
An Empirical Study on Reducing Omission Errors in
Practice

Jihun Park
Korea Advanced Institute of

Science and Technology
Daejeon, Korea

jhpark@se.kaist.ac.kr

Miryung Kim
The University of Texas at

Austin
Austin, TX USA

miryung@ece.utexas.edu

Doo-Hwan Bae
Korea Advanced Institute of

Science and Technology
Daejeon, Korea

bae@se.kaist.ac.kr

ABSTRACT
Since studies based on mining software repositories sparked
interests in the field of guiding software changes, many change
recommendation techniques have been proposed to reduce
omission errors. While these techniques only used existing
software commit data sets to evaluate their effectiveness,
we use the data set of supplementary patches which correct
initial incomplete patches to investigate how much actual
omission errors could be prevented in practice. We find that
while a single trait is inadequate, combining multiple traits
is limited as well for predicting supplementary change loca-
tions. Neither does a boosting approach improve accuracy
significantly, nor filtering based on developer or package spe-
cific information necessarily improves the accuracy. Devel-
opers rarely repeat the same mistakes, making the potential
value of history-based change prediction less promising. We
share our skepticism that omission errors are hard to prevent
in practice based on a systematic evaluation of a supplemen-
tary patch data set.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maintenance,
and Enhancement

Keywords
omission error; supplementary patch; mining version history

1. INTRODUCTION
About ten years ago, Zimmermann et al. and Ying et

al. [16, 18, 19] sparked interests in the promise of guid-
ing software changes based on version histories. Over the
past decade, many change recommendation systems have
been proposed to identify additional change locations to re-
duce omission errors. For example, FixWizard [8] identified
additional change locations using cloning based similarity,
and Hassan and Holt [2] investigated several change propa-
gation heuristics, finding that historical change coupling is

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ASE’14, September 15-19, 2014, Vasteras, Sweden.
Copyright 2014 ACM 978-1-4503-3013-8/14/09 ...$15.00.
http://dx.doi.org/10.1145/2642937.2642956.

more accurate than structural dependency relationships for
predicting co-changed program entities. In addition to the
aforementioned approaches, many change recommendation
systems [3, 4, 6, 7, 17] have been developed to find additional
change locations based on version histories.

These approaches suggested ways to predict supplemen-
tary change locations; however, they evaluated their accu-
racy on existing software commit data only. They grouped
commits into a set of transactions, and then predicted the
remaining entities of a transaction based on a subset of the
transaction. We use a supplementary patch data set to pre-
dict additional change locations for real-world omission er-
rors. The supplementary patch data set was created in our
prior work [9] to study the feasibility of reducing omission
errors, where developers applied supplementary patches to
correct or complete original incomplete bug fixes.

We investigate how the supplementary change locations
can be predicted based on the initial change locations. To
represent the relationship between them, we propose a new
graph representation called change relationship graph (CRG).
The CRG uses packages, classes, and methods as graph
nodes, and represents the relationship between graph nodes
based on structural dependency, historical co-change, code
clone, and name similarity relationships. We then develop
a path generalization algorithm based on the CRG to find
the frequently occurring relationship between the initial and
supplementary change locations.

Based on a comprehensive study, we have determined that
it is inherently challenging to predict supplementary change
locations based on initial change locations and then we share
our skepticism that reducing omission errors based on a sys-
tematic evaluation of a supplementary patch data set is very
difficult in practice. Our comprehensive study on the sup-
plementary patch data set finds that neither a specific rela-
tionship nor a pattern exists between the initial and supple-
mentary change locations.

2. RELATED WORK
Zimmermann et al. [19] and Ying et al. [16] showed the

early promise for guiding software changes based on ver-
sion histories. They used association rule mining to identify
additional change locations. They evaluated whether their
tool could identify the other entities based on one entity of
a transaction. Zimmermann et al.’s approach showed 33%
of precision and 29% of recall on average. The precision and
recall of Ying et al.’s approach were in the range of 30% to
50%, and 10% to 30%, respectively. Even though they eval-
uated their approaches according to whether the approach

121

was able to guide software changes of the transaction data
set during the implementation phase, they did not evalu-
ate how the approach could prevent omission errors, based
on a real-world supplementary patch data set. In addition,
the overall accuracy was not high enough to be pragmatic;
our investigation finds that the accuracy becomes even lower
when the historical co-change pattern analysis is applied to
a real-world supplementary patch data set.

