equivalent; testing for the c-equivalence of the three sets should decide between the two

contesting models.

Substantive causal knowledge may provide valuable information for such decisions.

For example, the model of Figure 11.9 can be ruled out if we have good reasons to

believe that variable W2 cannot have any influence on X (e.g., it may occur later than X),

or that W1 could not possibly have direct effect on Y.     

The power of graphs lies in offering investigators a transparent language to reason

about, to discuss the plausibility of such assumptions and, when consensus is not reached,

to isolate differences of opinion and identify what additional observations would be needed

to resolve differences. This facility is lacking in the potential-outcome approach where, for

most investigators, “strong ignorability” remains a mystical black box.

In addition to serving as carriers of substantive judgments, graphs also offer one the

ability to reject large classes of models without testing each member of the class. For

example, all models in which V and W1 are the sole parents of X, thus rendering 5V, W16

(as well as C) admissible, could be rejected at once if the condition does

not hold in the data.

In Chapter 3, for example, we demonstrated how the measurement of an additional

variable, mediating between X and Y, was sufficient for identifying the causal effect of

X on Y. This facility can also be demonstrated in Figure 11.8(b); measurement of a vari-

able Z judged to be on the pathway between X and Y would render identifi-

able and estimable through equation (3.29). This is predicated, of course, on Fig-

ure 11.8(b) being the correct data-generating model. If, on the other hand, it is Figure 11.9

that represents the correct model, the causal effect would be given by 

 � a z1, w1, w2 P(y � x, z1, w1, w2) P(z1, w1, w2),

 P(y � do(x)) �a paX 
P(y � paX, x)P(paX)

P(y � do(x))

X��Z1 � V, W1

Z1��Y�X, W1, W2, Z2,
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Figure 11.9 A model that is almost indistinguishable

from that of Figure 11.8(b), save for advertising one

additional independency It deems

three sets to be admissible (hence c-equivalent):

and , and

would be rejected therefore if any pair of them fails the

c-equivalence test.

{W1, W2, Z2}{Z1, W1, W2},{V, W1, W2},

Z1��Y �X, W1, W2, Z2.
Z 1 2Z2WW1

X Y

V

6 Semi-Markovian models may also be distinguished by functional relationships that are not
expressible as conditional independencies (Verma and Pearl 1990; Tian and Pearl 2002b; Shpitser
and Pearl 2008). We do not consider these useful constraints in this example.



which might or might not agree with equation (3.29). In the latter case, we would have
good reason to reject the model in Figure 11.9 as inconsistent, and seek perhaps addi-
tional measurements to confirm or refute Figure 11.8(b).

Auxiliary experiments may offer an even more powerful discriminatory tool than
auxiliary observations. Consider variable W1 in Figure 11.8(b). If we could conduct a
controlled experiment with W1 randomized, instead of X, the data obtained would enable
us to estimate the causal effect of X on Y with no bias (see Section 3.4.4). At the very
least, we would be able to discern whether W1 is a parent of X, as in Figure 11.9, or an
indirect ancestor of X, as in Figure 11.8(b).

In an attempt to adhere to traditional statistical methodology, some causal analysts
have adopted a method called “sensitivity analysis” (e.g., Rosenbaum 2002, pp. 105–170),
which gives the impression that causal assumptions are not invoked in the analysis. This,
of course, is an illusion. Instead of drawing inferences by assuming the absence of certain
causal relationships in the model, the analyst tries such assumptions and evaluates how
strong alternative causal relationships must be in order to explain the observed data. The
result is then submitted to a judgment of plausibility, the nature of which is no different
from the judgments invoked in positing a model like the one in Figure 11.9. In its richer
setting, sensitivity analysis amounts to loading a diagram with causal relationships whose
strength is limited by plausibility judgments and, given the data, attempting to draw con-
clusions without violating those plausibility constraints. It is a noble endeavor, which thus
far has been limited to problems with a very small number of variables. The advent of dia-
grams promises to expand the applicability of this method to more realistic problems. 

11.3.5 Understanding Propensity Scores

The method of propensity score (Rosenbaum and Rubin 1983), or propensity score
matching (PSM), is the most developed and popular strategy for causal analysis in obser-
vational studies. It is not emphasized in this book, because it is an estimation method,
designed to deal with the variability of finite samples, but does not add much to our
understanding of the asymptotic, large-sample limits, which is the main focus of the
book. However, due to the prominence of the propensity score method in causal analy-
sis, and recent controversies surrounding its usage, we devote this section to explain
where it falls in the grand scheme of graphical models, admissibility, identifiability, bias
reduction, and the statistical vs. causal dichotomy.

The method of propensity score is based on a simple, yet ingenious, idea of purely
statistical character. Assuming a binary action (or treatment) X, and an arbitrary set S of
measured covariates, the propensity score L(s) is the probability that action X � 1 will
be chosen by a participant with characteristics S � s, or

(11.9)

What Rosenbaum and Rubin showed is that, viewing L(s) as a function of S, hence,
as a random variable, X and S are independent given L(s), that is, In words,
all units that map into the same value of L(s) are comparable, or “balanced,” in the sense
that, within each stratum of L, treated and untreated units have the same distribution of
characteristics S.7

X��S � L(s).

L(s) � P(X � 1 � S � s).
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7 This independence emanates from the special nature of the function L(s) and is not represented in
the graph, i.e., if we depict L as a child of S, L would not in general d-separate S from X.



To see the significance of this result, let us assume, for simplicity, that L(s) can be
estimated separately and approximated by discrete strata L � 5l1, l2,…, lk6. The condi-
tional independence together with the functional mapping , renders
S and L c-equivalent in the sense defined in Section 11.3.3, equation (11.8), namely, for
any Y,

(11.10)

This follows immediately by writing:8

Thus far we have not mentioned any causal relationship, nor the fact that Y is an out-
come variable and that, eventually, our task would be to estimate the causal effect of X
on Y. The c-equivalence of S and L merely implies that, if for any reason one wishes to
estimate the “adjustment estimand” with S and Y two arbitrary sets of
variables, then, instead of summing over a high-dimensional set S, one might as well
sum over a one-dimensional vector L(s). The asymptotic estimate, in the limit of a very
large sample, would be the same in either method. 

This c-equivalence further implies – and this is where causal inference first comes
into the picture – that if one chooses to approximate the causal effect P(y ƒ do(x)) by the
adjustment estimand Es P(y ƒ s, x), then, asymptotically, the same approximation can be
achieved using the estimand ElP(y ƒ l, x), where the adjustment is performed over the
strata of L. The latter has the advantage that, for finite samples, each of the strata is less
likely to be empty and each is likely to contain both treated and untreated units.

The method of propensity score can thus be seen as an efficient estimator of the
adjustment estimand, formed by an arbitrary set of covariates S; it makes no statement
regarding the appropriateness of S, nor does it promise to correct for any confounding
bias, or to refrain from creating new bias where none exists. 

In the special case where S is admissible, that is,

, (11.11)

L would be admissible as well, and we would then have an unbiased estimand of the
causal effect,9

,

accompanied by an efficient method of estimating the right-hand side. Conversely, if
S is inadmissible, L would be inadmissible as well, and all we can guarantee is that
the bias produced by the former would be faithfully and efficiently reproduced by the
latter.

P(y � do(x)) � El 
P(y � l, x)

P(y � do(x)) � EsP(y � s, x)

g s 
P(y � s, x)P(s),

 � g sP(y � s, x)P(s).

 � g sg l  
P(y � s, x)P(l)P(s � l)

 g l 
P(y � l, x)P(l) � g sg l  

P(y � l, s, x)P(l)P(s � l, x)

a
s

P( y � s, x)P(s) � a
t

P( y � l, x)P(l).

S S LX��S  �  L(s),

11.3 Estimating Causal Effects 349

8 This also follows from the fact that condition C2 is satisfied by the substitution S1 � S and S2 � L(s).
9 Rosenbaum and Rubin (1983) proved the c-equivalence of S and L only for admissible S, which is

unfortunate; it gives readers the impression that the propensity score matching somehow con-
tributes to bias reduction.



The Controversy Surrounding Propensity Score 

Thus far, our presentation of propensity score leaves no room for misunderstanding, and

readers of this book would find it hard to understand how a controversy could emerge

from an innocent estimation method which merely offers an efficient way of estimating

a statistical quantity that sometimes does, and sometimes does not, coincide with the

causal quantity of interest, depending on the choice of S.
But a controversy has developed recently, most likely due to the increased populari-

ty of the method and the strong endorsement it received from prominent statisticians

(Rubin 2007), social scientists (Morgan and Winship 2007; Berk and de Leeuw 1999),

health scientists (Austin 2007), and economists (Heckman 1992). The popularity of the

method has in fact grown to the point where some federal agencies now expect program

evaluators to use this approach as a substitute for experimental designs (Peikes et al.

2008). This move reflects a general tendency among investigators to play down the cau-

tionary note concerning the required admissibility of S, and to interpret the mathemati-

cal proof of Rosenbaum and Rubin as a guarantee that, in each strata of L, matching

treated and untreated subjects somehow eliminates confounding from the data and con-

tributes therefore to overall bias reduction. This tendency was further reinforced by

empirical studies (Heckman et al. 1998; Dehejia and Wahba 1999) in which agreement

was found between propensity score analysis and randomized trials, and in which the

agreement was attributed to the ability of the former to “balance” treatment and control

groups on important characteristics. Rubin has encouraged such interpretations by stat-

ing: “This application uses propensity score methods to create subgroups of treated units

and control units … as if they had been randomized. The collection of these subgroups

then ‘approximate’ a randomized block experiment with respect to the observed covari-

ates” (Rubin 2007). 

Subsequent empirical studies, however, have taken a more critical view of propensity

score, noting with disappointment that a substantial bias is sometimes measured when

careful comparisons are made to results of clinical studies (Smith and Todd 2005;

Luellen et al. 2005; Peikes et al. 2008).

But why would anyone play down the cautionary note of Rosenbaum and Rubin

when doing so would violate the golden rule of causal analysis: No causal claim can be

established by a purely statistical method, be it propensity scores, regression, stratifica-

tion, or any other distribution-based design. The answer, I believe, rests with the lan-

guage that Rosenbaum and Rubin used to formulate the condition of admissibility, i.e.,

equation (11.11). The condition was articulated in the cryptic language of potential-

outcome, stating that the set S must render X “strongly ignorable,” i.e.,

As stated several times in this book, the opacity of “ignorability” is the Achilles’ heel of

the potential-outcome approach – no mortal can apply this condition to judge whether it

holds even in simple problems, with all causal relationships correctly specified, let alone

in partially specified problems that involve dozens of variables.10

5Y1, Y06 �� X � S.
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10 Advocates of the potential outcome tradition are invited to inspect Figure 11.8(b) (or any model,
or story, or toy-example of their choice) and judge whether any subset of C renders X “strongly
ignorable.” This could easily be determined, of course, by the back-door criterion, but, unfortu-
nately, graphs are still feared and misunderstood by some of the chief advocates of the potential-
outcome camp (e.g., Rubin 2004, 2008b, 2009).



The difficulty that most investigators experience in comprehending what “ignorability”
means, and what judgment it summons them to exercise, has tempted them to assume
that it is automatically satisfied, or at least is likely to be satisfied, if one includes in the
analysis as many covariates as possible. The prevailing attitude is that adding more covari-
ates can cause no harm (Rosenbaum 2002, p. 76) and can absolve one from thinking about
the causal relationships among those covariates, the treatment, the outcome and, most
importantly, the confounders left unmeasured (Rubin 2009).

This attitude stands contrary to what students of graphical models have learned, and
what this book has attempted to teach. The admissibility of S can be established only by
appealing to the causal knowledge available to the investigator, and that knowledge, as
we know from graph theory and the back-door criterion, makes bias reduction a non-
monotonic operation, i.e., eliminating bias (or imbalance) due to one confounder may
awaken and unleash bias due to dormant, unmeasured confounders. Examples abound
(e.g., Figure 6.3) where adding a variable to the analysis would introduce irreparable
bias (Pearl 2009b, 2010a, Shrier 2009, Sjölander 2009a).

Another factor inflaming the controversy has been the general belief that the bias-
reducing potential of propensity score methods can be assessed experimentally by running
case studies and comparing effect estimates obtained by propensity scores to those
obtained by controlled randomized experiments (Shadish and Cook 2009).11 This belief
is unjustified because the bias-reducing potential of propensity scores depends critically
on the specific choice of S or, more accurately, on the cause–effect relationships among
variables inside and outside S. Measuring significant bias in one problem instance
(say, an educational program in Oklahoma) does not preclude finding zero bias in
another (say, crime control in Arkansas), even under identical statistical distributions
P(x, s, y).

With these considerations in mind, one is justified in asking a social science type
question: What is it about propensity scores that has inhibited a more general under-
standing of their promise and limitations? 

Richard Berk, in Regression Analysis: A Constructive Critique (Berk 2004), recalls
similar phenomena in social science, where immaculate ideas were misinterpreted by
the scientific community: “I recall a conversation with Don Campbell in which he
openly wished that he had never written Campbell and Stanley (1966). The intent of the
justly famous book, Experimental and Quasi-Experimental Designs for Research, was
to contrast randomized experiments to quasi-experimental approximations and to
strongly discourage the latter. Yet the apparent impact of the book was to legitimize a
host of quasi-experimental designs for a wide variety of applied social science. After I
got to know Dudley Duncan late in his career, he said that he often thought that his
influential book on path analysis, Introduction to Structural Equation Models was a
big mistake. Researchers had come away from the book believing that fundamental
policy questions about social inequality could be quickly and easily answered with path
analysis.” (p. xvii)
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11 Such beliefs are encouraged by valiant statements such as: “For dramatic evidence that such an
analysis can reach the same conclusion as an exactly parallel randomized experiment, see Shadish
and Clark (2006, unpublished)” (Rubin 2007).



I believe that a similar cultural phenomenon has evolved around propensity scores.
It is not that Rosenbaum and Rubin were careless in stating the conditions for suc-

cess. Formally, they were very clear in warning practitioners that propensity scores work
only under “strong ignorability” conditions. However, what they failed to realize is that
it is not enough to warn people against dangers they cannot recognize; to protect them
from perilous adventures, we must also give them eyeglasses to spot the threats, and a
meaningful language to reason about them. By failing to equip readers with tools (e.g.,
graphs) for recognizing how “strong ignorability” can be violated or achieved, they have
encouraged a generation of researchers (including federal agencies) to assume that
ignorability either holds in most cases, or can be made to hold by clever designs.

11.3.6 The Intuition behind do-Calculus
Question to Author Regarding Theorem 3.4.1:

In the inference rules of do-calculus (p. 85), the subgraph represents the distribution
prevailing under the operation do(X 5 x), since all direct causes of X are removed. What
distribution does the submodel represent, with the direct effects of X removed?

Author’s Reply:

The graph represents the hypothetical act of “holding constant” all children of X.
This severs all directed paths from X to Y, while leaving all back-door paths intact.
So, if X and Y are d-connected in that graph, it must be due to (unblocked) con-
founding paths between the two. Conversely, if we find a set Z of nodes that d-separate
X from Y in that graph, we are assured that Z blocks all back-door paths in the orig-
inal graph. If we further condition on variables Z, we are assured, by the back-door
criterion, that we have neutralized all confounders and that whatever dependence we
measure after such conditioning must be due to the causal effect of X on Y, free of
confoundings.

11.3.7 The Validity of G-Estimation

In Section 3.6.4 we introduced the G-estimation formula (3.63), together with the coun-
terfactual independency (3.62), which Robins proved to
be a sufficient condition for (3.63). In general, condition (3.62) may be overrestrictive
and lacking intuitive basis. A less restrictive graphical condition leading to (3.63) is
derived in (4.5) (p. 122), which reads as follows:

(3.62*) (Sequential Back-door)

P(y ƒ g 5 x) is identifiable and is given by (3.63) if every action-avoiding back-door
path from Xk to Y is blocked by some subset Lk of nondescendants of Xk. (By “action-
avoiding” we mean a path containing no arrows entering an X variable later than Xk,in
some topological ordering of the variables.)

The two conditions are compared in the following examples.

Example 11.3.1 Figure 11.10 demonstrates cases where the g-formula (3.63) is valid
with a subset Lk of the past but not with the entire past. Assuming U1 and U2 are
unobserved, and temporal order: U1, Z, X1, U2, Y, we see that both (3.62) and (3.62*),

(Y(x) '' Xk Z Lk, Xk21 5 xk21),

GX

GX

GX,
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hence (3.63), are satisfied with L1 5 0, while taking the whole past L1 5 Z would
violate both.

