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Abstract survey [23] found that existing techniques match code at
particular levels (e.g., packages, classes, methods)ds)fie
Mapping code elements in one version of a program to based on closeness of names, structures, etc. Though intu-
corresponding code elements in another version is a funda-itive, this general approach has some limitations. First, e
mental building block for many software engineering tools. isting tools do not consider which set of structural changes
Existing tools that match code elements or identify struc- are more likely to have happened; thus they cannot easily
tural changes—refactorings and APl changes—betweendisambiguate among many potential matches or refactoring
two versions of a program have two limitations that we candidates. Second, existing tools represent the resilts a
overcome. First, existing tools cannot easily disambiguat an unstructured, usually lengthy, list of matches or refact
among many potential matches or refactoring candidates. ings. Although this unstructured representation is adefjua
Second, it is difficult to use these tools’ results for vasiou for conventional uses (e.g., transferring code-coverage i
software engineering tasks due to an unstructured repre-formation in profile-propagation tools), it may prevent ex-
sentation of results. To overcome these limitations, our ap isting tools from being broadly used in mining software
proach represents structural changes as a set of high-levelrepository research, which often demands an in-depth un-
change rules, automatically infers likely change rules and derstanding of software evolution. It may also be an ob-
determines method-level matches based on the rules. Bytacle to software tools that could benefit from additional
applying our tool to several open source projects, we show knowledge of the changes between versions.

that our tool identifies matches that are difficult to find gsin Consider an example where a programmer reorganizes

other approaches and produces more concise results thana chart drawing program by the type of a rendered object,
othe_r approaches. Our representation can serve as a benermoving axis-drawing classes from the packager t to the
basis for other software engineering tools. packagehart.axis. Then, to allow toggling of tool tips
by the user, she appendséol ean parameter to a set of
chart-creation interfaces. Even though the goals of these
1. Introduction transformations can be stated concisely in natural languag
a method-level matching tool would report a list of matches

Matching code elements between two versions of a pro-,that enumerates each method that has been moved and each

gram is the underlying basis for various software engineer- mterfa_tce that has been mOd'f_'ed' and a refactoring recon-
ing tools. For example, version merging tools identify pos- struction tool would report a list of low-level refactoriag

sible conflicts among parallel updates by analyzing matched(See Table 1). One may have_to examine h_undred_s or thou-
code elements [27], regression testing tools prioritizeesr sands of matches or refactorings before discovering that a

lect test cases that need to be re-run by analyzing matche(]jew simple high-level changes took plape. Moreover, i thg
code elements [15, 29, 30], and profile propagation tools programmerneglected to move one axis drawing class, this
use matching to transfer execution information between ver likely design error would be hard to detect.

sions [32]. In addition, emerging interest in mining softea This paper presents two contributions. First, we present
repositories [1, 4] —studying program evolution by analyz- an approach that automatically infers likely changes at or
ing existing software project artifacts—is demanding more above the level of method headers, and uses this information
effective and systematic matching techniques. Our recentto determine method-level matches. Second, our approach



represents the inferred changes concisely as first-order re
lational logic rules, each of which combines a set of simi-
lar low-level transformations and describes exceptioas th

one-to-one mappings between code elements in the version
pair. These properties limit the techniques in the case of
merging or splitting, which are commonly performed by

capture anomalies to a general change pattern. Explicitlyprogrammers. Most existing tools report their results as an
representing exceptions to a general change pattern makesnstructured list of matches, further limiting the potahtf
our algorithm more robust because a few exceptions do notthese approaches.

invalidate a high-level change, and it can signal incongplet
or inconsistent changes as likely design errors.

For the preceding change scenario, our tool infers a
rule—details appear in Section 3—for each of the high-
level changes made by the programmer.
for all x in chart.*Axis*.*(x)

packageRepl ace(x, chart, chart.axis)
for all x in chart. Factory. createxChart (*Data)

except {createGanttChart, createXYChart}

ar gAppend(x, [bool ean])

We applied our tool to several open source projects. In
terms of matching, our evaluation shows that our tool finds
matches that are hard to find using other tools. Our rule
representation makes results smaller and more readable.
also believe that by capturing changes in a concise and com

prehensible form, our technique may enable software engi-

neering applications that can benefit from high level change
patterns; for example, bug detectors, documentation-assis
tance tools, and API update engines. Moreover, the mining
of software repositories can be enhanced by the accuracy o
our algorithm and the information captured by our rules.