Robillard [11] and Saul et al. [12] used structural depen-
dency in order to make a suggestion set for program in-
vestigation. These two approaches showed that structural
relationships can identify relevant program entities, but the
portion of omission errors that structural dependency can
identify was not evaluated using a real data set.

FixWizard of Nguyen et al. [8], identified a group of pro-
gram entities (code peer) that should be changed together.
To find the code peers, they identified methods that share
similar object usages. Because only a few supplementary
patches have a content similar to the initial changes [9], the
tool cannot be generalized to real-world omission errors from
the supplementary patch data.

Herzig and Zeller [3] mined cause-effect-chains from ver-
sion histories, which are represented in CTL (Computation
Tree Logic). The change coupling, which is generalized by
CTL, can represent a causal relationship between two lo-
cations within a predefined time interval. They evaluated
how well their approach could predict additional change lo-
cations. Our investigation results show that only a small
portion of omission errors can be predicted using this kind of
mining technique; the majority of the patterns between ini-
tial and supplementary change locations appear only once.

Hassan and Holt [2] assessed different kinds of change
propagation heuristics, and then suggested a hybrid approach.
The hybrid approach combined historical co-change pattern
and code layout based methods, and it showed 49% average
precision and 51% average recall.

Malik and Hassan [6] improved Hassan and Holt’s work[2]
using adaptive change heuristics based on the best heuris-
tic table, showing the possibility that managing prior pre-
diction information for each entity can improve the predic-
tion accuracy. (64% precision and 78% recall) Their hybrid
approaches showed high recall and precision at predicting
co-changed entities; however, the evaluation was only con-
ducted on a transaction data set. We also find that a boost-
ing technique based on past prediction accuracy information
does not significantly improve the prediction accuracy.

Park et al. [9] investigated the characteristics of supple-
mentary changes and how omission errors can be reduced.
They found that a significant portion of bugs required sup-
plementary patches. They also found that structural de-
pendency and code clone analysis were limited at predicting
supplementary change locations. In this paper, our investi-
gation based on a graph representation (CRG) includes not
only a single relationship between the program entities, but
also a combination of the relationships, a boosting approach
based on the past prediction accuracy, package or developer
filtering based predictions, and repeated patterns between
initial and supplementary change locations.

3. BACKGROUND
3.1 Supplementary patch data set

The supplementary patch data set was created in our
prior work [9] to study the characteristics of supplementary

patches and how we could reduce omission errors. In this
paper, we use the supplementary patch data set to study
the feasibility of several prediction approaches for reducing
real-world omission errors. The supplementary patch data
set comprises initial patches and supplementary patches. An
initial patch represents an initial fix attempt to fix a bug;
the fix then turned out to be incomplete or incorrect later.
Supplementary patches are applied later to complete or cor-
rect the initial patch. This data set and analysis source code
are available on the first author’s web page.1

We use three open source projects as study subjects—Ec-
lipse JDT core, Eclipse SWT, and Equinox p2. We identify
the supplementary patch data set in the same way as we
did in our prior work [9]. We connect commit logs with bug
IDs by parsing the logs considering every integer sequence
as potential bug IDs. We then ignore if the number is out of
a pre-defined range; the minimum value is 3000 (to ignore
small numbers), and the maximum value is 214100, 259850,
and 298700 corresponding to bug ID at 2007/12, 2008/12,
and 2009/12 in the three projects, respectively.

After connecting commits with bug IDs, we categorize the
bugs into two groups. (1) Type I bugs are the bugs that are
fixed only once, and (2) Type II bugs are the bugs that are
fixed more than once in the study period. We call the first
fix of Type II bugs the initial patch; the subsequent fixes are
supplementary patches.