Example 11.3.2 Figure 11.11 demonstrates cases where defining Lk as the set of
“nondescendants” of Xk (as opposed to temporal predecessors of Xk) broadens (3.62).
Assuming temporal order: U1, X1, S, Y, both (3.62) and (3.62*) are satisfied with 
L1 5 S, but not with L1 5 0.

Example 11.3.3 In a previous edition of this book (2009) it was argued that Figure
11.12 demonstrates cases where (3.62) is not satisfied, while the graphical condition
of (3.62*) is. A recent analysis by Richardson and Robins (Working Paper Number
128, Center for Statistics and Social Sciences, University of Washington, April 2013)
shows this not to be the case. Since condition (3.62) refers to one specific instantia-
tion of  X

–
k–1, not to  X

–
k–1 as a variable, it is satisfied in the graph of Fig. 11.11. I am

grateful to Richardson and Robins for these illuminating observations.

A more serious weakness of articulating scientific assumptions in the language of
counterfactuals (or potential outcomes) is opacity. The counterfactual condition (3.62)
that legitimizes the use of the g-formula evokes no scientific context to judge the plau-
sibility of the condition. Epidemiologists who apply this formula are doing so under no
guidance of substantive medical knowledge. Fortunately, graphical methods are rapidly
making their way into epidemiological practice (Greenland et al. 1999a; Robins 2001;
Hernán et al. 2002; Greenland and Brumback 2002; Kaufman et al. 2005; Petersen et al.
2006; VanderWeele and Robins 2007) as more researchers begin to understand the
assumptions behind their estimation routines. Given the general recognition that struc-
tural causal models subsume, unify, and underlie the graphical, counterfactual, potential
outcome and sufficient-component (Rothman 1976) approaches to causation,12 epi-
demiology stands a good chance of becoming the first discipline to fully liberate itself
from past dogmas and “break through our academically enforced reluctance to think
directly about causes (Weinberg 2007).”
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12 This unification has not been sufficiently emphasized by leading epidemiologists (Greenland and
Brumback 2002), economists (Heckman and Vytlacil 2007), and social scientists (Morgan and
Winship 2007), not to mention statisticians (Cox and Wermuth 2004; Rubin 2005). With all due
respect to multiculturalism, all approaches to causation are variants or abstractions of the struc-
tural theory presented in this book (Chapter 7).

Figure 11.10 Conditioning on the entire past L1 5 Z would
invalidate g-estimation.

1U

YX

2Z U

1

1U S

1 YX

Figure 11.11 g-estimation is rendered valid by including a 
non-predecessor S.



11.4 POLICY EVALUATION AND THE do-OPERATOR

11.4.1 Identifying Conditional Plans (Section 4.2, p. 113)
Question to Author:

Section 4.2 of the book (p. 113) gives an identification condition and estimation formula
for the effect of a conditional action, namely, the effect of an action do(X 5 g(z)) where
Z 5 z is a measurement taken prior to the action. Is this equation generalizable to the
case of several actions, i.e., conditional plan?

The difficulty seen is that this formula was derived on the assumption that X does
not change the value of Z. However, in a multiaction plan, some actions in X could
change observations Z that guide future actions. We do not have notation for distin-
guishing post-intervention from pre-intervention observations. Absent such notation, it
is not clear how conditional plans can be expressed formally and submitted to the do-
calculus for analysis.

Author’s Reply (with Ilya Shpitser):

A notational distinction between post-intervention pre-intervention observations is intro-
duced in Chapter 7 using the language of counterfactuals. The case of conditional plans,
however, can be handled without resorting to richer notation. The reason is that the obser-
vations that dictate the choice of an action are not changed by that action, while those that
have been changed by previous actions are well captured by the P(y ƒ do(x), z) notation.

To see that this is the case, however, we will first introduce counterfactual notation,
and then show that it can be eliminated from our expression. We will use bold letters to
denote sets, and normal letters to denote individual elements. Also, capital letters will
denote random variables, and small letters will denote possible values these variables
could attain. We will write Yx to mean ‘the value Y attains if we set variables X to val-
ues x.’ Similarly, YXg is taken to mean ‘the value Y attains if we set variables X to what-
ever values they would have attained under the stochastic policy g.’ Note that Yx and YXg
are both random variables, just as the original variable Y.

Say we have a set of K action variables X that occur in some temporal order. We will
indicate the time at which a given variable is acted on by a superscript, so a variable Xi

occurs before Xj if For a given Xi, we denote to be the set of action variables
preceding Xi.

We are interested in the probability distribution of a set of outcome variables Y, under
a policy that sets the values of each to the output of functions gi (known in
advance) which pay attention to some set of prior variables Zi, as well as the previous
interventions on At the same time, the variables Zi are themselves affected by pre-
vious interventions. To define this recursion appropriately, we use an inductive defini-
tion. The base case is The inductive case is Here theXi

g 5 gi(Z
i
Xg

, i, X,i
g ).X1

g 5 g1(Z1).

X,i.

Xi H X

X,ii , j.
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Figure 11.12 A graph for which conditions (3.62) and
(3.62*) are both valid.



subscript g represents the policy we use, in other words, g � 5gi ƒ i � 1, 2,…, K6. We can
now write the quantity of interest:

Let The key observation here is that if we observe Zg to take on par-
ticular values, Xg collapse to unique values as well because Xg is a function of Zg. We
let be the values attained by Xg in the situation where Zg has been
observed to equal z � 5z1,…, zK6. We note here that if we know z, we can compute xz in
advance, because the functions gi are fixed in advance and known to us. However, we
don’t know what values Zg might obtain, so we use case analysis to consider all possible
value combinations. We then obtain:

Here we note that Zi cannot depend on subsequent interventions. So we obtain

Now we note that the subscripts in the first and second terms are redundant, since the
do(xz) already implies such subscripts for all variables in the expression. Thus we can
rewrite the target quantity as

or, more succinctly,

We see that we can compute this expression from P(y ƒ do(x)), z) and P(z ƒ do(x)), where
Y, X, Z are disjoint sets.

To summarize, though conditional plans are represented naturally by nested counter-
factual expressions, their identification can nevertheless be reduced to identification of
conditional interventional distributions of the form P(y ƒ do(x),z) (possibly with z being
empty). Complete conditions for identifying these quantities from a joint distribution in
a given graph G are given in Shpitser and Pearl (2006a,b).

11.4.2 The Meaning of Indirect Effects

Question to Author:

I am teaching a course in latent variable modeling (to biostatistics and other public
health students) and was yesterday introducing path analysis concepts, including direct
and indirect effects.

I showed how to calculate indirect effects by taking the product of direct paths. Then
a student asked about how to interpret the indirect effect, and I gave the answer that I
always give, that the indirect effect ab (in the simple model of Fig. 11.13) is the effect
that a change in X has on Y through its relationship with Z. 

a
z

P(y � do(xz), z)P(z � do(xz)).

a
z

P(Y � y � do(X � xz), Z
1 � z1, p , ZK � zK)P(Z1 � z1, p , ZK � zKdo(X � xz))

a
z

P(Y � y � do(X � xz), Z
1
xz

� z1, p , ZK
xz

� zK)P(Z1 � z1, p , ZK � zK � do(X � xz)).

P(Z1 � z1, p , ZK
xz�K � zK � do(X � xz)).

P (YXg
� y) � �z1, p , zKP(Y � y � do(X � xz), Z

1 � z1, p , ZK
xz�K � zK)

xz � 5x1
z , p , xK

z 6

Zg � �i Z 
i
Xg

� i.

P(YXg
� y) � P(Y � y � do(X1 � X1

g), do(X2 � X2
g), p , do(XK � XK

g )).
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After chewing on this for a second, the student asked the following:

Student: “The interpretation of the b path is: b is the increase we would see in Y
given a unit increase in Z while holding X fixed, right?”

Me: “That’s right.”

Student: “Then what is being held constant when we interpret an indirect effect?”

Me: “Not sure what you mean.”

Student: “You said the interpretation of the indirect effect ab is: ab is the increase

we would see in Y given a one unit increase in X through its causal effect on Z. But since b
(the direct effect from Z to Y) requires X to be held constant, how can it be used in a cal-

culation that is also requiring X to change one unit.”

Me: “Hmm. Very good question. I’m not sure I have a good answer for you. In the

case where the direct path from X to Y is zero, I think we have no problem, since the rela-

tionship between Z and Y then has nothing to do with X. But you are right, here if “c” is

nonzero then we must interpret b as the effect of Z on Y when X is held constant. I under-

stand that this sounds like it conflicts with the interpretation of the ab indirect effect,

where we are examining what a change in X will cause. How about I get back to you. As

I have told you before, the calculations here aren’t hard, its trying to truly understand

what your model means that’s hard.”

Author’s Reply:

Commend your student on his/her inquisitive mind. The answer can be formulated rather

simply (see Section 4.5.5, which was appended to the second edition):

The indirect effect of X on Y is the increase we would see in Y while holding X con-

stant and increasing Z to whatever value Z would attain under a unit increase of X.

This counterfactual definition leads to the Mediation Formula (4.18), which extends

path analysis to nonlinear models and enables us to estimate indirect effects for cate-

gorical variables using ordinary regression.

Author’s Afterthought:

This question represents one of several areas where standard education in structural equa-

tion models (SEM) can stand reform. While some SEM textbooks give a cursory mention

of the interpretation of structural parameters as effect coefficients, this interpretation is not

taken very seriously by authors, teachers, and students. Writing in 2008, I find that the bulk

of SEM education still focuses on techniques of statistical estimation and model fitting, and
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Figure 11.13 Demonstrating an indirect effect of X on Y via Z.
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one can hardly find a serious discussion of what the model means, once it is fitted and
estimated (see Section 11.5.3 for SEM survival kit).13

The weakness of this educational tradition surfaces when inquisitive students ask ques-
tions that deviate slightly from standard LISREL routines, the answers to which hinge on
the causal interpretation of structural coefficients and structural equations. For example:

1. Why should we define the total effect the way we do? (i.e., as the sum of prod-
ucts of certain direct effects). Is this an arbitrary definition, or is it compelled by
the causal interpretation of the path coefficients?

2. Why should we define the indirect effect as the difference between the total and
direct effects?

3. How can we define direct effect in nonlinear systems or in systems involving 
dichotomous variables?

4. How should we, in a meaningful way, define effects in systems involving feed-
back loops (i.e., reciprocal causation) so as to avoid the pitfalls of erroneous def-
initions quoted in SEM textbooks? (see p. 164)

5. Would our assessment of direct and total effects remain the same if we were to
take some measurements prior to implementing the action whose effect we
attempt to estimate?

Readers will be pleased to note that these questions can be given formal answers, as in
Sections 4.5.4, 4.5.5, 11.5.2, 11.5.3, and 11.7.1.

On a personal note, my interest in direct and indirect effects was triggered by a mes-
sage from Jacques Hagenaars, who wrote (September 15, 2000): “Indirect effects do
occupy an important place in substantive theories. Many social science theories ‘agree’
on the input (background characteristics) and output (behavioral) variables, but differ
exactly with regard to the intervening mechanisms. To take a simple example, we know
that the influence of Education on Political Preferences is mediated through ‘economic
status’ (higher educated people get the better jobs and earn more money) and through a
‘cultural mechanism’ (having to do with the contents of the education and the accompa-
nying socialization processes at school). We need to know and separate the nature and
consequences of these two different processes, that is, we want to know the signs and
the magnitudes of the indirect effects. In the parametric linear version of structural equa-
tion models, there exists a ‘calculus of path coefficients’ in which we can write total
effects in terms of direct and several indirect effects. But this is not possible in the gen-
eral nonparametric cases and not, e.g., in the log-linear parametric version. For systems
of logic models there does not exist a comparable ‘calculus of path coefficients’ as has
been remarked long ago. However, given its overriding theoretical importance, the issue
of indirect effects cannot be simply neglected.”

Stimulated by these comments, and armed with the notation of nested counterfactuals,
I set out to formalize the legal definition of hiring discrimination given on page 147, and
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have examined.



was led to the results of Sections 4.5.4 and 4.5.5, some already anticipated by Robins

and Greenland (1992), and to the Mediation Formula of equations (4.12), (4.17), and

(4.18). Enlightened by these results, I was compelled and delighted to retract an earlier

statement made on page 165 of the first edition of Causality: “indirect effects lack intrin-

sic operational meaning” because they cannot be isolated using the do(x) operator. While

it is true that indirect effects cannot be isolated using the do(x) operator, they do possess

intrinsic operational meaning. Policy-making implications of direct and indirect effects

are further exemplified in Pearl (2001, 2010b) and Petersen et al. (2006).

11.4.3 Can do(x) Represent Practical Experiments?
Question to Author:

L.B.S., from the University of Arizona, questioned whether the do(x) operator can rep-

resent realistic actions or experiments: “Even an otherwise perfectly executed ran-

domized experiment may yield perfectly misleading conclusions. A good example is

a study involving injected vitamin E as a treatment for incubated children at risk for

retrolental fibroplasia. The randomized experiment indicated efficacy for the injec-

tions, but it was soon discovered that the actual effective treatment was opening the

pressurized, oxygen-saturated incubators several times per day to give the injections,

thus lowering the barometric pressure and oxygen levels in the blood of the infants

(Leonard, Major Medical Mistakes). Any statistical analysis would have been mis-

leading in that case.”

S.M., from Georgia Institute of Technology, adds:

“Your example of the misleading causal effect shows the kind of thing that troubles

me about the do(x) concept. You do(x) or don’t do(x), but it may be something else that

covaries with do(x) that is the cause and not the do(x) per se.”

Author’s Reply:

Mathematics deals with ideal situations, and it is the experimenter’s job to make sure

that the experimental conditions approximate the mathematical ideal as closely as pos-

sible. The do(x) operator stands for doing X � x in an ideal experiment, where X and X
alone is manipulated directly, not any other variable in the model. 

In your example of the vitamin E injection, there is another variable being manipu-

lated together with X, namely, the incubator cover, Z, which turns the experiment into a

do(x, z) condition instead of do(x). Thus, the experiment was far from the one intended,

and far even from the standard experimental protocol, which requires the use of a place-

bo. Had a placebo been used (to approximate the requirement of the do(x) operator), the

result would not have been biased.

There is no way a model can predict the effect of an action unless one specifies what

variables in the model are directly affected by the action, and how. The do(x) operator is

a mathematical device that helps us specify formally what is held constant, and what is

free to vary in any given experiment. The do-calculus then helps us predict the logical

ramifications of such specifications, assuming they are executed faithfully, assuming we

have a valid causal model of the environment, and assuming we have data from other

experiments conducted under well-specified conditions. See Section 11.4.6.
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11.4.4 Is the do(x) Operator Universal?

Question to Author (from Bill Shipley)

In most experiments, the external manipulation consists of adding (or subtracting) some

amount from X without removing preexisting causes of X. For example, adding 5 kg/h

of fertilizer to a field, adding 5 mg/l of insulin to subjects, etc. Here, the preexisting

causes of the manipulated variable still exert effects, but a new variable (M) is added.

The problem that I see with the do(x) operator as a general operator of external

manipulation is that it requires two things: (1) removing any preexisting causes of x and

(2) setting x to some value. This corresponds to some types of external manipulation, but

not to all (or even most) external manipulations. I would introduce an add(x � n) opera-

tor, meaning “add, external to the preexisting causal process, an amount ‘n’ to x.”

Graphically, this consists of augmenting the preexisting causal graph with a new edge,

namely, Algebraically, this would consist of adding a new term -n- as a

cause of X (Shipley 2000b).

Author’s Answer:

In many cases, your “additive intervention” indeed represents the only way we can inter-

vene on a variable X; in others, it may represent the actual policy we wish evaluated. In

fact, the general notion of intervention (p. 113) permits us to replace the equation of X
by any other equation that fits the circumstances, not necessarily a constant X � x.

What you are proposing corresponds to replacing the old equation of X, x � f (paX),

with a new equation: x � f (paX) � n. This replacement can be represented using “instru-

mental variables,” since it is equivalent to writing x � f (paX) � I (where I is an instru-

ment) and varying I from 0 to n.
There are three points to notice:

1. The additive manipulation can be represented in the do( ) framework – we merely

apply the do( ) operator to the instrument I, and not to X itself. This is a differ-

ent kind of manipulation that needs to be distinguished from do(x) because, as

is shown below, the effect on Y may be different.