Section 2 discusses related work. Section 3 describes the

representation of the structural changes our tool infegs- S
tion 4 describes our inference algorithm. Section 5 present
our results and compares our approach to other approache
Section 6 discusses potential applications of our chang
rules based on motivating examples from our study. Sec-
tion 7 discusses future work.

2. Background

Program Element Matching Techniques.  To match
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Origin analysis tools [24, 39] find where a particular
code element came from, tackling the matching problem di-
rectly. Zou and Godfrey’s analysis [39] matches procedures
using multiple criteria (names, signatures, metric values
and callers/callees). It is semi-automatic; a programmer
must manually tune the matching criteria and select a match
among candidate matches. S. Kim et al. [24] automated Zou
and Godfrey’s analysis; matches are automatically sedecte
if an overall similarity, computed as a weighted sum of the
underlying similarity metrics, exceeds a given threshold.

Refactoring Reconstruction.  Existing refactoring re-
construction tools [2, 8, 9, 11, 21, 25, 31, 33, 34] com-
pare code between two program versions and look for code
Changes that match a predefined set of refactoring patterns:
move a method, rename a class, etc. For example, UML-
Diff [34] matches code elements in a top-down order, e.g.,
packages to classes to methods, based on name and struc-
tural similarity metrics. Then it infers refactorings fraime

atched code elements. As another example, Fluri et al.
11] compute tree edit operations between two abstract syn-
tax trees and identify changes inside the same class.

Many of these tools either find too many refactoring can-
didates and cannot disambiguate which ones are more likely
than others, or they do not find some refactorings when
some code elements undergo multiple refactorings during
a single check-in. Like matching tools, many of these tools
report simply a list of refactorings, making it difficult tonfil
emerging change patterns or to discover insights about why
a particular set of refactorings may have occurred.

3. Change Rules

code elements, the differences between two programs must

be identified. Computing semantic differences is undecid-
able, so tools typically approximate matching via syntacti
similarity. Tools differ in their underlying program repre
sentation, matching granularity, matching multipliciand
matching heuristics. In prior work [23], we compared ex-
isting matching techniques [3, 5, 17, 18, 19, 20, 24, 26,
28, 32, 35, 37] along these dimensions. Our survey found

Determining the changes between two versions enables
matching of their code elements. The research question is:
“Given two versions of a program, what changes occurred
with respect to a particular vocabulary of changes®
change vocabulary characterizes the applications forhwhic
the matching results can be used. For exangifédefines
a change vocabulary in terms of delete, add, and move line.

that fine-grained matching techniques often depend on ef-Though this change vocabulary is satisfactory for applica-

fective mappings at a higher level. For exampldiff [3]

cannot match control flow graph nodes if function names
are very different. Therefore, when package level or class
level refactorings occur, these techniques will miss many

tions such as conventional version control, it may not be
ideal for studying program evolution.

Consider Table 1. One change moves a group of classes
that match the Axi s pattern from packagehart to pack-

matches. Our survey also found that most techniques workagechart . axi s, and the other change adds@l ean pa-

at a fixed granularity and that most techniques report only

rameter to a group of methods that matchdheat e Char t



Table 1. Comparison between Programmer’s Intent and Existing Tools’ Results

Programmer’s Intent

Matching Tool Results [24]

Refactoring Reconstruction Results [33]

Move classes that draw axes [ chart . Dat eAxi s.. .,
from chart package [chart. Nunmber Axi s.. .,
tochart . axi s package [chart. Val ueAxis...,

chart.axis.DateAxis...]
chart. axis. Nunber Axis...]
chart. axis. Val ueAxis...]

Move clasDat eAxi s fromchart tochart. axi s
Move clasNunber Axi s fromchart tochart. axi s
Move classval ueAxi s fromchart tochart. axi s

Widen the APIs of chart

bool ean type argument

[createAreaChart(Data), createAreaChart(Data, bool ean)]
factory methods by addinga [ createLChart(IntData), createlLChart(IntData, boolean)]
[createPi eChart (Pi eData), createPieChart(PieData, bool ean)]

Add bool ean parameter tar eat eAr eaChar t
Add bool ean parameter tar eat eLChart
Add bool ean parameter ter eat ePi eChar t

pattern. Both changes involve applying the same atomicRule.

change to a set of related code elements.