We consider the bugs reported in 2002/01 to 2007/12,
2002/01 to 2008/12, and 2006/10 to 2010/01, to make sure
that the bugs are completely resolved. Among 3803, 4673,
and 1783 of bugs, we find that 23%, 26%, and 26% of them
require supplementary patches in Eclipse JDT core, Eclipse
SWT, and Equinox p2, respectively.

3.2 Building a change relationship graph
To express a path between the initial and supplemen-

tary change locations, we develop a graph representation
called the Change Relationship Graph (CRG). The CRG
uses packages, classes, and methods as graph nodes, and
structural dependency, historical co-change, code-clone and
name similarity relationships as graph edges.

The CRG is the first representation that allows reasoning
about multiple traits of change relationship; the multiple
traits include structural dependency, historical co-change,
code clone, and name similarity relationships.
Identifying graph nodes. We define program entities,
such as packages, classes, and methods as graph nodes. We
extract structural information from each version of the pro-
gram files using the PPA (Partial Program Analysis) tool [1].
We utilize the PPA tool to generate AST only from changed
files, not from the whole program corresponding to each re-
vision. We track the version history of each program entity
to identify the added revisions and deleted revisions.
Identifying structural dependency relationship edges.
We use containment, inheritance, and method invocation re-
lationship edges as structural dependency relationship edges.
They are created based on the AST, generated by the PPA
tool.
Identifying historical co-change relationship edges.
We create co-change relationship edges between method nodes
that are changed within the same revision. By parsing patches
corresponding to each revision, we identify co-changed method

1http://se.kaist.ac.kr/jhpark

122

nodes, and then we create a co-change edge between every
pair of the methods.
Identifying code clone relationship edges. We create
code clone relationship edges between method nodes that
have similar content in their method body. The similar con-
tents are identified using CCFinderX [5] with a minimum
token size of 40. We identify code clones every 4000 revi-
sions, and then we map the code clone pairs to method nodes
by parsing patches to make a code clone relationship edge.
Identifying name similarity relationship edges. We
create name similarity relationship edges between method
nodes that have similar names. We use the same similarity
measure as that used in UMLDiff [15]. Because calculating
the name similarity between every method node takes too
much time and makes the number of name similarity edges
huge, we make a name similarity edge when the following
conditions hold: 1) two method nodes belong to the same
package. 2) the containing classes of two method nodes have
name similarity larger than 0.5. 3) the names of two meth-
ods have name similarity larger than 0.7.

3.3 Evaluating a prediction method
We evaluate how accurately a prediction method predicts

supplementary change locations based on initial change lo-
cations. Our measures for assessing a prediction method are
its precision, recall, and feedback. Precision and recall are
common accuracy metrics. Precision evaluates whether the
suggestion set accurately predicts actual supplementary lo-
cations; recall evaluates whether the actual supplementary
locations are covered by the predicted set. Where P rep-
resents the predicted suggestion set and S represents the
actual supplementary change locations excluding the initial
change locations, precision and recall are defined as follows:

precision =
|P ∩ S|
|P | , recall =

|P ∩ S|
|S| . If one of P and S is

an empty set, we do not count the prediction in the result
for the calculation.

Because we disregard cases in which a prediction method
suggests an empty set as a candidate of supplementary change,
we should compensate to assess what portion of initial changes
can obtain at least one suggestion. We use the feedback
measure, introduced by Zimmermann et al. [19] to evaluate
whether a prediction method or a rule can be generally used.
Where the predicted suggestion set, {Pm

b }, is derived using
a prediction method m for bug b, the feedback is defined as
follows:

feedback =
| {b ∈ TypeIIbugs | 1 ≤ |{Pm

b }| } |
| {TypeIIbugs} |

The numerator represents the number of Type II bugs for
which the prediction method suggests at least one candi-
date of supplementary change location. The denominator
represents the total number of Type II bugs.

4. OBSERVATIONS
4.1 Observation 1: While a single trait is in-

adequate, combining multiple traits is lim-
ited as well.