2. In many cases, scientists are not satisfied with estimating the effect of the instru-

ment on Y, but are trying hard to estimate the effect of X itself, which is often

more meaningful or more transportable to other situations. (See p. 261 for dis-

cussion of the effect of “intention to treat,” and p. 363 for an example.)

3. Consider the nonrecursive example where LISREL fails 

(p. 164). If we interpret “total effects” as the response of Y to a unit

change of the instrument I, then LISREL’s formula obtains: The effect of I on Y
is b/(1 � ab). However, if we adhere to the notion of “per unit change in X,” we

get back the do-formula: The effect of X on Y is b, not b/(1 � ab), even though

the manipulation is done through an instrument. In other words, we change I
from 0 to 1 and observe the changes in X and in Y; if we divide the change in Y
by the change in X, we get b, not b/(1 � ab).

To summarize: Yes, additive manipulation is sometimes what we need to model, and

it can be done in the do(x) framework using instrumental variables. We still need to

ay � e2,

y � bx � e1 � I, x �

M � n S X.
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distinguish, though, between the effect of the instrument and the effect of X. The former

is not stable (p. 261), the latter is. Shpitser and Pearl (2009) provide a necessary and suf-

ficient graphical condition for identifying the effect of the “add n to X” operator. 

Bill Shipley Further Asked:

Thanks for the clarification. It seems to me that the simplest, and most straightforward,

way of modeling and representing manipulations of a causal system is to simply (1)

modify the causal graph of the unmanipulated system to represent the proposed manip-

ulation, (2) translate this new graph into structural equations, and (3) derive predictions

(including conditional predictions) from the resulting equations; this is how I have treated

the notion in my book. Why worry about do(x) at all? In particular, one can model quite

sophisticated manipulations this way. For instance, one might well ask what would hap-

pen if one added an amount z to some variable x in the causal graph, in which z is

dependent on some other variable in the graph.

Author’s Reply:

The method you are proposing, to replace the current equation with

requires that we know the functional forms of f and g, as in linear

systems or, alternatively, that the parents of X are observed, as in the Process Control

example on page 74. These do not hold, however, in the non-parametric, partially

observable  settings of Chapters 3 and 4, which might render it impossible to predict the

effect of the proposed intervention from data gathered prior to the intervention, a prob-

lem we called identification. Because pre-intervention statistics is not available for vari-

able I, and f is unknown, there are semi-Markovian cases where is identifi-

able while is not; each case must be analyzed on its own

merits. It is important, therefore, to impose certain standards on this vast space of poten-

tial interventions, and focus attention on those that could illuminate others.

Science thrives on standards, because standards serve (at least) two purposes: com-

munication and theoretical focus. Mathematicians, for example, have decided that the

derivative operator “dy/dx” is a nice standard for communicating information about

change, so that is what we teach in calculus, although other operators might also serve

the purpose, for example, xdy/dx or (dy/dx)/y, etc. The same applies to causal analysis:

1. Communication: If we were to eliminate the term “treatment effect” from epi-

demiology, and replace it with detailed descriptions of how the effect was meas-

ured, we would practically choke all communication among epidemiologists. A

standard was therefore established: what we measure in a controlled, random-

ized experiment will be called “treatment effect”; the rest will be considered

variations on the theme. The “do-operator” represents this standard faithfully.

The same goes for SEM. Sewall Wright talked about “effect coefficients” and

established them as the standard of “direct effect” in path analysis (before it got

molested with regressional jargon), with the help of which more elaborate effects

can be constructed. Again, the “do-operator” is the basis for defining this standard.

2. Theoretical focus: Many of the variants of manipulations can be reduced to

“do,” or to several applications of “do.” Theoretical results established for “do”

P(y � do(x � g( f (paX), I, z)))

P(y � do(x))

x � g( f(paX), I, z),

x � f(paX)
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are then applicable to those variants. Example: your “add n” manipulation is
expressible as “do” on an instrument. Another example: questions of identifica-
tion for expressions involving “do” are applicable to questions of identification
for more sophisticated effects. On page 113, for example, we show that if the
expression P(y ƒ do(x), z) is identifiable, then so also is the effect of conditional
actions P(y ƒ do(x � g(z) if Z � z)). The same goes for many other theoretical
results in the book; they were developed for the “do”-operator, they borrow from
each other, and they are applicable to many variants.

Finally, the “surgical” operation underlying the do-operator provides the appro-
priate formalism for interpreting counterfactual sentences (see p. 204), and coun-
terfactuals are abundant in scientific discourse (see pp. 217–19). I have yet to see
any competing candidate with comparable versatility, generality, formal power,
and (not the least) conceptual appeal.

11.4.5 Causation without Manipulation!!!

Question to Author

In the analysis of direct effects, Section 4.5 invokes an example of sex discrimination in
school admission and, in several of the formulas, gender is placed under the “hat” sym-
bol or, equivalently, as an argument of the do-operator. How can gender be placed after
the do-operator when it is a variable that cannot be manipulated?

Author’s Reply

Since Holland coined the phrase “No Causation without Manipulation” (Holland
1986), many good ideas have been stifled or dismissed from causal analysis. To sup-
press talk about how gender causes the many biological, social, and psychological dis-
tinctions between males and females is to suppress 90% of our knowledge about gender
differences.

Surely we have causation without manipulation. The moon causes tides, race causes
discrimination, and sex causes the secretion of certain hormones and not others. Nature
is a society of mechanisms that relentlessly sense the values of some variables and
determine the values of others; it does not wait for a human manipulator before activat-
ing those mechanisms.

True, manipulation is one way (albeit a crude one) for scientists to test the workings
of mechanisms, but it should not in any way inhibit causal thoughts, formal definitions,
and mathematical analyses of the mechanisms that propel the phenomena under investi-
gation. It is for that reason, perhaps, that scientists invented counterfactuals; it permits
them to state and conceive the realization of antecedent conditions without specifying
the physical means by which these conditions are established.

The purpose of the “hat” symbol in Definition 4.5.1 is not to stimulate thoughts about
possible ways of changing applicants’ gender, but to remind us that any definition con-
cerned with “effects” should focus on causal links and filter out spurious associations
from the quantities defined. True, in the case of gender, one can safely replace

with , because the mechanism determining gender can
safely be assumed to be independent of the background factors that influence Y (thus

P(y � female)P(y � do( female))
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ensuring no confounding). But as a general definition, and even as part of an instructive
example, mathematical expressions concerned with direct effects and sex discrimination
should maintain the hat symbol. If nothing else, placing “female” under the “hat” sym-
bol should help propagate the long-overdue counter-slogan: “Causation without manip-
ulation? You bet!”

11.4.6 Hunting Causes with Cartwright

In her book Hunting Causes and Using Them (Cambridge University Press, 2007),
Nancy Cartwright expresses several objections to the do(x) operator and the “surgery”
semantics on which it is based (p. 72, p. 201). In so doing, she unveils several areas in
need of systematic clarification; I will address them in turn.

Cartwright description of surgery goes as follows:

Pearl gives a precise and detailed semantics for counterfactuals. But what is the
semantics a semantics of? The particular semantics Pearl develops is unsuited to a
host of natural language uses of counterfactuals, especially those for planning and
evaluation of the kind I have been discussing. That is because of the special way in
which he imagines that the counterfactual antecedent will be brought about: by a pre-
cision incision that changes exactly the counterfactual antecedent and nothing else
(except what follows causally from just that difference). But when we consider
implementing a policy, this is not at all the question we need to ask. For policy and
evaluation we generally want to know what would happen were the policy really set
in place. And whatever we know about how it might be put in place, the one thing we
can usually be sure of is that it will not be by a precise incision of the kind Pearl
assumes.

Consider for example Pearl’s axiom of composition, which he proves to hold in all
causal models – given his characterization of a causal model and his semantics for
counterfactuals. This axiom states that ‘if we force a variable (W) to a value w that it
would have had without our intervention, then the intervention will have no effect on
other variables in the system’ (p. 229). This axiom is reasonable if we envisage inter-
ventions that bring about the antecedent of the counterfactual in as minimal a way as
possible. But it is clearly violated in a great many realistic cases. Often we have no
idea whether the antecedent will in fact obtain or not, and this is true even if we allow
that the governing principles are deterministic. We implement a policy to ensure that
it will obtain – and the policy may affect a host of changes in other variables in the
system, some envisaged and some not. (Cartwright 2007, pp. 246–7)

Cartwright’s objections can thus be summarized in three claims; each will be
addressed separately.

1. In most studies we need to predict the effect of nonatomic interventions.

2. For policy evaluation “we generally want to know what would happen were the
policy really set in place,” but, unfortunately, “the policy may affect a host of
changes in other variables in the system, some envisaged and some not.”

3. Because practical policies are nonatomic, they cannot be evaluated from the
atomic semantics of the do(x) calculus even if we could envisage the variables
that are affected by the policy.
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Let us start with claim (2) – the easiest one to disprove. This objection is identical to
the one discussed in Section 11.4.3, the answer to which was: “There is no way a model
can predict the effect of an action unless one specifies correctly what variables in the
model are affected by the action, and how.” In other words, under the state of ignorance
described in claim (2) of Cartwright, a policy evaluation study must end with a trivial
answer: There is not enough information, hence, anything can happen. It is like pressing
an unknown button in the dark, or trying to solve two equations with three unknowns.
Moreover, the do-calculus can be used to test whether the state of ignorance in any given
situation should justify such a trivial answer. Thus, it would be a mistake to assume that
serious policy evaluation studies are conducted under such a state of ignorance; all pol-
icy analyses I have seen commence by assuming knowledge of the variables affected by
the policy, and expressing that knowledge formally.

Claim (1) may apply in some cases, but certainly not in most; in many studies our
goal is not to predict the effect of the crude, nonatomic intervention that we are about to
implement but, rather, to evaluate an ideal, atomic policy that cannot be implemented
given the available tools, but that represents nevertheless a theoretical relationship that
is pivotal for our understanding of the domain.

An example will help. Smoking cannot be stopped by any legal or educational means
available to us today; cigarette advertising can. That does not stop researchers from aim-
ing to estimate “the effect of smoking on cancer,” and doing so from experiments in
which they vary the instrument – cigarette advertisement – not smoking.

The reason they would be interested in the atomic intervention P(cancer ƒ do (smok-
ing)) rather than (or in addition to) P(cancer ƒ do (advertising)) is that the former repre-
sents a stable biological characteristic of the population, uncontaminated by social fac-
tors that affect susceptibility to advertisement. With the help of this stable characteristic
one can assess the effects of a wide variety of practical policies, each employing a dif-
ferent smoking-reduction instrument.

Finally, claim (3) is demonstratively disproved in almost every chapter of this book.
What could be more nonatomic than a policy involving a sequence of actions, each cho-
sen by a set of observations Z which, in turn, are affected by previous actions (see
Sections 4.4 and 11.4.1)? And yet the effect of implementing such a complex policy can
be predicted using the “surgical” semantics of the do-calculus in much the same way that
properties of complex molecules can be predicted from atomic physics.

I once challenged Nancy Cartwright (Pearl 2003a), and I would like to challenge her
again, to cite a single example of a policy that cannot either be specified and analyzed
using the do(x) operators, or proven “unpredictable” (e.g., pressing an unknown button
in the dark), again using the calculus of do (x) operators.

Ironically, shunning mathematics based on ideal atomic intervention may condemn
scientists to ineptness in handling realistic non-atomic interventions.

Science and mathematics are full of auxiliary abstract quantities that are not directly
measured or tested, but serve to analyze those that are. Pure chemical elements do not
exist in nature, yet they are indispensable to the understanding of alloys and compounds.
Negative numbers (let alone imaginary numbers) do not exist in isolation, yet they are
essential for the understanding of manipulations on positive numbers.

The broad set of problems tackled (and solved) in this book testifies that, invariably,
questions about interventions and experimentation, ideal as well as non-ideal, practical
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as well as epistemological, can be formulated precisely and managed systematically
using the atomic intervention as a primitive notion.

11.4.7 The Illusion of Nonmodularity

In her critique of the do-operator, Cartwright invokes yet another argument – the failure
of modularity, which allegedly plagues most mechanical and social systems. 

In her words:

“When Pearl talked about this recently at LSE he illustrated this requirement with a
Boolean input-output diagram for a circuit. In it, not only could the entire input for
each variable be changed independently of that for each other, so too could each
Boolean component of that input. But most arrangements we study are not like that.
They are rather like a toaster or a carburetor.”

At this point, Cartwright provides a four-equation model of a car carburetor and concludes:

The gas in the chamber is the result of the pumped gas and the gas exiting the emulsion
tube. How much each contributes is fixed by other factors: for the pumped gas both the
amount of airflow and a parameter a, which is partly determined by the geometry of the
chamber; and for the gas exiting the emulsion tube, by a parameter which also
depends on the geometry of the chamber. The point is this. In Pearl’s circuit-board, there
is one distinct physical mechanism to underwrite each distinct causal connection. But
that is incredibly wasteful of space and materials, which matters for the carburetor. One
of the central tricks for an engineer in designing a carburetor is to ensure that one and
the same physical design – for example, the design of the chamber – can underwrite or
ensure a number of different causal connections that we need all at once.

Just look back at my diagrammatic equations, where we can see a large number of
laws all of which depend on the same physical features – the geometry of the carbu-
retor. So no one of these laws can be changed on its own. To change any one requires
a redesign of the carburetor, which will change the others in train. By design the dif-
ferent causal laws are harnessed together and cannot be changed singly. So modular-
ity fails. (Cartwright 2007, pp. 15–16)

Thus, for Cartwright, a set of equations that share parameters is inherently nonmodular;
changing one equation means modifying at least one of its parameters, and if this param-
eter appears in some other equation, it must change as well, in violation of modularity.

Heckman (2005, p. 44) makes similar claims: “Putting a constraint on one equation
places a restriction on the entire set of internal variables.” “Shutting down one equation
might also affect the parameters of the other equations in the system and violate the
requirements of parameter stability.”

Such fears and warnings are illusory. Surgery, and the whole semantics and calculus
built around it, does not assume that in the physical world we have the technology to
incisively modify the mechanism behind each structural equation while leaving all oth-
ers unaltered. Symbolic modularity does not assume physical modularity. Surgery is a
symbolic operation which makes no claims about the physical means available to the
experimenter, or about invisible connections that might exist between the mechanisms
involved.

a�,
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Symbolically, one can surely change one equation without altering others and pro-
ceed to define quantities that rest on such “atomic” changes. Whether the quantities
defined in this manner correspond to changes that can be physically realized is a totally
different question that can only be addressed once we have a formal description of the
interventions available to us. More importantly, shutting down an equation does not nec-
essarily mean meddling with its parameters; it means overruling that equation, namely,
leaving the equation intact but lifting the outcome variable from its influence.

A simple example will illustrate this point.
Assume we have two objects under free-fall conditions. The respective accelerations,

a1 and a2, of the two objects are given by the equations:

(11.12)
, (11.13)

where g is the earth’s gravitational pull. The two equations share a parameter, g, and
appear to be nonmodular in Cartwright’s sense; there is indeed no physical way of
changing the gravitational force on one object without a corresponding change on the
other. However, this does not mean that we cannot intervene on object 1 without touch-
ing object 2. Assume we grab object 1 and bring it to a stop. Mathematically, the inter-
vention amounts to replacing equation (11.12) by

(11.14)

while leaving equation (11.13) intact. Setting g to zero in equation (11.12) is a symbolic
surgery that does not alter g in the physical world but, rather, sets a1 to 0 by bringing
object 1 under the influence of a new force, f, emanating from our grabbing hand. Thus,
equation (11.14) is a result of two forces:

, (11.15)

where which is identical to (11.14).
This same operation can be applied to Cartwright carburetor; for example, the gas out-

flow can be fixed without changing the chamber geometry by installing a flow regulator
at the emulsion tube. It definitely applies to economic systems, where human agents are
behind most of the equations; the left-hand side of the equations can be fixed by expos-
ing agents to different information, rather than by changing parameters in the physical
world. A typical example emerges in job discrimination cases (Section 4.5.3). To test the
“effect of gender on hiring” one need not physically change the applicant’s gender; it is
enough to change the employer’s awareness of the applicant’s gender. I have yet to see an
example of an economic system which is not modular in the sense described here.