A change rule consists ofstopegexceptionsind a
transformation The only methods transformed are those in

We have developed a change vocabulary with the goal ofthe scope but not in the exceptions. When a group of meth-
representing groups of related homogeneous changes preads have similar names, we summarize these methods as a
cisely. The core of our change vocabulary is a change rulescope expression using a wild-card pattern matching oper-
consisting of a quantifier and a scope to which a low-level ator. For examples. «Pl ot . get Range() describes meth-

transformation applies: “for all: in (scope— exceptions),

t(x),” wheret is a transformationscopeis a set of code

elements, andxceptionss a subset ocope

Currently, our change vocabulary describes structural

ods with any package name, any class name that ends with
Pl ot, any procedure name that starts wigkt and ends
with Range, and an empty argument list.

To discover emerging transformation patterns, a scope

changes at or above the level of a method header. Givercan have disjunctive scope expressions. The following rule

two versions of a program,, P,), our goal is to find

a set ofchange rulesi.e., change functions that trans-
form the method headers iR, to generate the method
headers inP,, in turn generating a set of method-
In this pa-

level matches from these change functions.
per, a Java method header is representedeasr n_t ype
package. cl ass. procedur e(i nput argunent _l i st) 1

Transformation.
types of transformations:

e packageReplace(Method,f:Text,t:Text)
changer’s package name frorfito ¢

e classReplacae(Method, f: Text,¢: Text)
changer’s class name fronf to ¢

e procedureReplace{Method,f:Text,t: Text)
changer’s procedure name fronfito ¢

e returnReplace(:Method,f: Text,: Text)
changer’s return type fromf to ¢

¢ inputSignatureReplace(Method f:List[Text],
t:List[Text]):
changer’s input argument list frony to ¢
e argReplace(:Method, f:Text,¢: Text)
change argument typgto ¢ in z’s input argument list
e argAppendg:Method t:List[Text]):
append the arg type ligtto x’s input argument list
e argDeletef:Method,t: Text)
delete every occurrence of typén thex’s input argu-
ment list
o typeReplacef{:Method, f:Text,¢: Text)
change every occurrence of tygdo ¢ in =

1The returntype is sometimes omitted for presentation purposes.

Currently we support the following

means that all methods whose class name either includes
Pl ot Or JThermonet er changed their package name from
chart tochart. plot.
for all x in chart.*Plot*.*(x)

or chart.*JThernoneterx. (*)

packageRepl ace(x, chart, chart.plot)
As another example, the following rule means that all
methods that match thehart. =Pl ot. get Range() pat-
tern take an additionaVal ueAxi s argument, except the
get Ver ti cal Range method in thevar ker Pl ot class.
for all x in chart.*Plot. get*Range()

except {chart. MarkerPl ot. getVertical Range}

ar gAppend(x, [ Val ueAxis])

Rule-based Matching. We define a matching between
two versions of a program by a set of change rules. The
scope of one rule may overlap with the scope of another rule
as some methods undergo more than one transformation.
Our algorithm ensures that we infer a set of rules such that
the application order of rules does not matter. The methods
that are not matched by any rules are deleted or added meth-
ods. For example, the five rules in Table 2 explain seven
matches. The unmatched method O2 is considered deleted.

4. Inference Algorithm

Our algorithm accepts two versions of a program and in-
fers a set of change rules. Our algorithm has four parts:
(1) generating seed matches, (2) generating candidate rule
based on the seeds, (3) iteratively selecting the best rule
among the candidate rules, and (4) post-processing the se-
lected candidate rules to output a set of change rules. We
first describe a naive version of our algorithm, followed by
a description of essential performance improvements for th
second and third parts of the algorithm. Then we summarize




Table 2. Rule-based Matching Example

A set of method headers iR, A set of method headers iR
Ol.chart. Vertical Pl ot.draw( G ph, Shp) N1.chart. plot. Vertical Pl ot.draw G ph)
O2.chart. Verti cal Renderer. draw G ph, Shp) N2.chart. pl ot. Hori zontal Pl ot. range( G ph)
O3.chart. Hori zontal Pl ot . range( G ph, Shp) N3.chart. axis. Hori zont al Axi s. get Hei ght ()
O4.chart. Hori zont al Axi s. hei ght () N4.chart. axis. Verti cal Axi s. get Hei ght ()
O5.chart. Vertical Axi s. hei ght () N5.chart. Chart Factory. creat eAreaChart (Data, bool ean)
O6.chart. Chart Factory. creat eAreaChart (Dat a) N6.chart. Chart Factory. createGantt Chart (I nterval, bool ean)