To investigate whether repeated patterns of relationship
exist between the initial and supplementary change loca-
tions, we identify frequently occurring paths between them,
which can generalize the relationship. For bugs that are
fixed more than once (Type II bugs), we parse the initial

and supplementary patches to identify corresponding loca-
tions at the method level granularity to match them to cor-
responding method nodes in the CRG.

For the initial and supplementary change locations, we
first investigate whether they can be connected with one
hop of structural, historical, code clone, or name similar-
ity relationships. The one hop relationships can represent
existing change recommendation approaches. For example,
two locations connected by a code clone edge means that
the relationship between the two locations can be identified
by code clone analysis.

We find that only 20%, 14%, and 10% of supplementary
change locations can be reached within one hop from the
initial change locations. This results indicate that remaining
80%, 86%, and 90% of supplementary change locations are
not predictable using existing approaches in Eclipse JDT
core, Eclipse SWT, and Equinox p2, respectively.

We also investigate the accuracy of prediction rules that
are made using one relationship edge predicting supplemen-
tary change locations. We calculate the feedback, precision,
and recall values of the rules made by one relationship edge,
by applying them to the initial change locations of Type
II bugs in order to predict corresponding supplementary
change locations. Table 1 shows the results. Overall, the
highest precision is only 8%, 9%, and 7% and the highest
recall is only 17%, 22%, and 9%, in Eclipse JDT core, Eclipse
SWT, and Equinox p2, respectively. These low accuracies
indicate that a single trait is not adequate for predicting
supplementary change locations.

Table 1: Feedback, precision, and recall of predic-
tion rules made by one relationship edge

Relationship
Eclipse JDT core

feedback precision recall
calls 94.2% 1.9% 11.2%

called by 70.6% 7.7% 10.7%
code clone 29.2% 3.5% 1.1%

name similarity 84.8% 5.9% 16.4%
co-change 83.3% 4.2% 13.4%

Relationship
Eclipse SWT

feedback precision recall
calls 93.2% 0.8% 6.7%

called by 58.2% 7.0% 6.3%
code clone 51.3% 2.1% 1.7%

name similarity 82.8% 8.8% 11.2%
co-change 88.5% 6.0% 22.3%

Relationship
Equinox p2

feedback precision recall
calls 97.3% 1.6% 8.5%

called by 82.1% 6.9% 8.5%
name similarity 72.9% 2.9% 2.9%

co-change 68.4% 2.5% 6.9%

The relationship between the initial and supplementary
change locations also can be represented using a combina-
tion of the CRG edges. For example, when an initial change
location calls method X, and the method X has a code clone
with a supplementary change location, the CRG can rep-
resent the relationship between them with a calls edge and
a code clone edge. To investigate whether the combination
of relationship edges can connect the initial and supplemen-
tary change locations, we study the number of supplemen-
tary change locations that are covered within n edges from
corresponding initial change locations. Table 2 shows that
our CRG can identify 30% to 33%, 24% to 33%, 16% to 19%,
and 2% to 11% of supplementary change locations with two,
three, four, and five relationship edges, respectively. Al-

123

Table 2: The portion of supplementary change lo-
cations that are covered within n edges from corre-
sponding initial change locations.

of edges Eclipse JDT core Eclipse SWT Equinox p2
1 769 (20.0%) 1371 (13.5%) 240 (10.2%)
2 1270 (33.1%) 3170 (31.3%) 702 (29.7%)
3 906 (23.6%) 3353 (33.1%) 564 (23.9%)
4 626 (16.3%) 1961 (19.3%) 458 (19.4%)
5 196 (5.1%) 194 (1.9%) 260 (11.0%)

over 5 69 (1.8%) 94 (0.9%) 138 (5.8%)

though there are 2%, 1%, and 6% of supplementary change
locations that cannot be connected within five edges from
initial change locations, 98%, 99%, and 94% of them can be
represented within five edges in Eclipse JDT core, Eclipse
SWT, and Equinox p2, respectively.