This operation of adding a term to the right-hand side of an equation to ensure con-
stancy of the left-hand side is precisely how Haavelmo (1943) envisioned surgery in eco-
nomic settings. Why his wisdom disappeared from the teachings of his disciples in 2008
is one of the great mysteries of economics (see Hoover (2004)); my theory remains (p.
138) that it all happened due to a careless choice of notation which crumbled under the
ruthless invasion of statistical thinking in the early 1970s.

More on the confusion in econometrics and the reluctance of modern-day econome-
tricians to reinstate Haavelmo’s wisdom is to be discussed in Section 11.5.4.

f � �gm1,

a1 � g � f>m1

a1 � 0

a2 � g

a1 � g
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11.5 CAUSAL ANALYSIS IN LINEAR STRUCTURAL MODELS

11.5.1 General Criterion for Parameter Identification (Chapter 5, pp. 149–54)
Question to Author:

The parameter identification method described in Section 5.3.1 rests on repetitive appli-

cations of two basic criteria: (1) the single-door criterion of Theorem 5.3.1, and (2) the

back-door criterion of Theorem 5.3.2. This method may require appreciable bookkeep-

ing in combining results from various segments of the graph. Is there a single graphical

criterion of identification that unifies the two theorems and thus avoids much of the

bookkeeping involved?

Author’s Reply:

A unifying criterion is described in the following lemma (Pearl 2004):

Lemma 11.5.1 (Graphical identification of direct effects)

Let c stand for the path coefficient assigned to the arrow in a causal graph G.
Parameter c is identified if there exists a pair (W, Z), where W is a single node in G (not
excluding W � X), and Z is a (possibly empty) set of nodes in G, such that:

1. Z consists of nondescendants of Y,

2. Z d-separates W from Y in the graph Gc formed by removing from G,

3. W and X are d-connected, given Z, in Gc.

Moreover, the estimand induced by the pair (W, Z) is given by:

.

The intuition is that, conditional on Z, W acts as an instrumental variable relative to

See also McDonald (2002a). More general identification methods are reported in

Brito and Pearl (2002a,b,c; 2006), and surveyed in Brito (2010).

11.5.2 The Causal Interpretation of Structural Coefficients
Question to Author:

In response to assertions made in Sections 5.1 and 5.4 that a correct causal interpreta-

tion is conspicuously absent from SEM books and papers, including all 1970–99 texts

in economics, two readers wrote that the “unit-change” interpretation is common and

well accepted in the SEM literature. L.H. from the University of Alberta wrote:

Page 245 of L. Hayduk, Structural Equation Modeling with LISREL: Essentials and
Advances, 1987, [states] that a slope can be interpreted as: the magnitude of the

change in y that would be predicted to accompany a unit change in x with the other

variables in the equation left untouched at their original values.

O.D. Duncan, Introduction to Structural Equation Models (1975) pages 1 and 2 are

pretty clear on b as causal. More precisely, it says that “a change of one unit in x
…produces a change of b units in y” (page 2). I suspect that H. M. Blalock’s book

X S Y.

c �
coy(Y, W � Z)

coy(X, W � Z)

X S Y

X S Y
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‘Causal models in the social sciences,’ and D. Heise’s book ‘Causal analysis’ proba-
bly speak of b as causal.

S.M., from Georgia Tech, concurs:
Heise, author of Causal Analysis (1975), regarded the b of causal equations to be how
much a unit change in a cause produced an effect in an effect variable. This is a well-
accepted idea.

Author’s Reply:

The “unit change” idea appears, sporadically and informally, in several SEM publica-
tions, yet, similarly to counterfactuals in econometrics (Section 11.5.5) it has not been
operationalized through a precise mathematical definition.

The paragraph cited above (from Hayduk 1987) can serve to illustrate how the
unit change idea is typically introduced in the SEM literature and how it should be
introduced using modern understanding of causal modeling. The original paragraph
reads:

The interpretation of structural coefficients as “effect coefficients” originates with
ordinary regression equations like

for the effects of variables X1, X2, and X3 on variable X0. We can interpret the estimate
of bi as the magnitude of the change in X0 that would be predicted to accompany a
unit change INCREASE in X1 with X2 and X3 left untouched at their original values.
We avoid ending with the phrase “held constant” because this phrase must be aban-
doned for models containing multiple equations, as we shall later see. Parallel inter-
pretations are appropriate for b2 and b3. (Hayduk 1987, p. 245)

This paragraph illustrates how two basic distinctions are often conflated in the SEM
literature. The first is the distinction between structural coefficients and regressional
(or statistical) estimates of those coefficients. We rarely find the former defined inde-
pendently of the latter – a confusion that is rampant and especially embarrassing in
econometric texts. The second is the distinction between “held constant” and “left
untouched” or “found to remain constant,” for which the do(x) operator was devised.
(Related distinctions: “doing” versus “seeing” and “interventional change” versus “nat-
ural change.”)

To emphasize the centrality of these distinctions I will now propose a concise revi-
sion of Hayduk’s paragraph:

Proposed Revised Paragraph

The interpretation of structural coefficients as “effect coefficients” bears some resem-
blance to, but differs fundamentally from, the interpretation of coefficients in regression
equations like

. (11.16)

If (11.16) is a regression equation, then b1 stands for the change in X0 that would be
predicted to accompany a unit change in X1 in those situations where X2 and X3 remain

X0 � a � b1X1 � b2X2 � b3 X3 � e

X0 � a � b1X1 � b2X2 � b 3 X 3 � e
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constant at their original values. We formally express this interpretation using condi-
tional expectations:

(11.17)

Note that, as a regression equation, (11.16) is claimless; i.e., it cannot be falsified by
any experiment and, from (11.17), e is automatically rendered uncorrelated with X1, X2,
and X3.

In contrast, if equation (11.16) represents a structural equation, it makes empirical
claims about the world (e.g., that other variables in the system do not affect X0 once we
hold X1, X2, and X3 fixed), and the interpretation of b1 must be modified in two funda-
mental ways. First, the phrase “a unit change in X1” must be qualified to mean “a unit
interventional change in X1,” thus ruling out changes in X1 that are produced by other
variables in the model (possibly correlated with e). Second, the phrase “where X2 and X3
remain constant” must be abandoned and replaced by the phrase “if we hold X2 and X3
constant,” thus ensuring constancy even when X2 is affected by X1.

Formally, these two modifications are expressed as:

. (11.18)

The phrase “left untouched at their original values” may lead to ambiguities.
Leaving variables untouched permits those variables to vary (e.g., in response to the unit
increase in X1 or other influences), in which case the change in X0 would correspond to
the total effect

(11.19)

or to the marginal conditional expectation

(11.20)

depending on whether the change in X1 is interventional or observational. None of
(11.19) or (11.20) matches the meaning of b1 in equation (11.16), regardless of whether
we treat (11.16) as a structural or a regression equation.

The interpretation expressed in (11.18) holds in all models, including those contain-
ing multiple equations, recursive and nonrecursive, regardless of whether e is correlated
with other variables in the model and regardless of whether X2 and X3 are affected by
X1. In contrast, expression (11.17) coincides with (11.18) only under very special cir-
cumstances (defined by the single-door criterion of Theorem 5.3.1). It is for this reason
that we consider (11.18), not (11.17), to be an “interpretation” of b1; (11.17) interprets the
“regression estimate” of b1 (which might well be biased), while (11.18) interprets b1 itself.

11.5.3 Defending the Causal Interpretation of SEM (or, SEM Survival Kit)

Question to Author:

J. Wilson from Surrey, England, asked about ways of defending his Ph.D. thesis before
examiners who do not approve of the causal interpretation of structural equation models
(SEM). He complained about “the complete lack of emphasis in PhD programmes on

E(X0 � x1 � 1) � E(X0 � x1),

E(X0 � do(x1 � 1)) � E(X0 � do(x1))

b1 � E(X0 � do(x1 � 1, x2, x3)) � E(X0 � do(x1, x2, x3))

 � RX0 X1
#X2 X3

.
 b1 � E(X0 � x1 � 1, x2, x3) � E(X0 � x1, x2, x3)
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how to defend causal interpretations and policy implications in a viva when SEM is used …
if only causality had been fully explained at the beginning of the programme, then each
of the 70,000 words used in my thesis would have been carefully measured to defend
first the causal assumptions, then the data, and finally the interpretations … (I wonder
how widespread this problem is?) Back to the present and urgent task of trying to satisfy
the examiners, especially those two very awkward Stat Professors – they seem to be
trying to outdo each other in nastiness.”

Author’s Reply:

The phenomenon that you complain about is precisely what triggered my writing of
Chapter 5 – the causal interpretation of SEM is still a mystery to most SEMs researchers,
leaders, educators, and practitioners. I have spent hours on SEMNET Discussion List
trying to rectify the current neglect, but it is only students like yourself who can turn
things around and help reinstate the causal interpretation to its central role in SEM
research.

As to your concrete question – how to defend the causal interpretation of SEM
against nasty examiners who oppose such interpretation – permit me to assist by
sketching a hypothetical scenario in which you defend the causal interpretation of your
thesis in front of a hostile examiner, Dr. EX. (Any resemblance to Dr. EX is purely coin-
cidental.)

A Dialogue with a Hostile Examiner

or

SEM Survival Kit

For simplicity, let us assume that the model in your thesis consists of just two-equations,

(11.21)

, (11.22)

with e2 uncorrelated with x. The associated diagram is given in Figure 11.14. Let us fur-
ther assume that the target of your thesis was to estimate parameter c, that you have esti-
mated c satisfactorily to be c � 0.78 using the best SEM methods, and that you have
given a causal interpretation to your finding.

Now your nasty examiner, Dr. EX, arrives and questions your interpretation.
Dr. EX: What do you mean by “c has a causal interpretation”? 
You: I mean that a unit change in y will bring about a c units change in E(Z).
Dr. EX: The words “change” and “bring about” make me uncomfortable; let’s be

scientific. Do you mean E(Z ƒ y) � cy � a??? I can understand this last expression,
because the conditional expectation of Z given y, E(Z ƒ y), is well defined mathemati-
cally, and I know how to estimate it from data. But “change” and “bring about” is jar-
gon to me. 

You: I actually mean “change,” not “an increase in conditional expectation,” and by
“change” I mean the following: If we had the physical means of fixing y at some

z � cy � e2

y � bx � e1
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constant y1, and of changing that constant from y1 to y2, then the observed change in
E(Z) would be c(y2 – y1).

Dr. EX: Well, well, aren’t we getting a bit metaphysical here? I never heard about
“fixing” in my statistics classes.

You: Oh, sorry, I did not realize you have statistics background. In that case, let me
rephrase my interpretation a bit, to read as follows: If we had the means of conducting
a controlled randomized experiment, with y randomized, then if we set the control group
to y1 and the experimental group to y2, the observed difference in E(Z) would be E(Z2) �
E(Z1) � c(y2 � y1) regardless of what values y1 and y2 we choose. (Z1 and Z2 are the
measurements of z under the control and experimental groups, respectively.)14

Dr. EX: That sounds much closer to what I can understand. But I am bothered by a
giant leap that you seem to be making. Your data was nonexperimental, and in your
entire study you have not conducted a single experiment. Are you telling us that your
SEM exercise can take data from an observational study, do some LISREL analysis on
it, and come up with a prediction of what the outcome of a controlled randomized exper-
iment will be? You’ve got to be kidding!! Do you know how much money can be saved
nationwide if we could replace experimental studies with SEM magic?

You: This is not magic, Dr. EX, it is plain logic. The input to my LISREL analysis was
more than just nonexperimental data. The input consisted of two components: (1) data, (2)
causal assumptions; my conclusion logically follows from the two. The second component
is absent in standard experimental studies, and that is what makes them so expensive.

Dr. EX: What kind of assumptions? “Causal”? I never heard of such strangers. Can
you express them mathematically the way we normally express assumptions – say, in the
form of conditions on the joint density, or properties of the covariance matrix? 

You: Causal assumptions are of a different kind; they cannot be written in the vocab-
ulary of density functions or covariance matrices. Instead, they are expressed in my
causal model. 

Dr. EX: Looking at your model, equations (11.21)–(11.22), I do not see any new
vocabulary; all I see is equations.

You: These are not ordinary algebraic equations, Dr. EX. These are “structural equa-
tions,” and if we read them correctly, they convey a set of assumptions with which you are
familiar, namely, assumptions about the outcomes of hypothetical randomized experiments
conducted on the population – we call them “causal” or “modeling” assumptions, for
want of better words, but they can be understood as assumptions about the behavior of
the population under various randomized experiments.

Dr. EX: Wait a minute! Now that I begin to understand what your causal assumptions
are, I am even more puzzled than before. If you allow yourself to make assumptions about
the behavior of the population under randomized experiments, why go through the trou-
ble of conducting a study? Why not make the assumption directly that in a randomized
experiment, with y randomized, the observed difference in E(Z) should be 
with just any convenient number, and save yourself agonizing months of data collec-
tion and analysis. He who believes your other untested assumptions should also believe
your assumption. E(Z2) � E(Z1) � c�(y2 � y1)

c�

c�(y2 � y1),
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You: Not so, Dr. EX. The modeling assumptions with which my program begins are
much milder than the assertion E(Z2) � E(Z1) � 0.78(y2 � y1) with which my study con-
cludes. First, my modeling assumptions are qualitative, while my conclusion is quanti-
tative, making a commitment to a specific value of c � 0.78. Second, many researchers
(including you, Dr. EX) would be prepared to accept my assumptions, not my conclusion,
because the former conforms to commonsense understanding and general theoretical
knowledge of how the world operates. Third, the majority of my assumptions can be
tested by experiments that do not involve randomization of y. This means that if ran-
domizing y is expensive, or infeasible, we still can test the assumptions by controlling
other, less formidable variables. Finally, though this is not the case in my study, model-
ing assumptions often have some statistical implications that can be tested in nonexper-
imental studies, and, if the test turns out to be successful (we call it “fit”), it gives us
further confirmation of the validity of those assumptions.

Dr. EX: This is getting interesting. Let me see some of those “causal” or modeling
assumptions, so I can judge how mild they are.

You: That’s easy, have a look at our model, Figure 11.14, where

z – student’s score on the final exam,
y – number of hours the student spent on homework,
x – weight of homework (as announced by the teacher) in the final grade.

When I put this model down on paper, I had in mind two randomized experiments, one
where x is randomized (i.e., teachers assigning weight at random), the second where the
actual time spent on homework (y) is randomized. The assumptions I made while think-
ing of those experiments were:

1. Linearity and exclusion for y: with b unknown 
(Y2 and Y1 are the time that would be spent on homework under announced weights
x2 and x1, respectively.) Also, by excluding z from the equation, I assumed that the
score z would not affect y, because z is not known at the time y is decided.

2. Linearity and exclusion for z: for all x, with c
unknown. In words, x has no effect on z, except through y.

In addition, I made qualitative assumptions about unmeasured factors that govern x under
nonexperimental conditions; I assumed that there are no common causes for x and z.

Do you, Dr. EX, see any objection to any of these assumptions?
Dr. EX: Well, I agree that these assumptions are milder than a blunt, unsupported dec-

laration of your thesis conclusion, E(Z2) � E(Z1) � 0.78(y2 � y1), and I am somewhat
amazed that such mild assumptions can support a daring prediction about the actual
effect of homework on score (under experimental setup). But I am still unhappy with
your common cause assumption. It seems to me that a teacher who emphasizes the
importance of homework would also be an inspiring, effective teacher, so e2 (which
includes factors such as quality of teaching) should be correlated with x, contrary to your
assumption.

You: Dr. EX, now you begin to talk like an SEM researcher. Instead of attacking the
method and its philosophy, we are beginning to discuss substantive issues – e.g., whether
it is reasonable to assume that a teacher’s effectiveness is uncorrelated with the weight

E(Z2) � E(Z1) � c(y2 � y1)

E(Y2) � E(Y1) � b(x2 � x1),
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that the teacher assigns to homework. I personally have had great teachers that could not
care less about homework, and conversely so.

But this is not what my thesis is about. I am not claiming that teachers’ effectiveness
is uncorrelated with how they weigh homework; I leave that to other researchers to test
in future studies (or might it have been tested already?). All I am claiming is: Those
researchers who are willing to accept the assumption that teachers’ effectiveness is
uncorrelated with how they weigh homework will find it interesting to note that this
assumption, coupled with the data, logically implies the conclusion that an increase of
one homework-hour per day causes an (average) increase of 0.78 grade points in stu-
dent’s score. And this claim can be verified empirically if we are allowed a controlled
experiment with randomized amounts of homework (y).