O7.chart. ChartFactory. createGanttChart(Interval) N7.chart. Chart Factory. cr eat ePi eChart ( Pi eDat a, bool ean)
08.chart. Chart Factory. creat ePi eChart (Pi eDat a)

Rule Matches Explained
scope exceptions transformation
chart.*Plot.x(*) packageRepl ace(x, chart, chart.plot) 01, N1J, [03, N2
chart.»Axi s.*(*) packageRepl ace(x, chart, chart.axis) 04, N3], [O5, N4
chart. Chart Factory. create*xChart (*) ar gAppend(x, [bool ean]) 06, N5], [07, N6], [08, N7]
chart.x. (G ph, Shp) {02} ar gDel et e(x, Shp) 01, N1J, [03, N2
chart.*Axi s. hei ght () procedur eRepl ace(x, hei ght, getHei ght)| [04, N3], [O5, N4
key characteristics of our algorithm. ing with capital letters. For each subset, we replace

every token in the subset with a wild-card operator to
create a candidate scope expression. As a result, when
x consists ofn tokens, we generate a set ®f scope
expressions based om. For the preceding example
seed, our algorithm find§ ={+.+.x(*), chart.«.«(x),
chart.Vertical *.*x(*), ..., *.*xAxis.height(), ...

chart. Vertical Axis. hei ght () }.

Step 3. We generate a candidate rule with scope expression
s and compound transformatigrior each(s, t) in S x 27

We refer to the resulting set of candidate rule€ds. Each
element of CR is a generalization of a seed match and
some are more general than others.

Part 1. Generating Seed Matches. We start by search-
ing for method headers that are similar on a textual level,
which we callseed matches Seed matches provide ini-
tial hypotheses about the kind of changes that occurred.
Given the two program version$(, P,), we extract a set

of method header® and N from P, and P, respectively.
Then, for each method headerin O — N, we find the
closest method headgrin N — O in terms of the token-
level name similarity, which is calculated by breakingnd

y into a list of tokens starting with capital letters and then
computing the longest common subsequence of tokens [18]
If the name similarity is over a threshold we add the pair
into the initial set of seed matches. In our study, we found Part 3. Evaluating and Selecting Rules. Our goal is to
that thresholds in the range of 0.65-0.70 (meaning 65% toselect a small subset of candidate rule€'iR that explain a
70% of tokens are the same) gave good empirical results.large number of matches. While selecting a set of candidate
The seeds need not all be correct matches, as our rule selegules, we allow candidate rules to have a limited number of
tion algorithm (Part 3) rejects bad seeds and leverages gooexceptions to the general rule they represent.

seeds. Seeds can instead come from other sources such as The inputs are a set of candidate rulésH), a domain
CVS comments, other matching tools, or recorded or in- (D = O — N), a codomain@¢' = N), and an exception
ferred refactorings. threshold ¢ < e < 1). The outputs are a set of selected
candidate rulesk), and a set of found matche&/(). For a

Part 2. Generating Candidate Rules. For each seed candidate rule, “for all z in scopef (x)A... AL ()"

match|z, y], we build a set o€andidate rulesn three steps.

Unlike a change rule, where for every mafahy], y is the 1. r has amatch [a, V] if a € scope{y, ..., t; are applica-
result of applying a single transformationto a candidate ble toa, andt; (...t;(a)) = b.

rule may include one or more transformatians. . . ¢; such 2. a matcha, b] conflicts with a match[a/, '] if a = o’
thaty = ¢1(...t;(z)). We write candidate rules as “for afl andb # v/

in scopeti(x)A...At;(x).” This representation allows our 3. r has apositive match[a, b] given D, C, and M, if
algorithm to_find a matche, y] wherez undergoes multiple [a,b] is a match forr, [a,b] € {D x C}, and none of
transformations to become _ the matches i/ conflict with [a, b]

Step 1. We compare: andy to find a set of rans- 4 . hag anegativematchla, b, if it is a match forr but

formations T= {t1, to, ..., t;} such thatt;(tof...
tix)= y. We then createls power set2”. For
example, a seed clart. Vertical Axis. hei ght (),
chart.plot. Vertical Axis.get Hei ght ()] produces the
power set of packageRepl ace(x, chart, chart.plot)
andpr ocedur eRepl ace(x, height, get Height).