We investigate the feedback, precision, recall, and f-score
of the rules made by one to three relationship edges. F-
score is a common measure assessing the predictive power
which considers both precision and recall, and it is defined
by 2∗(precision∗recall)/(precision+recall). We apply the
rules to the initial change locations of Type II bugs to predict
corresponding supplementary change locations. Overall, the
f-score is at most 9%, 10%, and 8% with the precision value
of 8%, 9%, and 5% and the recall value of 11%, 11%, and
20% in Eclipse JDT core, Eclipse SWT, and Equinox p2,
respectively. These low f-scores indicate that combining of
multiple traits does not predict supplementary change loca-
tions based on initial change locations any more accurately
than single traits.

4.2 Observation 2: A boosting approach does
not significantly improve the accuracy.

To improve the prediction accuracy, we hypothesize that
combining the past accuracy information may improve the
accuracy of future prediction. We divide the supplementary
patch data set into a training set and an evaluation set as
Table 3 shows. The training set is used to calculate the
prediction accuracy of each rule. Based on the accuracy
information of the training set, we use a boosting approach
to predict supplementary change locations.

Table 3: The period of the training set and evalua-
tion set

Training period Evaluation period
Eclipse JDT core 2002/01 ∼ 2006/08 2006/09 ∼ 2007/09

Eclipse SWT 2002/01 ∼ 2006/08 2006/09 ∼ 2007/09
Equinox p2 2006/10 ∼ 2008/10 2008/11 ∼ 2009/11

Boosting is a machine learning technique, that combines
weak learners to create a strong learner [13]. To classify a
new item, the boosting technique combines a set of results
that are generated from weak learners by weighting them
based on the accuracy of the weak learners in the training
set. We develop a boosting approach that uses prediction
rules as weak predictors. For a given initial change location,
our boosting approach calculates a prediction score for each
connected node within three edges of the initial change loca-
tion. The prediction score is calculated by summing up the
trained precision of the prediction rules corresponding to the
paths to each node from the initial change location. The can-
didate locations are ranked with the prediction score; then,
our boosting approach suggests top N nodes.

Table 4 shows the accuracy of the boosting approaches
with different top N values. The results show that the pre-
cisions are 7%, 5%, and 6% and the recalls are 5%, 7%,

and 10% in Eclipse JDT core, Eclipse SWT, and Equinox
p2, respectively, even when we suggest only the three nodes
that have the highest prediction score. We conclude that
this boosting approach based on the past prediction accu-
racy also cannot accurately predict supplementary change
locations.

Table 4: The accuracy of a boosting approach
top N Eclipse JDT core Eclipse SWT Equinox p2
value prec. recall prec. recall prec. recall
3 6.93% 4.77% 5.21% 7.35% 6.40% 9.93%
5 7.01% 8.65% 4.38% 9.89% 5.28% 12.80%
10 6.75% 14.58% 4.69% 16.20% 3.76% 16.29%
50 4.23% 21.05% 2.06% 29.47% 1.66% 29.18%
100 2.96% 29.01% 1.38% 38.20% 1.23% 33.70%
200 2.09% 51.23% 0.94% 49.48% 0.95% 40.21%

4.3 Observation 3: There is no package or de-
veloper specific pattern.

We hypothesize that filtering prediction approaches us-
ing package or developer specific information can improve
the accuracy of the prediction. Package specific rules can
improve the prediction accuracy when the packages have a
repeated pattern of relationships between initial and supple-
mentary change locations. Similarly, if a developer makes
similar types of mistakes repeatedly, developer specific rules
can improve the prediction accuracy.

We define package specific rules using a pre-condition and
a relationship, as shown in the example below:

Pre-condition: if the initial change location is in org-
.eclipse.jdt.core.util
Relationship: suggest locations that have been co-
changed with the initial change location.

Developer specific rules are defined in the similar way; the
pre-condition forms if the initial change is committed by the
developer Tom.

We firstly identify every package and developer specific
rule that appears at least once in the training set. To make
package and developer specific prediction rules, we gather
the pre-conditions of the initial changes (package names and
committer names) and identify the relationship between the
initial and supplementary change locations of Type II bugs
in the training set. We then calculate the accuracy of the
prediction rules in the training set.