Dr. EX: I am glad you do not insist that your modeling assumptions are true; you
merely state their plausibility and explicate their ramifications. I cannot object to that.
But I have another question. You said that your model does not have any statistical impli-
cations, so it cannot be tested for fitness to data. How do you know that? And doesn’t
this bother you?

You: I know it by just looking at the graph and examining the missing links. A criteri-
on named d-separation (see Section 11.1.2, “d-separation without tears”) permits stu-
dents of SEM to glance at a graph and determine whether the corresponding model
implies any constraint in the form of a vanishing partial correlation between variables.
Most statistical implications (though not all) are of this nature. The model in our exam-
ple does not imply any constraint on the covariance matrix, so it can fit perfectly any
data whatsoever. We call this model “saturated,” a feature that some SEM researchers,
unable to shake off statistical-testing traditions, regard as a fault of the model. It isn’t.
Having a saturated model at hand simply means that the investigator is not willing to
make implausible causal assumptions, and that the mild assumptions he/she is willing
to make are too weak to produce statistical implications. Such a conservative attitude
should be commended, not condemned. Admittedly, I would be happy if my model
were not saturated – say, if e1 and e2 were uncorrelated. But this is not the case at hand;
common sense tells us that e1 and e2 are correlated, and it also shows in the data. I tried
assuming coy(e1, e2) � 0, and I got terrible fit. Am I going to make unwarranted
assumptions just to get my model “knighted” as “nonsaturated”? No! I would rather
make reasonable assumptions, get useful conclusions, and report my results side by
side with my assumptions.

Dr. EX: But suppose there is another saturated model, based on equally plausible
assumptions, yet leading to a different value of c. Shouldn’t you be concerned with the
possibility that some of your initial assumptions are wrong, hence that your conclusion
c � 0.78 is wrong? There is nothing in the data that can help you prefer one model over
the other.

You: I am concerned indeed, and, in fact, I can immediately enumerate the structures
of all such competing models; the two models in Figure 11.15 are examples, and many
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more. (This too can be done using the d-separation criterion; see pp. 145–8.) But note
that the existence of competing models does not in any way weaken my earlier stated
claim: “Researchers who accept the qualitative assumptions of model M are compelled
to accept the conclusion c � 0.78.” This claim remains logically invincible. Moreover,
the claim can be further refined by reporting the conclusions of each contending model,
together with the assumptions underlying that model. The format of the conclusion will
then read:

If you accept assumption set A1, then c � c1 is implied,
If you accept assumption set A2, then c � c2 is implied,

and so on.
Dr. EX: I see, but still, in case we wish to go beyond these conditional statements and

do something about deciding among the various assumption sets, are there no SEM meth-
ods to assist one in this endeavor? We, in statistics, are not used to facing problems with
two competing hypotheses that cannot be submitted to some test, however feeble. 

You: This is a fundamental difference between statistical data analysis and SEM.
Statistical hypotheses, by definition, are testable by statistical methods. SEM models,
in contrast, rest on causal assumptions, which, also by definition (see p. 39), cannot be
given statistical tests. If our two competing models are saturated, we know in advance
that there is nothing more we can do but report our conclusions in a conditional format, as
listed above. If, however, the competition is among equally plausible yet statistically
distinct models, then we are facing the century-old problem of model selection, where
various selection criteria such as AIC have been suggested for analysis. However, the
problem of model selection is now given a new, causal twist – our mission is not to
maximize fitness, or to maximize predictive power, but rather to produce the most reli-
able estimate of causal parameters such as c. This is a new arena altogether (see Pearl
2004).

Dr. EX: Interesting. Now I understand why my statistician colleagues got so totally
confused, mistrustful, even antagonistic, upon encountering SEM methodology (e.g.,
Freedman 1987; Holland 1988; Wermuth 1992). One last question. You started talking
about randomized experiments only after realizing that I am a statistician. How would
you explain your SEM strategy to a nonstatistician?

You: I would use plain English and say: “If we have the physical means of fixing y
at some constant y1, and of changing that constant from y1 to y2, then the observed
change in E(Z) would be c(y2 � y1).” Most people understand what “fixing” means,
because this is on the mind of policy makers. For example, a teacher interested in the
effect of homework on performance does not think in terms of randomizing homework.
Randomization is merely an indirect means for predicting the effect of fixing.

Actually, if the person I am talking to is really enlightened (and many statisticians
are), I might even resort to counterfactual vocabulary and say, for example, that a stu-
dent who scored z on the exam after spending y hours on homework would have scored
z � c had he/she spent y � 1 hours on homework. To be honest, this is what I truly had
in mind when writing the equation z � cy � e2, where e2 stood for all other character-
istics of the student that were not given variable names in our model and that are not
affected by y. I did not even think about E(Z), only about z of a typical student.
Counterfactuals are the most precise linguistic tool we have for expressing the meaning
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of scientific relations. But I refrain from mentioning counterfactuals when I talk to statis-
ticians because, and this is regrettable, statisticians tend to suspect deterministic concepts,
or concepts that are not immediately testable, and counterfactuals are such concepts
(Dawid 2000; Pearl 2000).

Dr. EX: Thanks for educating me on these aspects of SEM. No further questions.
You: The pleasure is mine.

11.5.4 Where Is Economic Modeling Today? – Courting Causes with Heckman

Section 5.2 of this book decries the decline in the understanding of structural equation
modeling in econometric in the past three decades (see also Hoover 2003, “Lost
Causes”) and attributes this decline to a careless choice of notation which blurred the
essential distinction between algebraic and structural equations. In a series of articles
(Heckman 2000, 2003, 2005; Heckman and Vytlacil 2007), James Heckman has set out
to overturn this perception, reclaim causal modeling as the central focus of economic
research, and reestablish economics as an active frontier in causal analysis. This is not
an easy task by any measure. To adopt the conceptual and technical advances that have
emerged in neighboring disciplines would amount to admitting decades of neglect in
econometrics, while to dismiss those advances would necessitate finding them econo-
metric surrogates. Heckman chose the latter route, even though most modern advances
in causal modeling are rooted in the ideas of economists such as Haavelmo (1943),
Marschak (1950), and Strotz and Wold (1960).

One step in Heckman’s program was to reject the do-operator and the “surgery”
semantics upon which it is based, thus depriving economists of the structural semantics
of counterfactuals developed in this book (especially Chapter 7), which unifies tradi-
tional econometrics with the potential-outcome approach. Heckman’s reasons for reject-
ing surgery are summarized thus:

Controlled variation in external (forcing) variables is the key to defining causal effects
in nonrecursive models … Pearl defines a causal effect by ‘shutting one equation
down’ or performing ‘surgery’ in his colorful language. He implicitly assumes that
‘surgery,’ or shutting down an equation in a system of simultaneous equations, uniquely
fixes one outcome or internal variable (the consumption of the other person in my
example). In general, it does not. Putting a constraint on one equation places a restric-
tion on the entire set of internal variables. In general, no single equation in a system
of simultaneous equations uniquely determines any single outcome variable. Shutting
down one equation might also affect the parameters of the other equations in the sys-
tem and violate the requirements of parameter stability. (Heckman and Vytlacil 2007)

Clearly, Heckman’s objections are the same as Cartwright’s (Section 11.4.6):

1. Ideal surgery may be technically infeasible,

2. Economic systems are nonmodular.

We have repudiated these objections in four previous subsections (11.4.3–11.4.6)
which readers can easily reapply to deconstruct Heckman’s arguments. It is important to
reemphasize, though, that, as in the case of Cartwright, these objections emanate from
conflating the task of definition (of counterfactuals) with those of identification and
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practical estimation, a frequent confusion among researchers which Heckman (2005)
sternly warns readers to avoid.

This conflation is particularly visible in Heckman’s concern that “shutting down one
equation might also affect the parameters of the other equations in the system.” In the phys-
ical world, attempting to implement the conditions dictated by a “surgery” may sometimes
affect parameters in other equations, and, as we shall see, the same applies to Heckman’s
proposal of “external variation.” However, we are dealing here with symbolic, not physical,
manipulations. Our task is to formulate a meaningful mathematical definition of “the causal
effect of one variable on another” in a symbolic system called a “model.” This permits us to
manipulate symbols at will, while ignoring the technical feasibility of these manipulations.
Implementational considerations need not enter the discussion of definition.

A New Definition of Causal Effects: “External Variation”

Absent surgery semantics, Heckman and Vytlacil (HV) set out to configure a new defi-
nition of causal effects, which, hopefully, would be free of the faults they discovered in
the surgery procedure, by basing it on “external-variations,” instead of shutting down
equations. It is only unfortunate that their new definition, the cornerstone of their logic of
counterfactuals, is not given an explicit formal exposition: it is relegated to a semifor-
mal footnote (HV, p. 77) that even a curious and hard-working reader would find
difficult to decipher. The following is my extrapolation of HV’s definition as it applies
to multi-equations and nonlinear systems.

Given a system of equations:

,

where X and U are sets of observed and unobserved external variables, respectively, the
causal effect of Yj on Yk is computed in four steps:

1. Choose any member Xt of X that appears in fj. If none exists, exit with failure.

2. If Xt appears in any other equation as well, consider excluding it from that equation
(e.g., set its coefficient to zero if the equation is linear or replace Xt by a constant).15

3. Solve for the reduced form

(11.23)

of the resulting system of equations.

4. The causal effect of Yj on Yk is given by the partial derivative:

. (11.24)

Example 11.5.2 Consider a system of three equations:

.Y3 � dY1 � U3

Y2 � bY1 � X � U2

Y1 � aY2 � cY3 � eX � U1

dYk>dYj � dgk>dXt : dgj>dXt

Yi � gi(X, U) i � 1, 2, p , n

Yi � fi 
(Y, X, U) i � 1, 2, p , n
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Needed: the causal effect of Y2 on Y1.

The system has one external variable, X, which appears in the first two equations. If
we can set e � 0, x will appear in the equation of Y2 only, and we can then proceed to
Step 3 of the “external variation” procedure. The reduced form of the modified model
yields:

,

and the causal effect of Y1 on Y2 calculates to:

.

In comparison, the surgery procedure constructs the following modified system of
equations:

,

from which we obtain for the causal effect of Y2 on Y1;

,

an expression identical to that obtained from the “external variation” procedure.
It is highly probable that the two procedures always yield identical results, which

would bestow validity and conceptual clarity on the “external variation” definition.

11.5.5 External Variation versus Surgery

In comparing their definition to the one provided by the surgery procedure, HV write 
(p. 79): “Shutting down an equation or fiddling with the parameters … is not required 
to define causality in an interdependent, nonrecursive system or to identify causal
parameters. The more basic idea is exclusion of different external variables from different
equations which, when manipulated, allow the analyst to construct the desired causal
quantities.”

I differ with HV on this issue. I believe that “surgery” is the more basic idea, more
solidly motivated, and more appropriate for policy evaluation tasks. I further note that
basing a definition on exclusion and external variation suffers from the following flaws:

1. In general, “exclusion” involves the removal of a variable from an equation and
amounts to “fiddling with the parameters.” It is, therefore, a form of “surgery” –
a modification of the original system of equations – and would be subject to the
same criticism one may raise against “surgery.” Although we have refuted such
criticism in previous sections, we should nevertheless note that if it ever has a
grain of validity, the criticism would apply equally to both methods.

2. The idea of relying exclusively on external variables to reveal internal
cause–effect relationships has its roots in the literature on identification (e.g.,
as in the studies of “instrumental variables”) when such variables act as
“nature’s experiments.” This restriction, however, is unjustified in the context

dY1>dy2 � a>(1 � cd)

Y3 � dY1 � U3

Y2 � y2

Y1 � aY2 � cY3 � eX � U1

dY1>dY2 � a>(1 � cd)

dY2>dX � (1 � cd)>(1 � ab � cd)dY1>dX � a>(1 � ba � cd)
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of defining causal effect, since “causal effects” are meant to quantify effects
produced by new external manipulations, not necessarily those shown explicitly
in the model and not necessarily those operating in the data-gathering phase of
the study. Moreover, every causal structural equation model, by its very nature,
provides an implicit mechanism for emulating such external manipulations, via
surgery.

Indeed, most policy evaluation tasks are concerned with new external manipu-
lations which exercise direct control over endogenous variables. Take, for
example, a manufacturer deciding whether to double the current price of a given
product after years of letting the price track the cost, i.e., price � f (cost). Such
a decision amounts to removing the equation price � f (cost) from the model at
hand (i.e., the one responsible for the available data) and replacing it with a con-
stant equal to the new price. This removal emulates faithfully the decision under
evaluation, and attempts to circumvent it by appealing to “external variables” are
artificial and hardly helpful.

As another example, consider the well-studied problem (Heckman 1992) of evalu-
ating the impact of terminating an educational program for which students are
admitted based on a set of qualifications. The equation admission � f (qualifica-
tions) will no longer hold under program termination, and no external variable can
simulate the new condition (i.e., admission � 0) save for one that actually neutral-
izes (or “ignores,” or “shuts down”) the equation admission � f (qualifications).

It is also interesting to note that the method used in Haavelmo (1943) to define
causal effects is mathematically equivalent to surgery, not to external variation.
Instead of replacing the equation Yj � fj(Y, X, U) with Yj � yj, as would be
required by surgery, Haavelmo writes Yj � fj (Y, X, U) � xj, where Xj is chosen
so as to make Yj constant, Yj � yj. Thus, since Xj liberates Yj from any residual
influence of fj (Y, X, U), Haavelmo’s method is equivalent to that of surgery.
Heckman’s method of external variation leaves Yj under the influence fj.

3. Definitions based on external variation have the obvious flaw that the target
equation may not contain any observable external variable. In fact, in many
cases the set of observed external variables in the system is empty (e.g., Fig-
ure 3.5). Additionally, a definition based on a ratio of two partial derivatives does
not generalize easily to nonlinear systems with discrete variables. Thus, those
who seriously accept Heckman’s definition would be deprived of the many iden-
tification techniques now available for instrumentless models (see Chapters 3
and 4) and, more seriously yet, would be unable to even ask whether causal
effects are identified in any such model – identification questions are meaning-
less for undefined quantities.

Fortunately, liberated by the understanding that definitions can be based on purely
symbolic manipulations, we can modify Heckman’s proposal and add fictitious
external variables to any equation we desire. The added variables can then serve
to define causal effects in a manner similar to the steps in equations (11.23) and
(11.24) (assuming continuous variables). This brings us closer to surgery, with
the one basic difference of leaving Yj under the influence of fj (Y, X, U).
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Having argued that definitions based on “external variation” are conceptually ill-
motivated, we now explore whether they can handle noncausal systems of equations.

Equation Ambiguity in Noncausal Systems

Several economists (Leroy 2002; Neuberg 2003; Heckman and Vytlacil 2007) have crit-
icized the do-operator for its reliance on causal, or directional, structural equations,
where we have a one-to-one correspondence between variables and equations. HV voice
this criticism thus: “In general, no single equation in a system of simultaneous equations
uniquely determines any single outcome variable” (Heckman and Vytlacil 2007, p. 79).

One may guess that Heckman and Vytlacil refer here to systems containing nondirec-
tional equations, namely, equations in which the equality sign does not stand for the non-
symmetrical relation “is determined by” or “is caused by” but for symmetrical algebraic
equality. In econometrics, such noncausal equations usually convey equilibrium or
resource constraints; they impose equality between the two sides of the equation but do not
endow the variable on the left-hand side with the special status of an “outcome” variable.

The presence of nondirectional equations creates ambiguity in the surgical definition
of the counterfactual Yx, which calls for replacing the equation determining X with the
constant equation X � x. If X appears in several equations, and if the position of X in the
equation is arbitrary, then each one of those equations would be equally qualified for
replacement by X � x, and the value of Yx (i.e., the solution for Y after replacement)
would be ambiguous.

Note that symmetrical equalities differ structurally from reciprocal causation in
directional nonrecursive systems (i.e., systems with feedback, as in Figure 7.4), since, in
the latter, each variable is an “outcome” of precisely one equation. Symmetrical con-
straints can nevertheless be modeled as the solution of a dynamic feedback system in
which equilibrium is reached almost instantaneously (Lauritzen and Richardson 2002;
Pearl 2003a).