Step 2. We guess scope expressions from a seed matcBur algorithm greedily selects one candidate rule at each it
[z,y]. We dividex's full name to a list of tokens start- eration such that the selected rule maximally increases the

not a positive match for.

5. ris avalid rule if the number of its positive matches is
at least(1 — ¢) times its matches. For example, when
is 0.34 (our default);’s negative matches (exceptions)
must be fewer than roughly one third of its matches.



total number of matches. Initially we set bathand M to

the empty set. In each iteration, for every candidate rule
r € CR, we compute’s matches and check whetheis
valid. Then, we select a valid candidate ruléhat maxi-
mizes|M U P| whereP is s's positive matches. After se-
lecting s, we updateCR := CR — {s}, M := M U P,
andR := RU {(s,P,E)} whereP and E are s's pos-
itive and negative matches (exceptions) respectively, an
we continue to the next iteration. The iteration terminates

when no remaining candidate rules can explain any addi-

tional matches. The naive version of this greedy algorithm
hasO(|CR|? x |D|) time complexity.

Part 4. Post Processing. To convert a set of candi-
date rules to a set of rules, for each transformatiowe
find all candidate rules that contairand then create a new

scope expression by combining these rules’ scope expres

sions. Then we find exceptions to this new rule by enumer-
ating negative matches of the candidate rules and checkin
if the transformationt does not hold for each match.

Optimized Algorithm.  Two observations allow us to im-
prove the naive algorithm’s performance. First, if a candi
date ruler can addn additional matches td/ at theit"
iteration,» cannot add more than matches on any later
iteration. By storingn, we can skip evaluating on any it-
eration where we have already found a better ruleat can
add more matches than Second, candidate rules have a
subsumption structure because the scopes can be subsets
other scopes (e.g:, *. x(*Axi s) C*.*.%(*)).

Our optimized algorithm behaves as follows. Suppose
that the algorithm is at th&" iteration, and after examining
k — 1 candidate rules in this iteration, it has found the best
valid candidate rules that can addV additional matches.
For thek'" candidate ruley,,

(2) If v could add fewer thav additional matches up to
i-1°¢ iteration, skip evaluating;, as well as candidate rules
with the same set of transformations but a smaller scope, a
our algorithm does not prefey, overs.

(2) Otherwise, reevaluate,.

(2.1) If r,, cannot add any additional matcheshth, re-
mover;, from CR.

(2.2) If r, can add fewer thatVv additional matches re-
gardless of its validity, skip evaluating candidate rulethw
the same set of transformations but a smaller scope.

(2.3) If 7, is not valid but can add more thaN addi-
tional matches td//, evaluate candidate rules with smaller
scope and the same set of transformations.

(3) Updates and N as needed and go to step (1) to consider
the next candidate rule i@ R.
By starting with the most general candidate rule for each

set of transformations and generating more candidate rulexontain one to seven thousand methods.

ondemand only in step (2.3) above, the optimized algorithm
is much more efficient. Running our tool currently takes

only a few seconds for the usual check-ins and about seven
minutes in average for a program release pair.

Key Characteristics of Our Algorithm. First, our al-
gorithm builds insight from seed matches, generalizes the
scope that a transformation applies to, and validatesrhis i
sight. Second, it prefers a small number of general rules to

4@ large number of specific rules. Third, when there are a

small number of exceptions that violate a general rule, our
algorithm allows these exceptions but remembers them.

5. Evaluation

In this section, we quantitatively evaluate our tool in
terms of its matching power. Then in the following sec-
tion, we qualitatively assess additional benefits of irgierr

rules based on examples found in our study. To evaluate our
matches {/), we created a set of correctly labeled matches

g{E). We did this in two steps. First, we used our own in-

ference algorithm on each version pair in both directions
(which can find additional matches) and we computed the
union of those matches with the matches found by other ap-
proaches. Second, we labeled correct matches through a
manual inspection. Our quantitative evaluation is based on
the three following criteria.

Precision the percentage of our matches that are cor-

rect 'ﬁ%’“.
of Recall the percentage of correct matches that our tool
finds, A5EL.

Concisenessthe measure of how concisely a set of rules
explains matches, represented as a M/R rati?%%el—s‘.
A high M/R ratio means that using rules instead of plain
matches significantly reduces the size of results.