Figure 1 plots the feedback and precision of the three kinds
of prediction rules in Eclipse JDT core. We find that gen-
eral rules show high feedback but low precision, and de-
veloper/package specific rules show low feedback but high
precision in all of the study subjects. This is quite natu-
ral, because when we filter the information according to a
specific package or developer, the rules can precisely predict
supplementary change locations for fewer applicable initial
change locations.

Based on the trained accuracies, we develop boosting ap-
proaches similar to those in the previous section. We find
that the boosting approaches based on package and devel-
oper specific rules do not improve the prediction accuracy;
indeed, their accuracy is even lower than that of the boost-
ing approach based on general rules in some cases. Over-
all, the highest improvements of the accuracy (in terms of
f-score) compared to the boosting approach based on gen-
eral rules are 1.24%, 1.02%, and 0.78% for the boosting ap-
proach based on package specific rules, and 0.92%, 0.44%,
and 1.20% for the boosting approach based on developer spe-

124

General rules
 Package specific rules
 Developer specific rules

0 20 40 60 80 100
0

10

20

30

40

50

60

Pr
ec

is
io

n
(%

)

Feedback (%)

Figure 1: Feedback vs. precision on three kinds of
prediction rules (in Eclipse JDT core)

cific rules in Eclipse JDT core, Eclipse SWT, and Equinox
p2, respectively.

Our sub-conclusion here is that no developer or package
specific pattern between initial and supplementary change
locations exists.

4.4 Observation 4: There is no repeated mis-
take.

Although we cannot find a repeated pattern of relation-
ship between initial and supplementary change locations ba-
sed on existing structural dependency, historical co-change,
code clone, and name similarity relationship, there might be
an uncovered relationship which can result in repeated pat-
terns. In this section, we investigate the patterns between
initial and supplementary change locations.

In a similar association rule mining approach of previous
work [3, 16, 19], but applying them to the supplementary
patch data set, we can represent the pattern between initial
and supplementary change locations as a rule:—“If methodA
is changed in an initial change, then testMethodA is changed
in the supplementary change.”

We investigate whether there is a repeated pattern of the
initial and supplementary change location pairs. If the initial
change locations are {A, B} and the supplementary change
locations are {X, Y}, we can make the following pattern
rules—(A → X), (A → Y), (B → X), (B → Y). We identify
the number of occurrence for each pattern.

The results shown in Table 5 indicate that the majority of
patterns (78%, 96%, and 95% in Eclipse JDT core, Eclipse
SWT, and Equinox p2, respectively) appear only once, and
under 2% of patterns appear more than three times in the
study subjects. This result indicates that we cannot gener-
ate an appropriate suggestion based on the majority of the
patterns, because they have occurred only once.

In addition, we also find that the same location does not
require supplementary fixes repeatedly. Table 6 shows the
portion of initial change locations appearing n times. 69%,
71%, and 84% of initial change locations appear only once in
the version history in Eclipse JDT core, Eclipse SWT, and
Equinox p2, respectively. These results indicate that devel-
opers rarely make repeated mistakes at the same location;

version history based pattern mining cannot be accurate at
finding supplementary change locations.

Table 5: The number of patterns between initial and
supplementary change locations appearing n times
Number Eclipse JDT core Eclipse SWT Equinox p2

1 73455 (77.5%) 116601 (96.0%) 32715 (94.9%)
2 19412 (20.5%) 4383 (3.6%) 1765 (5.1%)
3 755 (0.8%) 312 (0.3%) 11 (0.0%)
4 948 (1.0%) 45 (0.0%) 0 (0.0%)

over 4 207 (0.2%) 127 (0.1%) 0 (0.0%)

Table 6: The number of initial change locations ap-
pearing n times

Number Eclipse JDT core Eclipse SWT Equinox p2
1 2704 (68.8%) 2877 (71.3%) 1988 (84.2%)
2 810 (20.6%) 680 (16.9%) 302 (12.8%)
3 235 (6.0%) 243 (6.0%) 45 (1.9%)
4 77 (2.0%) 114 (2.8%) 23 (1.0%)

over 4 106 (2.7%) 119 (3.0%) 3 (0.1%)