Heckman and Vytlacil create the impression that equation ambiguity is a flaw of the
surgery definition and does not plague the exclusion-based definition. This is not the case.
In a system of nondirectional equations, we have no way of knowing which external
variable to exclude from which equation to get the right causal effect.

For example: Consider a nonrecursive system of two equations that is discussed in
HV, p. 75:

(11.25)

. (11.26)

Suppose we move Y1 to the l.h.s. of (11.26) and get:

. (11.27)

To define the causal effect of Y1 on Y2, we now have a choice of excluding X2 from
(11.25) or from (11.27). The former yields c12, while the latter yields l/c21. We see that
the ambiguity we have in choosing an equation for surgery translates into ambiguity in
choosing an equation and an external variable for exclusion.

Methods of breaking this ambiguity were proposed by Simon (1953) and are dis-
cussed on pages 226–8.

Y1 � [a2 � Y2 � b21X1 � b22 X2 � U2]>c21

Y2 � a2 � c21Y1 � b21X1 � b22 X2 � U2

Y1 � a1 � c12Y2 � b11X1 � b12 X2 � U1
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Summary – Economic Modeling Reinvigorated

The idea of constructing causal quantities by exclusion and manipulation of external
variables, while soundly motivated in the context of identification problems, has no log-
ical basis when it comes to model-based definitions. Definitions based on surgery, on the
other hand, enjoy generality, semantic clarity, and computational simplicity.

So, where does this leave econometric modeling? Is the failure of the “external vari-
able” approach central or tangential to economic analysis and policy evaluation?

In almost every one of his recent articles James Heckman stresses the importance of
counterfactuals as a necessary component of economic analysis and the hallmark of econo-
metric achievement in the past century. For example, the first paragraph of the HV article
reads: “they [policy comparisons] require that the economist construct counterfactuals.
Counterfactuals are required to forecast the effects of policies that have been tried in one
environment but are proposed to be applied in new environments and to forecast the effects
of new policies.” Likewise, in his Sociological Methodology article (2005), Heckman
states: “Economists since the time of Haavelmo (1943, 1944) have recognized the need for
precise models to construct counterfactuals… The econometric framework is explicit
about how counterfactuals are generated and how interventions are assigned…”

And yet, despite the proclaimed centrality of counterfactuals in econometric analy-
sis, a curious reader will be hard pressed to identify even one econometric article or text-
book in the past 40 years in which counterfactuals or causal effects are formally defined.
Needed is a procedure for computing the counterfactual Y(x, u) in a well-posed, fully
specified economic model, with X and Y two arbitrary variables in the model. By reject-
ing Haavelmo’s definition of Y(x, u), based on surgery, Heckman commits econometrics
to another decade of division and ambiguity, with two antagonistic camps working in
almost total isolation.

Economists working within the potential-outcome framework of the Neyman-Rubin
model take counterfactuals as primitive, unobservable variables, totally detached from
the knowledge encoded in structural equation models (e.g., Angrist 2004; Imbens 2004).
Even those applying propensity score techniques, whose validity rests entirely on the
causal assumption of “ignorability,” or unconfoundedness, rarely know how to confirm
or invalidate that assumption using structural knowledge (see Section 11.3.5).
Economists working within the structural equation framework (e.g., Kennedy 2003;
Mittelhammer et al. 2000; Intriligator et al. 1996) are busy estimating parameters while
treating counterfactuals as metaphysical ghosts that should not concern ordinary mor-
tals. They trust leaders such as Heckman to define precisely what the policy implications
are of the structural parameters they labor to estimate, and to relate them to what their
colleagues in the potential-outcome camp are doing.16

The surgery semantics (pp. 98–102) and the causal theory entailed by it
(Chapters 7–10) offer a simple and precise unification of these two antagonistic and
narrowly focused schools of econometric research – a theorem in one approach entails
a theorem in the other, and vice versa. Economists will do well resurrecting the basic
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ideas of Haavelmo (1943), Marschak (1950), and Strotz and Wold (1960) and re-
invigorating them with the logic of graphs and counterfactuals presented in this book.

For completeness, I reiterate here explicitly (using parenthetical notation) the two
fundamental connections between counterfactuals and structural equations.

1. The structural definition of counterfactuals is:

Read: For any model M and background information u, the counterfactual con-
ditional “Y if X had been x” is given by the solution for Y in submodel Mx (i.e.,
the mutilated version of M with the equation determining X replaced by X � x).

2. The empirical claim of the structural equation y � f (x, e (u)) is:

for any set Z not intersecting X or Y.

Read: Had X and Z been x and z, respectively, Y would be f (x, e (u)), independ-
ently of z, and independently of other equations in the model.

11.6 DECISIONS AND CONFOUNDING (CHAPTER 6)

11.6.1 Simpson’s Paradox and Decision Trees

Nimrod Megiddo (IBM Almaden) Wrote:

“I do not agree that ‘causality’ is the key to resolving the paradox (but this is also a
matter of definition) and that tools for looking at it did not exist twenty years ago.
Coming from game theory, I think the issue is not difficult for people who like to
draw decision trees with ‘decision’ nodes distinguished from ‘chance’ nodes.

I drew two such trees [Figure 11.16(a) and (b)] which I think clarify the correct deci-
sion in different circumstances.”

Author’s Reply:

The fact that you have constructed two different decision trees for the same input tables
implies that the key to the construction was not in the data, but in some information you
obtained from the story behind the data. What is that information?

The literature of decision tree analysis has indeed been in existence for at least fifty
years, but, to the best of my knowledge, it has not dealt seriously with the problem posed
above: “What information do we use to guide us into setting up the correct decision tree?”

We agree that giving a robot the frequency tables alone would not be sufficient for
the task. But what else would Mr. Robot (or a statistician) need? Changing the story
from F � “female” to F � “blood pressure” seems to be enough for people, because
people understand informally the distinct roles that gender and blood pressure play in the
scheme of things. Can we characterize these roles formally, so that our robot would be
able to construct the correct decision tree?

My proposal: give the robot (or a statistician or a decision-tree expert) a pair (T, G),
where T is the set of frequency tables and G is a causal graph, and, lo and behold, the

Y (x, z, u) � f (x, e(u)),

YM(x, u) � YMx
(u).
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robot would be able to set up the correct decision tree automatically. This is what I mean
in saying that the resolution of the paradox lies in causal considerations. Moreover, one
can go further and argue: “If the information in (T, G) is sufficient, why not skip the con-
struction of a decision tree altogether, and get the right answer directly from (T, G)?”
This is the gist of Chapters 3–4 in this book. Can the rich literature on decision analysis
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Figure 11.16(a) Decision tree corresponding to Figure 11.17(a). Given Male, �C is better than C
Given Female, �C is also better Unconditionally, with any probability

p for Male and 1 � p for Female, again, �C is better than 
.0.1(1 � p))

C (0.35p � 0.15(1 � p) � 0.3p �
(0.15 � 0.1).(0.35 � 0.3).
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Figure 11.16(b) Decision tree corresponding to Figure 11.17(b). The tree can be compressed as
shown in Figure 11.16(c).
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benefit from the more economical encoding of decision problems in the syntax of (T,
G)? The introduction of influence diagrams (Howard and Matheson 1981; Pearl 2005)
was a step in this direction, and, as Section 4.1.2 indicates, the second step might not be
too far off. While an influence diagram is parameterized for a specific choice of decision
and chance variables, a causal diagram is not specific to any such choice; it contains the
information for parameterizing all influence diagrams (and decision trees) for any
choice of decision variables and any choice of chance variables that one may observe at
decision time.

More recently, Dawid (2002) has developed a hybrid representation, combining
influence diagrams and Bayesian networks, by attaching to some variables in the latter a
decision node (as in Figure 3.2) representing a potential intervention, capable of switch-
ing from an observational (idle) to interventional (active) mode (as in equation (3.8)).

11.6.2 Is Chronological Information Sufficient for Decision Trees?

Megiddo Wrote Back:

“The term ‘causality’ introduces into the problem issues that do not have to be there,
such as determinism, free will, cause and effect, etc. What does matter is a specifica-
tion that, in the outcome fixing process, fixing the value of variable X occurs before
fixing the value of a variable Y, and Y depends on X. You like to call this situation a
causality relation. Of course in a mathematical theory you can choose any name you
like, but then people are initially tempted to develop some intuition, which may be
wrong due to the external meaning of the name you choose. The interpretation of this
intuition outside the mathematical model often has real-life implications that may be
wrong, for example, that X really causes Y. The decision tree is a simple way to demon-
strate the additional chronological information, and simple directed graphs can of course
encode that information more concisely. When you have to define precisely what these
graphs mean, you refer to a fuller description like the trees. So, in summary, my only
objection is to the use of the word ‘causality’ and I never had doubts that chronological
order information was crucial to a correct decision making based on past data.”

Author’s Reply

1. Before the 21st century, there was some danger in attributing to certain mathe-
matical relations labels such as “causal,” which were loaded with intuition, mys-
tery, and controversy. This is no longer the case – the mystery is gone, and the
real-life implication of this interpretation is not wrong; X really causes Y.

Moreover, if in addition to getting the mathematics right, one is also interested in
explicating those valuable intuitions, so that we can interpret them more precisely
and even teach them to robots, then there is no escape but to label those relation-
ships with whatever names they currently enjoy in our language, namely, “causal.”

2. There is more that enters a decision tree than chronological and dependence
information. For example, the chronological and dependence information that is
conveyed by Figure 11.17(c) is identical to that of Figure 11.17(a) (assuming F
occurs before C), yet (c) calls for a different decision tree (and yields a different
conclusion), because the dependence between F and Y is “causal” in (a) and
associational in (c). Thus, causal considerations must supplement chronological
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and dependence information if we are to construct correct decision trees and to
load their branches with correct probabilities.

As a thought experiment, imagine that we wish to write a program that auto-
matically constructs decision trees from stories like those in Figure 11.17(a)-(b)-(c).
The program is given the empirical frequency tables and is allowed to ask us
questions about chronological and dependence relationships among C, E, and F,
but is not allowed to use any causal vocabulary. Would the program be able to
distinguish between (a) and (c)? The answer is: No. If one ignores causal con-
siderations and attends, as you suggest, to chronological and dependence infor-
mation alone, then the decision tree constructed for Figure 11.17(c) would be
identical to the one drawn for F � gender (Figure 11.16(a)), and the wrong con-
clusion would ensue, namely, that the drug (C) is harmful for both F � true and
F � false patients. This is wrong, because the correct answer is that the drug is
beneficial to the population as a whole (as in the blood pressure example), hence
it must be beneficial for either F � true or F � false patients (or both). The deci-
sion tree hides this information and yields the wrong results.

The error stems from attributing the wrong probabilities to the branches of the
decision tree. For example, the leftmost branch in the tree is assigned a proba-
bility , which is wrong; the correct probability should be

, which, in the case of Figure 11.17(c), cannot be determined
from the graph and the tables. We do know, however, that P(E ƒ do(C)) � 0.5 and

so either equation (6.4) or equation (6.5) must be violated.

The conventional wisdom in decision analysis is to assign the tree branches condi-
tional probabilities of the type P(E ƒ action, Z), where Z is the information available
at decision time. Practitioners should be warned against following this convention
blindly. The correct assignment should be, of course, P(E ƒ do(action), Z) which is
estimable either from experimental studies or when the causal graph renders this
quantity identifiable.

3. I do not agree that in order to define precisely what causal graphs mean, we must
“refer to a fuller description like the trees.” In Section 7.1 we find a formal def-
inition of causal graphs as a collection of functions, and this definition invokes
no decision trees (at least not explicitly). Thus, a causal graph has meaning of its
own, independent of the many decision trees that the graph may help us con-
struct. By analogy, it would be awkward (though not mathematically wrong) to

P(E � do( ¬ C)) � 0.4,

P(E � do(C), ¬ F)
P(E � C, ¬ F) � 0.6
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Figure 11.17 Graphs demonstrating the insufficiency of chronological information.
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say that the meaning of a differential equation (say, for particle motion) lies in
the set of trajectories that obey that equation; the meaning of each term in a dif-
ferential equation can be defined precisely, from first principles, without having
a clue about the solution to the equation.

11.6.3 Lindley on Causality, Decision Trees, and Bayesianism

Question to Author (from Dennis Lindley):

If your assumption, that controlling X at x is equivalent to removing the function for X
and putting X � x elsewhere, is applicable, then it makes sense. What I do not under-
stand at the moment is the relevance of this to decision trees. At a decision node, one
conditions on the quantities known at the time of the decision. At a random node, one
includes all relevant uncertain quantities under known conditions. Nothing more than the
joint distributions (and utility considerations) are needed. For example, in the medical
case, the confounding factor may either be known or not at the time the decision about
treatment is made, and this determines the structure of the tree. Where causation may
enter is when the data are used to assess the probabilities needed in the tree, and it is here
that Novick and I used exchangeability. The Bayesian paradigm makes a sharp distinc-
tion between probability as belief and probability as frequency, calling the latter, chance.
If I understand causation, it would be reasonable that our concept could conveniently be
replaced by yours in this context.

Author’s Reply:

Many decision analysts take the position that causality is not needed because: “Nothing
more than the joint distributions (and utility considerations) are needed” (see discussion in
section 11.6.2). They are right and wrong. While it is true that probability distributions are
all that is needed, the distributions needed, P(y ƒ do(x), see(z)), are of a peculiar kind; they
are not derivable from the joint distribution P(y, x, z) which governs our data, unless we
supplement the data with causal knowledge, such as that provided by a causal graph.

Your next sentence says it all:

Where causation may enter is when the data are used to assess the probabilities needed
in the tree,…

I take the frequency/belief distinction to be tangential to discussions of causality. Let us
assume that the tables in Simpson’s story were not frequency tables, but summaries of one’s
subjective beliefs about the occurrence of various joint events, (C, E, F), (C, E, ¬ F)… etc.
My assertion remains that this summary of beliefs is not sufficient for constructing our deci-
sion tree. We need also to assess our belief in the hypothetical event “E would occur if a
decision do(C) is taken,” and, as we have seen, temporal information alone is insufficient
for deriving this assessment from the tabulated belief summaries, hence, we cannot con-
struct the decision tree from this belief summary; we need an extra ingredient, which I call
“causal” information and you choose to call “exchangeability” – I would not quarrel about
nomenclature except to note that, if we trust human beings to provide us with reliable infor-
mation, we should also respect the vocabulary in which they cast that information, and,
much to the disappointment of prudent academics, that vocabulary is unmistakably causal.
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Update Question to Author:

Your point about probability and decision trees is well taken and I am in agreement with
what you say here; a point that I had not appreciated before. Thank you. Let me rephrase
the argument to see whether we are in agreement. In handling a decision tree it is easy
to see what probabilities are needed to solve the problem. It is not so easy to see how
these might be assessed numerically. However, I do not follow how causality completely
resolves the issue. Nor, of course, does exchangeability.

Author’s Reply:

I am very glad that we have narrowed the problem down to simple and concrete issues: (1)
how to assess the probabilities needed for a decision tree, (2) where those probabilities
come from, (3) how those probabilities can be encoded economically, and perhaps even
(4) whether those probabilities must comply with certain rules of internal coherence,
especially when we construct several decision trees, differing in the choice of decision
and chance nodes.

The reason I welcome this narrowing of the problem is that it would greatly facili-
tate my argument for explicit distinction between causal and probabilistic relationships.
In general, I have found Bayesian statisticians to be the hardest breed of statisticians to
convince of the necessity of this distinction. Why? Because whereas classical statisti-
cians are constantly on watch against assumptions that cannot be substantiated by hard
data, Bayesians are more permissive in this regard, and rightly so. However, by licens-
ing human judgment as a legitimate source of information, Bayesians have become less
meticulous in keeping track of the character and origin of that information. Your earlier
statement describes the habitual, uncritical use of conditiong among Bayesian
researchers, which occasionally lures the unwary into blind alleys (e.g., Rubin (2009)):

At a decision node, one conditions on the quantities known at the time of the decision.
At a random node, one includes all relevant uncertain quantities under known condi-
tions. Nothing more than the joint distributions (and utility considerations) are needed.