Our evaluations are based on both releases (i.e., released
versions) as well as check-in snapshots (i.e., internal, in

termediate versions). The primary difference is that there

Yends to be a much larger delta between successive program

releases than between successive check-in snapshots.

Section 5.1 presents rule-based matching results for
three open source release archives. Sections 5.2 presents
comparison with two refactoring reconstruction tools [33,
34] and a method-level origin analysis tool [24]. Section
5.3 discusses the impact of the seed generation threshold
(v) and the exception threshold)( Section 5.4 discusses
threats to the validity of our evaluation.

5.1. Rule-Based Matching Results

Subject Programs. We chose three open source Java pro-
grams that have release archives smurceforge.netind

The moderate
size lets us manually inspect matches when necessary.
JFreeChartis a library for drawing different types of charts,
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Table 3. Rule-based Matching Results ki

0.0 4 e
JFreeChart (www.jfree.org/jfreechart)
The actual release numbers are prefixed with 0.9. 0.8 1 g’:g)s“’"“':’se“a"‘) 9.8-
[¢) N JONN [Rule [Match [Prec.] Recall| M/R | Time 07 .

Precision(JHotDraw-5.3-5.41)
4—5 2925(3549| 1486 | 178 | 1198 | 0.92| 0.92 | 6.73 | 21.01 /
061 Precision(JEdit4.0-4.1)
N

6—7 3580| 4078 3058 | 23 465 | 1.00| 0.99 | 20.22| 1.04
7—8 4078| 4141 0 30 | 4057 | 1.00 | 0.99 | 135.23| 43.06
8—9 4141|4478 3347 | 187 | 659 | 0.91| 0.90 [ 3.52 | 22.84
9—10 | 4478|4495 4133 | 88 207 | 0.99| 0.93 | 235 | 0.96
10—11 |4495|4744| 4481 5 14 0.79| 0.79 | 2.80 | <0.01
11—12 |4744|5191| 4559 | 61 113 | 0.78 | 0.79 | 1.85 | 0.40
12—13 | 5191|5355 5044 | 10 145 | 1.00| 0.99 | 1450 0.11
13—14 |5355|5688| 5164 | 41 134 | 0.94| 0.86 | 3.27 | 0.43

5—-6 3549| 3580| 3540 5 6 1.00| 1.00 | 1.20 | <0.01
—o— Recall(JFreeChart0.9.8-0.9.9)

0.4

fi —— Recall(JHotDraw5.3-5.41)
0.3

—=— Recall(JEdit4.0-4.1)
0.2

Precision and Recall of Found Matches

0.1

14—15 | 5688|5828 5662 9 21 | 090 0.70 | 2.33 | 0.01 0 . . . .
15—16 |5828|5890| 5667 | 17 77 | 097 | 0.86 | 453 | 0.32 0%  20%  40%  60%  80%  100%
16—17 |5890| 6675 5503 | 102 | 285 | 0.91| 0.86 | 2.79 | 1.30 Percentage of Found Rules

17—18 |6675|6878| 6590 | 10 61 | 0.90| 1.00 | 6.10 | 0.08
18—19 |6878|7140| 6530 | 98 324 |1 0.93| 0.95| 3.31 | 1.67
1920 |7140|7222| 7124 4 14 1.00| 1.00 | 3.50 | <0.01

20—21 |7222|6596] 4454 | 71 | 1853 | 0.99| 0.98 | 26.10| 62.99 Figure 1. Recall and Precision vs. Percentage
MED 0.94| 093 | 3.50 | 0.43

MIN 078 0.70 | 1.20 | 0.00 of Found Matches

MAX 1.00| 1.00 |135.23] 62.99

JHotDraw (www.jhotdraw.org)
5253 |1478] 2241 1374 | 34 | 82 | 0.99] 0.92 | 241 | 011
5.3—5.41 | 2241| 5250 2063 | 39 104 | 0.99| 098 | 2.67 | 0.71 . : f b :
5 415.42| 52501 5205| 5040 | 17 | 17 | os2| 100 | 100 | 007 | Figure 1 plots the cumulative distribution of matches for

5.42-6.01| 5205/ 5205| 0 | 19 | 4641 | 1.00| 1.00 |244.26) 27.07| the version pairs with the median M/R ratio from each of
MED 0.99] 099 | 254 | 041