5. DISCUSSION
We consider how the supplementary change locations can

be identified when the initial change is given. The accuracy
predicting the supplementary change location is already low,
but the problem can be more difficult in practice, because
we need to identify the changes that require supplementary
patches. We can identify incomplete patches based on ma-
chine learning techniques (e.g., SVM), by investigating the
characteristics of the incomplete patches (e.g., date, com-
mitter, contents of the patch, etc.).

We do not compare prediction rules to see which one is
superior to the others, because the overall accuracies of the
rules are low. We find that called by relationship is more
accurate than the other relationships (see Table 1). This
result implies that called by relationship is harder for pro-
grammers to detect than the other relationships. For a given
initial change location, developers should trace the call hier-
archy to find caller method of a method in an initial change
location. Because developers are more likely to miss the enti-
ties connected by called by relationship to the initial change,
the relationship occurs more frequently between initial and
supplementary changes than other relationships.

Regarding threats to validity, different experimental set-
tings can affect our prediction accuracy. For example, in-
stead of using all history data as a training set of the boost-
ing approach, we can use only recent information as a train-
ing set to limit the effect of the old data. In addition, fuzzy
logic, random forests, or neural network can be used in-
stead of a boosting approach. Furthermore, we use only
sub-projects of the Eclipse project as our study subjects
which are written mostly in Java. Different experimental
settings might improve prediction accuracy, but we doubt
that there is a silver bullet that can resolve this problem of
reducing omission errors.

6. CONCLUSION
Since about ten years ago, when guiding software changes

based on mining version histories showed early promise, many
change recommendation systems have been proposed to iden-
tify additional change locations given an existing change
set. Our study is the first systematic and comprehensive
investigation of a real-world supplementary patch data set,
where developers missed updating the entities together with
the initial change. In this paper, using the supplementary

125

change data set, we develop a novel representation, called
change relationship graph (CRG), that allows us to investi-
gate the relationship between two program locations based
on a combination of structural, historical, name similarity,
and code clone relationships. Based on the CRG, we inves-
tigate why it is inherently challenging to predict supplemen-
tary change locations given initial change locations.

Through a comprehensive study, we observe that while no
single rule is adequate, combining multiple rules is limited
as well. A boosting approach using the rules does not show
a high accuracy; rather, it shows that past accuracy infor-
mation on a training set does not improve future prediction
accuracy in the evaluation set. Beyond this, neither devel-
oper nor package specific information is found to improve the
accuracy. Moreover, there is no repeated pattern between
initial and supplementary change locations, and developers
do not make omission errors at the same locations repeat-
edly. As researchers who participated in the community
of mining software repository, we share our skepticism that
reducing real-world omission errors based on a systematic
evaluation of a supplementary patch data set is inherently
challenging.

7. ACKNOWLEDGEMENT
This work was partly supported by the IT R&D program

of MSIP/KEIT [10041313, UX-oriented Mobile SW Plat-
form]. This work was supported in part by the National Sci-
ence Foundation under grants CCF-1149391, CCF-1117902,
SHF-0910818, CCF-1018271, CCF-0811524, CNS-1239498,
and a Google Faculty Award.

8. REFERENCES
[1] B. Dagenais and L. Hendren. Enabling static analysis

for partial java programs. In Proceedings of the 23rd
ACM SIGPLAN conference on Object-oriented
programming systems languages and applications,
OOPSLA ’08, pages 313–328, New York, NY, USA,
2008. ACM.

[2] A. E. Hassan and R. C. Holt. Predicting change
propagation in software systems. In ICSM ’04:
Proceedings of the 20th IEEE International
Conference on Software Maintenance, pages 284–293,
Washington, DC, USA, 2004. IEEE Computer Society.