As Newcomb’s paradox teaches us (see Section 4.1), it is not exactly true that “at a
decision node, one conditions on the quantities known at the time of the decision” – at
least some of the “conditionings” need to be replaced with “doing.” If this were not the
case, then all decision trees would turn into a joke; “patients should avoid going to the
doctor to reduce the probability that one is seriously ill (Skyrms 1980, p. 130); workers
should never hurry to work, to reduce the probability of having overslept; students
should not prepare for exams, lest this would prove them behind in their studies; and so
on. In short, all remedial actions should be banished lest they increase the probability
that a remedy is indeed needed.” (Chapter 4, p. 108).

But even after escaping this “conditioning” trap, the Bayesian philosopher does not
see any difference between assessing probabilities for branches emanating from decision
nodes and those emanating from chance nodes. For a Bayesian, both assessments are
probability assessments. That the former involves a mental simulation of hypothetical
experiment while the latter involves the mental envisioning of passive observations is of
minor significance, because Bayesians are preoccupied with the distinction between
probability as belief and probability as frequency.
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This preoccupation renders them less sensitive to the fact that beliefs come from
a variety of sources and that it is important to distinguish beliefs about outcomes of
experiments from beliefs about outcomes of passive observations (Pearl 2001a,
“Bayesianism and Causality”). First, the latter are robust, the former are not; that is,
if our subjective beliefs about passive observations are erroneous, the impact of the
error will get washed out in due time, as the number of observations increases. This
is not the case for belief about outcomes of experiments; erroneous priors will pro-
duce a permanent bias regardless of sample size. Second, beliefs about outcomes of
experiments cannot be articulated in the grammar of probability calculus; therefore,
in order to formally express such beliefs and coherently combine them with data,
probability calculus must be enriched with causal notation (i.e., graphs, do(x), or
counterfactuals).

So far, I have found two effective ways to win the hearts of Bayesians, one involv-
ing the notion of “economy” (see my discussion in Section 11.6.2), the other the notion
of “coherence.”

Given a set of n variables of interest, there is a huge number of decision trees that
can conceivably be constructed from these variables, each corresponding to a different
choice of temporal ordering and a different choice of decision nodes and chance nodes
from those variables. The question naturally arises, how can a decision maker ensure that
probability assessments for all these decision trees be reproducible? Surely we can-
not assume that human explicitly store all these potential decision trees in their heads.
For reproducibility, we must assume that all these assessments must be derived from
some economical representation of knowledge about decisions and chance events.
Causal relationships can thus be viewed as an economical representation from which
decision trees are constructed. Indeed, as I wrote to Megiddo (Section 11.6.2), if we
were in need of instructing a robot to construct such decision trees on demand, in accor-
dance with the available knowledge and belief, our best approach would be to feed the
robot a pair of inputs (G, P), where G is a causal graph and P is our joint distribution
over the variables of interest (subjective distribution, if we were Bayesian). With the help
of this pair of objects, the robot should be able to construct consistently all the decision
trees required, for any partition of the variables into decision and chance nodes, and
replicate the parameters on the branches. This is one way a Bayesian could appreciate
causality without offending the traditional stance that “it is nothing more than the joint
distributions…”

The second approach involves “coherence.” Coherence is something of which
Bayesians are very proud, because DeFinetti, Savage, and others have labored hard to
construct qualitative axioms that prevent probability judgments from being totally
whimsical, and that compel beliefs to conform to the calculus of probability.

We can ask the Bayesian philosopher to tell us whether judgments about joint prob-
abilities, say P(x, y), should in some way cohere with judgments about decision-based
probabilities, say P(y ƒ do(x)), which quantify the branch emanating from a decision node
with two alternatives do(X � x) and We can then ask the Bayesian whether
these probabilities should bear any connection to the usual conditional probabilities,
P(y ƒ x), namely, the probability assessed for outcome Y � y that emanates (in some
other decision tree) from a chance event X � x.

do(X � x�).
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It should not be too hard to convince our Bayesian that these two assessments
could not be totally arbitrary, but must obey some restrictions of coherence. For exam-
ple, the inequality should be obeyed for all events x and y.17

Moreover, coherence restrictions of this kind are automatically satisfied whenever 
P(y ƒ do(x)) is derived from a causal network according to the rules of Chapter 3. 
These two arguments should be inviting for a Bayesian to start drawing mathematical
benefits from causal calculus, while maintaining caution and skepticism, and, as they
say in the Talmud:

“From benefits comes understanding”
(free translation of “mitoch shelo lishma, ba lishma” (Talmud, Psahim, 50b)).

Bayesians will eventually embrace causal vocabulary, I have no doubt.

11.6.4 Why Isn’t Confounding a Statistical Concept?

In June 2001, I received two anonymous reviews of my paper “Causal Inference in the
Health Sciences” (Pearl 2001c). The questions raised by the reviewers astounded me, for
they reminded me of the archaic way some statisticians still think about causality and of
the immense educational effort that still lies ahead. In the interest of contributing to this
effort, I am including my reply in this chapter. Related discussion on the causal–statistical
distinction is presented in Section 11.1.

Excerpts from Reviewers’ Comments: 

Reviewer 1.

“The contrast between statistical and causal concepts is overdrawn. Randomization,
instrumental variables, and so forth have clear statistical definitions. … [the paper urges]
‘that any systematic approach to causal analysis must require new mathematical nota-
tion.’ This is false: there is a long tradition of informal – but systematic and successful –
causal inference in the medical sciences.”

Reviewer 2.

“The paper makes many sweeping comments which rely on distinguishing ‘statistical’
and ‘causal’ concepts … Also, included in the list of causal (and therefore, according to
the paper, non-statistical) concepts is, for example, confounding, which is solidly founded
in standard, frequentist statistics. Statisticians are inclined to say things like ‘U is a
potential confounder for examining the effect of treatment X on outcome Y when both
U and X and U and Y are not independent. So why isn’t confounding a statistical con-
cept?’ … If the author wants me to believe this, he’s going to have to show at least one
example of how the usual analyses fail.”

P(y Z do(x)) $ P(y, x)
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17 This inequality follows from (3.52) or (9.33). A complete characterization of coherence 
constraints is given in Tian and Pearl (2002c) and Tian, Kang, and Pearl (2006). As an example, 
for any three variables X, Y, Z, coherence dictates: 

. If the structure of a causal graph is known, the conditions of
Definition 1.3.1 constitute a complete characterization of all coherence requirements.
2 P(y, z Z do(x)) 1 P(x, y, z) > 0

P(y Z do(x, z)) 2 P(y, x Z do(z))



Author’s Response:

Reviewer #1 seems to advocate an informal approach to causation (whatever that means;
it reminds me of informal statistics before Bernoulli), and, as such, he/she comes to this
forum with set ideas against the basic aims and principles of my paper. Let history
decide between us.

The target of this paper are readers of Reviewer #2’s persuasion, who attempt to rec-
oncile the claims of this paper (occasionally sweeping, I admit) with traditional statisti-
cal wisdom. To this reviewer I have the following comments.

You question the usefulness of my proposed demarcation line between statistical and
causal concepts. Let me try to demonstrate this usefulness by considering the example
that you bring up: confounding. You write that “confounding is solidly founded in stan-
dard, frequentist statistics.” and that statisticians are inclined to say things like “U is a
potential confounder for examining the effect of treatment X on outcome Y when both U
and X and U and Y are not independent. So why isn’t confounding a statistical concept?”

Chapter 6 of my book goes to great lengths explaining why this definition fails on
both sufficiency and necessity tests, and why all variants of this definition must fail by
first principles. I will bring just a couple of examples to demonstrate the point; additional
discussion is provided in Section 11.3.3. Consider a variable U that is affected by both X
and Y – say, one that turns 1 whenever both X and Y reach high levels. U satisfies your
criterion, and yet U is not a confounder for examining the effect of treatment X on out-
come – in fact, U can safely be ignored in our analysis. (The same goes for any variable
U whose effect on Y is mediated by X, like Z in Figure 2 of my paper.) As a second exam-
ple, consider a variable U that resides “on the causal pathway” from X to Y. This variable
too satisfies your criterion yet it is not a confounder – generations of statisticians have
been warned (see Cox 1958) not to adjust for such variables. One might argue that your
definition is merely a necessary, but not sufficient condition for confounding. But this too
fails. Chapter 6 (pp. 185–6) describes examples where there is no variable that satisfies
your definition, and still the effect of treatment X on outcome Y is confounded.

One can also construct an example (Figure 6.5) where U is a confounder (i.e., must
be adjusted to remove effect bias), and still U is not associated with either X or Y.

I am not the first to discover discrepancies between confounding and its various sta-
tistical “definitions.” Miettinen and Cook and Robins and Greenland have been arguing
this point in epidemiology since the mid-1980s – to no avail. Investigators continue to
equate collapsibility with no-confounding and continue to adjust for the wrong variables
(Weinberg 1993). Moreover, the popular conception that any important concept (e.g.,
randomization, confounding, instrumental variables) must have a statistical definition is
so deeply entrenched in the health sciences that even today, 15 months past the publica-
tion of my book, people with the highest qualifications and purest of intentions continue
to ask: “So why isn’t confounding a statistical concept?”

I believe that any attempt to correct this tradition would necessarily sound sweeping,
and nothing but a sweeping campaign can ever eradicate these misconceptions about
confounding, statistics, and causation. Statistical education is firmly in the hands of peo-
ple of Reviewer 1’s persuasion. And people with your quest for understanding are rarely
given a public forum to ask, “So why isn’t confounding a statistical concept?”
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The same argument applies to the concepts of “randomization” and “instrumental
variables.” (Ironically, Reviewer #1 states authoritatively that these concepts “have clear
statistical definitions.” I would hand him a bivariate distribution f(x, y) and ask to tell us
if X is randomized.) Any definition of these concepts must invoke causal vocabulary,
undefined in terms of distributions – there is simply no escape.

And this brings me to reemphasize the usefulness of the statistical–causal demarca-
tion line, as defined in Section 1.5. Those who recognize that concepts such as random-
ization, confounding, and instrumental variables must rest on causal information would
be on guard to isolate and explicate the causal assumptions underlying studies invoking
these concepts. In contrast, those who ignore the causal–statistical distinction (e.g.,
Reviewer #1) will seek no such explication, and will continue to turn a blind eye to “how
the usual analysis fails.”

11.7 THE CALCULUS OF COUNTERFACTUALS

11.7.1 Counterfactuals in Linear Systems

We know that, in general, counterfactual queries of the form P(Yx � y ƒ e) may or may
not be empirically identifiable, even in experimental studies. For example, the probabil-
ity of causation, , is in general not identifiable from either observa-
tional or experimental studies (p. 290, Corollary 9.2.12). The question we address in this
section is whether the assumption of linearity renders counterfactual assertions more
empirically grounded. The answer is positive:

Claim A. Any counterfactual query of the form E(Yx ƒ e) is empirically identifiable
in linear causal models, with e an arbitrary evidence.

Claim B. Whenever the causal effect T is identified, E(Yx ƒ e) is identified as well.
Claim C. E(Yx ƒ e) is given by

, (11.28)

where T is the total effect coefficient of X on Y, i.e.,

. (11.29)

Claim A is not surprising. It has been established in generality by Balke and Pearl
(1994b) where E(Yx ƒ e) is given explicit expression in terms of the covariance matrix and
the structural coefficients; the latter are empirically identifiable.

Claim B renders E(Yx ƒ e) observationally identifiable as well, in all models where the
causal effect E(Yx) is identifiable.

Claim C offers an intuitively compelling interpretation of E(Yx ƒ e) that reads as fol-
lows: Given evidence e, to calculate E(Yx ƒ e) (i.e., the expectation of Y under the hypo-
thetical assumption that X were x, rather than its current value), first calculate the best
estimate of Y conditioned on the evidence e, E(Y ƒ e), then add to it whatever change is
expected in Y when X undergoes a forced transition from its current best estimate,
E(X ƒ e), to its hypothetical value X � x. That last addition is none other than the effect
coefficient T times the expected change in X, i.e., T [x � E(X ƒ e)].

T � dE[Yx]>dx � E(Y � do(x � 1)) � E(Y � do(x))

E(Yx � e) � E(Y � e) � T  [x � E(X � e)]

P(Yx � y � x�, y�)
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Note: Equation (11.28) can also be written in do(x) notation as

. (11.30)

Proof:

(With help from Ilya Shpitser)
Assume, without loss of generality, that we are dealing with a zero-mean model.

Since the model is linear, we can write the relation between X and Y as:

, (11.31)

where T is the total effect of X on Y, given in (11.29); I represents terms containing
other variables in the model, nondescendants of X; and U represents exogenous
variables.

It is always possible to bring the function determining Y into the form (11.31) by
recursively substituting the functions for each r.h.s. variable that has X as an ancestor,
and grouping all the X terms together to form TX. Clearly, T is the Wright-rule sum of
the path costs originating from X and ending in Y (Wright 1921).

From (11.31) we can write:

, (11.32)

since I and U are not affected by the hypothetical change from X � x, and, moreover,

, (11.33)

since x is a constant.
The last term in (11.33) can be evaluated by taking expectations on both sides of

(11.31), giving:

, (11.34)

which, substituted into (11.33), yields

(11.35)

and proves our target formula (11.28). n
Three special cases of e are worth noting:

Example 11.7.1 e : (the linear equivalent of the probability of cau-
sation, Chapter 9). From (11.28) we obtain directly

.

This is intuitively compelling. The hypothetical expectation of Y is simply the
observed value, plus the anticipated change in Y due to the change in X.

Example 11.7.2 e : (the effect of treatment on the treated, Chapter 8.2.5).

, (11.36)

where r is the regression coefficient of Y on X.

 � rx� � E(Y � do(x)) � E(Y � do(x�))

 � rx� � T(x � x�)

 E(Yx �  X � x�) � E(Y � x�) � T(x � x�)

X � x�

x � x�y�,

E(Yx  �  Y � y�, X � x�) � y� � T(x � x�)

X � x�, Y � y�

E(Yx � e) � Tx � E(Y � e) � E(X � e)

E(I � U � e) � E(Y � e) � TE(X � e)

E(Yx � e) � Tx � E(I � U � e)

Yx � Tx � I � U

Y � TX � I � U

E(Yx � e) � E(Y � e) � E(Y � do(x)) � E�Y � do(X � E(X � e))�
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Example 11.7.3 e : (e.g., the expected income Y of those who currently earn

if we were to mandate x hours of training each month).

, (11.37)

where is the regression coefficient of X on Y.

Example 11.7.4 Consider the nonrecursive price-demand model of p. 215, equa-

tions (7.9)–(7.10):

. (11.38)

Our counterfactual problem (p. 216) reads: Given that the current price is P � p0,

what would be the expected value of the demand Q if we were to control the price at

P � p1?

Making the correspondence P � X, Q � Y, e � 5P � p0, i, w6, we see that this problem

is identical to Example 11.7.2 above (effect of treatment on the treated), subject to con-

ditioning on i and w. Hence, since T � b1, we can immediately write

, (11.39)

where rp, ri, and rw are the coefficients of P, i and w, respectively, in the regression of Q
on P, i, and w.

Equation (11.39) replaces equation (7.17) on page 217. Note that the parameters of the

price equation, p � b2q � d2w � u2, enter (11.39) only via the regression coefficients.

Thus, they need not be calculated explicitly in cases where they are estimated directly by

least square.

Remark: Example 11.7.1 is not really surprising; we know that the probability

of causation is empirically identifiable under the assumption of monotonicity

(p. 293). But examples 11.7.2 and 11.7.3 trigger the following conjecture:

Conjecture:

Any counterfactual query of the form P(Yx ƒ e) is empirically identifiable in every 

constant-effect model, i.e., is constant over u.

It is good to end on a challenging note.

11.7.2 The Meaning of Counterfactuals
Question to Author:

I have a hard time understanding what counterfactuals are actually useful for. To me,

they seem to be answering the wrong question. In your book, you give at least a couple

of different reasons for when one would need the answer to a counterfactual question,

so let me tackle these separately:

1. Legal questions of responsibility. From your text, I infer that the American

legal system says that a defendant is guilty if he or she caused the plaintiff’s

Yx1
(u) � Yx2

(u)

 � rpp0 � ri i � rww � b1(p1 � p0)

 E(Qp1
 � p0, i, w) � E(Y � p0, i, w) � b1( p1 � p0)

p � b2q � d2w � u2

q � b1p � d1i � u1

r�

 � y� � E(Y � do(x)) � E  �Y � do(X � r�y�)�

 E(Yx � Y � y�) � y� � T  �x � E(X � y�)�

Y � y�

Y � y�
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misfortune. But in my mind, the law is clearly flawed. Responsibility should
rest with the predicted outcome of the defendant’s action, not with what actu-
ally happened. A doctor should not be held responsible if he administers, for a
serious disease, a drug which cures 99.99999% of the population but kills
0.00001%, even if he was unlucky and his patient died. If the law is based on the
counterfactual notion of responsibility then the law is seriously flawed, in my mind.