MIN o oo oo oo the three projects. Th_e x axis represents the percentage of
MAX 1.00| 1.00 | 244.26] 27.07| rules found after each iteration, and the y axis represénts t
jEdit (www.jedit.org) fai ; :
03T 30333 G B3 T 4 63 o5 oo sa o3 'ecall and precision of matches found up to egch iteration.
3.1—-3.2 | 3134]3523| 2398 | 97 | 232 | 0.93| 0.98 | 2.39 | 151 In all three cases, the top 20% of the rules find over 55%

3.2—-4.0 | 3523|4064 3214 | 102 125 | 0.95| 1.00 | 1.23 | 0.61 0 1 0,
2041 | 2064] 2533| 3793 | 85 | 154 | 0sa| 095 | 173 | 090 | ©Of the matches, and the top 40% of the rules find over 70%

4.1-4.2 | 4533|5418| 3799 | 188 | 334 | 093] 0.97 | 1.78 | 446 | of the matches. In addition, as the precision plots show, the
e o o921 matches found in early iterations tend to be correct matches
MAX 095] 100 | 239 | 446 | evidenced by a general change pattern. The fact that many
matches are explained by a few rules is consistent with the
view that a single conceptual change often involves mutipl
JHotDrawis a GUI framework for technical and structured |ow |evel transformations, and it confirms that leveraging a
graphics, angEdit is a cross platform text editor. On aver- emergent change structure is a good matching approach.
age, release versions were separated by a two-month gapin  Qur tool handled the major refactorings in the subject
JFreeChartand a nine-month gap iiHotDrawandjEdit. programs quite well. For example, consider the change
from release 4 to 5 ofFreeChart Although nearly half
of the methods cannot be matched by name, our tool finds
178 rules and 1198 matches. The inferred rules indicate that
{here were many package-level splits as well as low-level
API changes. As presented below, these kind of changes
are not detected by other tools we analyzed. Examples of

Results. Table 3 summarizes results for the projects
(v=0.7 and:=0.34).0 andN are the number of methods in
an old version and a new version respectively, &dN is
the number of methods whose name and signature did no
change. Running time is described in minutes.
The precision of our tool is generally high in the range of : . X
0.78to 2.00, and recallisin thge range%.?% to 1.00. Thge me-the mferreq rules iFreeChartnclude:
. . . . . for all x in chart.*Plot.*(CategoryDataSet)
dian precision and the median recall for each set of subjects
is above, often well above, 0.90. or CEar:'i'i(gap: Slect’ Eectzg)
The M/R ratio shows significant variance not only across Z: gZpZ;n;j(;( ([i ::)] ) ot, Rect2D)

the three subjects but also for different release pairsén th Y

. . . for all x in int renderer.*.draw(*, G aph, Rect)
same subject. The low end of the range is at or just over 1 et ur nRepl ace(int, AxisState)
for each subject, representing cases where each rule repre- ’
sents roughly a single match. The high end of the range . .
varies from 2.39 (forJEdit) to nearly 244.26 (forJHot- 5.2. Comparison with Other Approaches
Draw). We observed, however, that most matches are actu- Refactoring reconstruction tools [2, 8, 9, 33, 34] com-
ally found by a small portion of rules (recall our algorithm pare two versions of a program and look for code changes
finds rules in descending order of the number of matches).that match a predefined set of refactoring patterns [12].



Table 4. Comparison: Number of Matches and Size of Result

Other Approach Our Approach Improvement
Xing and Stroulia (XS) Match Refactoring | Match Rules
jfreechart [ (17 release pairs)] 8883 4004 9633 939 8%  more matches 77%  decrease in size
Weigerber and Diehl (WD) Match Refactoring | Match Rules
JEdit RCAIl 1333 2133 1488 906 12%  more matches 58%  decrease in size
(2715 check-ins) RCBest 1172 1218 1488 906 27%  more matches 26%  decrease in size
Tomcat RCAII 3608 3722 2984 1033 | 17% fewer maiches 72%  decrease in sige
(5096 check-ins) RCBest 2907 2700 2984 1033 3%  more matches 62%  decrease in sigze
S. Kim et al (KPW) Match Match Rules
JEdit (1189 check-ins)| 1430 2009 1119 | 40%  more matches 22%  decrease in size
ArgoUML (4683 check-ins)| 3819 4612 2127 | 21%  more matches 44%  decrease in size

larity. Then it reports additions and removals of these-enti

Table 5. Comparison: Precision ties and inferred refactorings. XS can find most matches