[3] K. Herzig and A. Zeller. Mining cause-effect-chains
from version histories. In Software Reliability
Engineering (ISSRE), 2011 IEEE 22nd International
Symposium on, pages 60–69. IEEE, 2011.

[4] H. Kagdi, S. Yusuf, and J. I. Maletic. Mining
sequences of changed-files from version histories. In
MSR ’06: Proceedings of the 2006 international
workshop on Mining software repositories, pages
47–53, New York, NY, USA, 2006. ACM.

[5] T. Kamiya, S. Kusumoto, and K. Inoue. Ccfinder: a
multilinguistic token-based code clone detection
system for large scale source code. Software
Engineering, IEEE Transactions on, 28(7):654–670,
2002.

[6] H. Malik and A. E. Hassan. Supporting software
evolution using adaptive change propagation
heuristics. In Software Maintenance, 2008. ICSM
2008. IEEE International Conference on, pages
177–186. IEEE, 2008.

[7] S. Mirarab, A. Hassouna, and L. Tahvildari. Using
bayesian belief networks to predict change propagation
in software systems. In Program Comprehension,
2007. ICPC’07. 15th IEEE International Conference
on, pages 177–188. IEEE, 2007.

[8] T. T. Nguyen, H. A. Nguyen, N. H. Pham,
J. Al-Kofahi, and T. N. Nguyen. Recurring bug fixes
in object-oriented programs. In ICSE ’10: Proceedings
of the 32nd ACM/IEEE International Conference on
Software Engineering, pages 315–324, New York, NY,
USA, 2010. ACM.

[9] J. Park, M. Kim, B. Ray, and D.-H. Bae. An empirical
study of supplementary bug fixes. In MSR ’12: 9th
IEEE Working Conference on Mining Software
Repositories, pages 40 –49, Washington, DC, USA,
june 2012. IEEE Computer Society,.

[10] M. K. Ripon Saha, Ray Qiu and D. Perry. A
graph-based framework for reasoning about
relationships among software modifications. Technical
report, 2014.

[11] M. P. Robillard. Automatic generation of suggestions
for program investigation. In ESEC/FSE-13:
Proceedings of the 10th European Software
Engineering Conference held jointly with 13th ACM
SIGSOFT International Symposium on Foundations
of Software Engineering, pages 11–20, New York, NY,
USA, 2005. ACM.

[12] Z. M. Saul, V. Filkov, P. Devanbu, and C. Bird.
Recommending random walks. In Proceedings of the
the 6th joint meeting of the European software
engineering conference and the ACM SIGSOFT
symposium on The foundations of software
engineering, pages 15–24. ACM, 2007.

[13] R. E. Schapire. The strength of weak learnability.
Machine learning, 5(2):197–227, 1990.

[14] M. Song and M. Kim. A query-by-example approach
for searching related software revisions. Technical
report, 2014.

[15] Z. Xing and E. Stroulia. Umldiff: an algorithm for
object-oriented design differencing. In ASE ’05:
Proceedings of the 20th IEEE/ACM International
Conference on Automated Software Engineering, pages
54–65, New York, NY, USA, 2005. ACM.

[16] A. T. T. Ying, G. C. Murphy, R. Ng, and
M. Chu-Carroll. Predicting source code changes by
mining change history. IEEE Transactions on
Software Engineering, 30(9):574–586, 2004.

[17] Y. Zhou, M. Wursch, E. Giger, H. Gall, and J. Lu. A
bayesian network based approach for change coupling
prediction. In Reverse Engineering, 2008. WCRE’08.
15th Working Conference on, pages 27–36. IEEE,
2008.

[18] T. Zimmermann, P. Weisgerber, S. Diehl, and
A. Zeller. Mining version histories to guide software
changes. In ICSE ’04: Proceedings of the 26th
International Conference on Software Engineering,
pages 563–572, Washington, DC, USA, 2004. IEEE
Computer Society.

[19] T. Zimmermann, P. Weißgerber, S. Diehl, and
A. Zeller. Mining version histories to guide software
changes. IEEE Transactions on Software Engineering,
31(6):429–445, 2005.

126

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