2. The use of context in decision making. On p. 217, you write “At this point, it is
worth emphasizing that the problem of computing counterfactual expectations is
not an academic exercise; it represents in fact the typical case in almost every
decision-making situation.” I agree that context is important in decision making,
but do not agree that we need to answer counterfactual questions.

In decision making, the thing we want to estimate is P(future ƒ do(action),
see(context)). This is of course a regular do-probability, not a counterfactual
query. So why do we need to compute counterfactuals?

3. In the latter part of your book, you use counterfactuals to define concepts such
as ‘the cause of X’ or ‘necessary and sufficient cause of Y’. Again, I can under-
stand that it is tempting to mathematically define such concepts since they are in
use in everyday language, but I do not think that this is generally very helpful.
Why do we need to know ‘the cause’ of a particular event? Yes, we are interest-
ed in knowing ‘causes’ of events in the sense that they allows us to predict the
future, but this is again a case of point (2) above.

To put it in the most simplified form, my argument is the following: Regardless
of whether we represent individuals, businesses, organizations, or government,
we are constantly faced with decisions of how to act (and these are the only deci-
sions we have!). What we want to know is, what will likely happen if we act in
particular ways. So what we want to know is P(future ƒ do(action), see(context)).
We do not want or need the answers to counterfactuals.

Where does my reasoning go wrong?

Author’s Reply:

1. Your first question doubts the wisdom of using single-event probabilities, rather
than population probabilities, in deciding legal responsibility. Suppose there is a
small percentage of patients who are allergic to a given drug, and the manufac-
turer nevertheless distributes the drug with no warning about possible allergic
reactions. Wouldn’t we agree that when an allergic patient dies he is entitled to
compensation? Normally, drug makers take insurance for those exceptional
cases, rather than submit the entire population to expensive tests prior to taking
the drug – it pays economically. The physician, of course, is exonerated from
guilt, for he/she just followed accepted practice. But the law makes sure that
someone pays for the injury if one can prove that, counterfactually, the specific
death in question would not have occurred had the patient not taken the drug.

2. Your second question deals with decisions that are conditioned on the results of
observations. Or, as you put it: “In decision making, the thing we want to estimate
is P( future ƒ do(action), see(context)).”
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The problem is that, to make this prediction properly, we need a sequential, time-
indexed model, where “future” variables are clearly distinct from the “context”
variables. Often, however, we are given only a static model, in which the “con-
text” variable are shown as consequences of the “action,” and then using the
expression P(y ƒ do(x), z) would be inappropriate; it represents the probability of
Y � y given that we do X � x and later observe Z � z, while what is needed is
the probability of Y � y given that we first observe Z � z and then do 
X � x. Counterfactuals give us a way of expressing the desired probability, by
writing

which stands for the probability that Y � y would occur had X been x, given that
Z � z is currently observed. Note that P � P(yx ƒ z) � P(y ƒ do(x), z) if Z is a non-
descendant of X in the static model.

An example will be instructive. Suppose an engineer draws a circuit diagram M
containing a chain of gates At time t1 we observe Z(t1), and we want
to know the causal effect of X(t2) on Y(t3) conditioned on Z(t1). We can do this exer-
cise through do-calculus, with all the necessary time indices, if we replicate the
model M and assign each time slot ti, a model Mi, showing the relationships among

as well as to previous variables, then compute P(y(t3) ƒ do(x(t2)),
z(t1)). But we can do it much better in the static model, using the counterfactuals
P(Yx � y ƒ z). The static model saves us miles and miles of drawing the sequential
model equivalent, and counterfactuals enable us to take advantage of this savings.
It is an admirable invention. One can argue, of course, that if counterfactual claims
are merely “conversational shorthand” (p. 118) for scientific predictions in the
sequential model equivalent, then they are not needed at all. But this would stand
contrary to the spirit of scientific methods, where symbolic economy plays a crucial
role. In principle, multiplication is not needed in algebra – we can live with addi-
tion alone and add a number to itself as many times as needed. But science would
not have advanced very far without multiplication. Same with counterfactuals.

3. In the final analysis, the reason we want to know “causes of events” is indeed to
allow us to better predict and better act in the future. But we do not always know
in advance under what future circumstances our knowledge will be summoned to
help in making decisions. The reason we need to know the cause of a specific
accident may be multifaceted: to warn the public against the use of similar vehi-
cles, to improve maintenance procedures of certain equipment, to calculate the
cost of taking remedial action, to cause similar accidents in enemy territories, and
many more. Each of these applications may demand different information from
our model, so “causes of events” may be a useful way of registering our experi-
ence so as to amortize it over the wide spectrum of possible applications.

11.7.3 d-Separation of Counterfactuals

Question to Author:

I am trying to generalize the twin network method of Figure 7.3 to cases where counter-
factuals involve more than two possible worlds. Consider the causal model X S Z S Y,

X(ti), Y(ti), Z(ti)

X S Y S Z.

P � P(yx  �  z),
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and assume we wish to test whether the assertion

(11.40)

is true in the model. I would naively construct the following “triple network”:
The left part corresponds to a world in which no intervention is imposed; the middle

part to a world in which do(X � x) is imposed; and in the right part, do(Z � z) is
imposed. In this network (11.40) does not follow from d-separation, since the path from
Yx to X is open by conditioning on Y. Is there anything wrong with this way of general-
izing the twin network method?

Author’s Reply (with Ilya Shpitser):

Your generalization of the twin network to more than two worlds is correct, and so is
your conclusion; Yx is not independent of X given Yz, Zx, Y. In fact, a recent paper
(Shpitser and Pearl 2007) formulates this graphical representation of counterfactuals in
multiple worlds under the rubric “counterfactual graphs.”

Follow-up Question to Author:

Your answer helped me understand the twin network method, as well as the one used in
the paper “Direct and Indirect Effects” (Pearl 2001c), but it raises a new question: why
does hold in the graph of Figure 11.19, as claimed in (Pearl 2001)? If one
draws a “triple network,” it is obvious that the path between Yxz and is not blocked
by W; the latter is situated in a totally different world.

Zx*

Yxz �� Zx* � W

Yx �� X � Yz, Zx, Y
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Author’s Second Reply:

The independence actually holds in the graph shown in Figure 11.19.
This is because Yxz is separated from by the variable , in the “triple network”

that you mentioned. The license to replace W with is obtained from rule 3 of do-
calculus, which implies 5 W, since X is a nondescendant of X. This points to an
important refinement needed in the twin network generalization: causal axioms may
entail certain equality constraints among seemingly distinct counterfactual variables,
and these hidden equalities need to be considered when we apply d-separation to coun-
terfactual networks. A systematic way of encoding and managing these equalities is
presented in Shpitser and Pearl (2007).

11.8 INSTRUMENTAL VARIABLES AND NONCOMPLIANCE

11.8.1 Tight Bounds under Noncompliance (Question to Author)

I am referring to the way you improved Manski’s bounds on treatment effects when we
have imperfect compliance. Which information does your approach exploit that the one
by Manski does not? What is the intuition behind it?

Author’s Reply:

We used the same information and same assumptions as Manski, and we derived the
tight bounds using linear-programming analysis in the 16-dimensional space defined by the
canonical partition of U (Balke and Pearl 1994a, 1995a). Manski, evidently, either did
not aim at getting tight bounds, or was not aware of the power of partitioning U into its
equivalence classes. Recall, this partition was unknown to economists before Frangakis
and Rubin (2002) popularized it, under the rubric “principal stratification.”

Manski’s bounds, as I state on page 269, are tight under certain conditions, e.g., no
contrarians. This means that one can get narrower bounds only when there are contrari-
ans in the population, as in the examples discussed in Pearl (1995b). It is shown there
how data representing the presence of contrarians can provide enough information to
make the bounds collapse to a point. That article also gives an intuitive explanation of
how this can happen.

It is important to mention at this point that the canonical partition conception, coupled
with the linear programming method developed in Balke and Pearl (1994a, 1995a,b), has
turned into a powerful analytical tool in a variety of applications. Tian and Pearl (2000)
applied it to bound probabilities of causation; Kaufman et al. (2005) and Cai et al. (2008)
used it to bound direct effects in the presence of confounded mediation, and, similarly,
Imai et al. (2008) and Sjölander (2009b) used it to bound natural direct and indirect effects.
The closed-form expressions derived by this method enable researchers to assess what fea-
tures of the distribution are critical for narrowing the widths of the bounds.

Rubin (2004), in an independent exploration, attempted to apply canonical partitions
to the analysis of direct and indirect effects within the traditional potential-outcome
framework but, lacking the graphical and structural perspectives, was led to conclude
that such effects are “ill-defined” and “more deceptive than helpful.” I believe readers
of this book, guided by the structural roots of potential-outcome analysis, will reach
more positive conclusions (see Sections 4.5 and 11.4.2).

Wx*

Wx*

Wx*Zx*

Yxz '' Zx* Z W
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11.9 MORE ON PROBABILITIES OF CAUSATION

Looking back, eight years past the first publication of Causality, I consider the results
obtained in Chapter 9 to be a triumph of counterfactual analysis, dispelling all fears
and trepidations that some researchers express concerning the empirical content of
counterfactuals (Dawid 2000; Pearl 2000). It demonstrates that a quantity PN which
at first glance appears to be hypothetical, ill-defined, untestable, and hence unworthy
of scientific analysis is nevertheless definable, testable, and, in certain cases, even
identifiable. Moreover, the fact that, under certain combination of data, and making
no assumptions whatsoever, an important legal claim such as “the plaintiff would
be alive had he not taken the drug” can be ascertained with probability one is truly
astonishing.

11.9.1 Is “Guilty with Probability One” Ever Possible?

I have presented the example of Section 9.3.4 in dozens of talks at conferences and uni-
versities, and, invariably, the result of equation (9.53) meets with universal dis-
belief; how can we determine, from frequency data, that the defendant is guilty with
probability one, i.e., that Mr. A would definitely be alive today had he not taken the drug.
Professor Stephen Fienberg attended two of these talks, and twice shook his head with:
“It can’t be true.” To me, this reaction constitutes a solid proof that counterfactual analy-
sis can yield nontrivial results, and hence that it is real, meaningful, and useful; meta-
physical analysis would not evoke such resistance.

What causes people to disbelieve this result are three puzzling aspects of the
problem:

1. that a hypothetical, generally untestable quantity can be ascertained with proba-
bility one under certain conditions;

2. that frequency tables which, individually, do not reveal a substantial effect of the
drug imply a perfect susceptibility to the drug when taken together; and

3. that a property of an untested individual can be assigned a probability one, on
the basis of data taken from a sampled population.

The first puzzle is not really surprising for students of science who take seriously the
benefits of logic and mathematics. Once we give a quantity formal semantics we essen-
tially define its relation to the data, and it is not inconceivable that data obtained under
certain conditions would sufficiently constrain that quantity, to a point where it can be
determined exactly.

This benefit of formal counterfactual analysis can in fact be demonstrated in a much
simpler example. Consider the effect of treatment on the treated, (Section
8.2.5). In words, stands for the chances that a treated patient, X � x, would
survive for a time period Y � y had he/she not been treated This counterfac-
tual quantity too seems to defy empirical measurement, because we can never rerun his-
tory and deny treatment for those who received it. Yet, for binary X, we can write

P(yx�) � P(yx� � x�)P(x�) � P(yx� � x)P(x)

(X � x�).
P( yx� � x)

P( yx� � x)

PN � 1
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and derive

.

In other words, is reducible to empirically estimable quantities; 
is estimable in experimental studies and the other quantities in observa-

tional studies. Moreover, if data support the equality we can safely
conclude that a treated patient would have zero chance of survival had the treatment not
been taken. Those who mistrust counterfactual analysis a priori, as a calculus dealing
with undefined quantities, would never enjoy the discovery that some of those quanti-
ties are empirically definable. Logic, when gracious, can rerun history for us.

The second puzzle was given intuitive explanation in the paragraph following
equation (9.54).

The third puzzle is the one that gives most people a shock of disbelief. For a statisti-
cian, in particular, it is a rare case to be able to say anything certain about a specific indi-
vidual who was not tested directly. This emanates from two factors. First, statisticians
normally deal with finite samples, the variability of which rules out certainty in any
claim, not merely about an individual but also about any property of the underlying dis-
tribution. This factor, however, should not enter into our discussion, for we have been
assuming infinite samples throughout. (Readers should imagine that the numbers in
Table 9.2 stand for millions.)

The second factor emanates from the fact that, even when we know a distribution
precisely, we cannot assign a definite probabilistic estimate to a property of a specific
individual drawn from that distribution. The reason is, so the argument goes, that we
never know, let alone measure, all the anatomical and psychological variables that deter-
mine an individual’s behavior, and, even if we knew, we would not be able to represent
them in the crude categories provided by the distribution at hand. Thus, because of this
inherent crudeness, the sentence “Mr. A would be dead” can never be assigned a proba-
bility of one (or, in fact, any definite probability).

This argument, advanced by Freedman and Stark (1999), is incompatible with the
way probability statements are used in ordinary discourse, for it implies that every prob-
ability statement about an individual must be a statement about a restricted subpopula-
tion that shares all the individual’s characteristics. Taken to the extreme, such a restric-
tive interpretation would insist on characterizing the plaintiff in minute detail, and would
reduce PN to zero or one when all relevant details were accounted for. It is inconceiv-
able that this interpretation underlies the intent of judicial standards. By using the word-
ing “more probable than not,” lawmakers have instructed us to ignore specific features
for which data is not available, and to base our determination on the most specific fea-
tures for which reliable data is available. In our example, two properties of Mr. A were
noted: (1) that he died and (2) that he chose to use the drug; these were properly taken
into account in bounding PN. If additional properties of Mr. A become known, and
deemed relevant (e.g., that he had red hair, or was left-handed), these too could, in prin-
ciple, be accounted for by restricting the analysis to data representing the appropriate
subpopulations. However, in the absence of such data, and knowing in advance that we
will never be able to match all the idiosyncratic properties of Mr. A, the lawmakers’
specification must be interpreted relative to the properties at hand.

P(yx9) 5 P(y, x9),
P(y Z do(x9))

P(yx9) 5P(yx9 Z x)

P(yx¿ Z x) 5 fP(yx¿) 2 P(y, x¿)g /P(x) 5 P(yZ x¿) 1 fP(yx¿) 2 P(y Z x)g /P(x)
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11.9.2 Tightening the Bounds on Probabilities of Causation

Systematic work by Jin Tian (Tian and Pearl 2000) has improved on the results of
Chapter 9 in several ways. First, Tian showed that for most of these results, the assump-
tion of strong exogeneity, equation (9.10), can be replaced by weak exogeneity:

and .

Second, the estimands obtained under the assumption of monotonicity (Definition
9.2.13) constitute lower bounds when monotonicity is not assumed. Finally, the bounds
derived in Chapter 9 are sharp, that is, they cannot be improved without strengthening
the assumptions.

Of particular interest are the bounds obtained when data from both experimental and
nonexperimental studies are available, and no other assumptions are made. These read:

(11.41)

(11.42)

(11.43)

It is worth noting that, in drug-related litigation, it is not uncommon to obtain data
from both experimental and observational studies. The former is usually available at the
manufacturer or the agency that approved the drug for distribution (e.g., FDA), while the
latter is easy to obtain by random surveys of the population. In such cases, the standard
lower bound used by epidemiologists to establish legal responsibility, the Excess Risk
Ratio (equation (9.22)), can be substantially improved by using the lower bound of equa-
tion (11.42). Likewise, the upper bound of equation (11.42) can be used to exonerate the
drug maker from legal responsibility. Cai and Kuroki (2006) analyzed the statistical
properties of PNS, PN, and PS.

Also noteworthy is the fact that in tasks of abduction, i.e., reasoning to the best
explanation, PN is the most reasonable measure to use in deciding among competing
explanations of the event Y � y. In such applications, the bounds given in (11.42) can
be computed from a causal Bayesian network model, where P(yx) and are com-
putable through equation (9.48).
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