Comparison of Matches Match Precision i A
Xing and Stroulia (XS) XSHours | 8619 1.00 that involve more than one refactoring; however, to re-
(171:52;:?;%) Pl ol Bl duce its computational cost, it does not handle combi-
WeiRgerber and Diehl (WD) | WD Ours | 1045 1.00 nations of move and rename refactorings such as ‘move
e RCAT Ours— WD | 233 0 Crosshai r1 nfo class fromchart to chart. pl ot package’
(2715 check-ins) WD A Ours | 1026 1.00 and ‘rename it t@r osshairStat e’
RCBest \%fs—(;/‘ljg ‘1‘% 8'33 The comparison results are summarized in Tables 4 and
WD A Ours | 2330 099 5. Overall, XS’s precision is about 2% (=8807/8883-
Tomeat RCAIl \%S*C\)’V?S 1625748 8-22 9369/9633) higher. However, our tool finds 761
— ou _ !
(5096 check-ins) WD A Ours | 2251 099 (=1014x0.75) correct matches not found by XS while there
RCBest \(/Dvlgs—(\)/\/D Zgg 8-;51 are only 199 (=2640.75) correct matches that our tool
— ours . . . . apr
S Kim et al. (KPW) KPWA Ours 1331 100 failed to report. M(_)re importantly, our tpql significantlg-r
(llngEﬁTt cins) gg(lsv— *E)PW %798 8-32 duces the result size by 77% by describing results as rules.
check-Ins — Ours . . .
RPW Ours T 3539 100 Many matches that XS m|ssed_ were matches that involve
ArgoUML Ours— KPW | 1073 0.78 both rename and move refactorings. Many matches that our
(4683 check-ins) KPW — Ours 280 0.76

tool missed had a very low name similarity, indicating a
need to improve our current seed generation algorithm.

Among these tools, we compared our matching results with Comparison with WeiRgerber and Diehl's Work.
Xing and Stroulia’s approach (XS) [34] and Weiltgerber and WD’s tool extracts added and deleted entities (fields,
Diehl's approach (WD) [33]. To uniformly compare our methods and classes) by parsing deltas from a version
rules with the results of XS and WD's approaches, we built control system (CVS) and then compares these entities
atool that deduces method-level matches from theirinferre to infer various kinds of structural and local refactorings
refactorings. Then we compared both approaches in termsmove class, rename method, remove parameter, etc.
of the number of matches as well as the size of the resultsThe tool finds redundant refactoring events for a single
(the number of rules in our approach and the number of rel- match. For example, if thel ot class were renamed to
evant refactorings in XS and WD's approach). Dat ePl ot , it would infer ‘rename clas$l ot to Dat ePl ot
Among origin analysis tools, we chose S. Kim et al’'s as well as ‘move method’ refactorings for all methods
approach (KPW) [24] for comparison because it is the mostin the piot class. When it cannot disambiguate all
recent work that we know of and it reported 87.8%t0 91.1% refactoring candidates, it uses the clone detection tool

accuracy on their evaluation data 3et. CCFinder [20] to rank these refactorings based on code
For comparison, XS provided their results dffreeChart similarity. For example, ifvertical Pl ot.draw G aph)
release archives, WD provided their results jedit and is deleted and Vertical Plot.drawten{Gaph) and
Tomcatcheck-in snapshots, and KPW provided their results verti cal Pl ot . render (Graph) are added, it finds both
onjEdit andArgoUML check-in snapshots. ‘rename methodir aw to draw tem and ‘rename method
] ] ] . ] drawtorender, which are then ordered.
Comparison with Xing and Stroulia’s UMLDIff. ~ XS’s We compared our results both with (1) all refactoring

tool UMLDIff extracts class models from two vers:ions of candidateskC,; and (2) only the top-ranked refactoring
a program, traverses the two models, and identifies corre-candidateskC;..;. The comparison results WitRRCjes;
sponding entities based on their name and structure simi-gng e, (v=0.65 ande=0.34) are shown in Table 4 and

i i i 0
2KPW created an evaluation data by having human judges fgesti 5. When comparing Wit Clpest, OUI approach finds 27%

naming events iSubversiorandApacheprojects. The accuracy is defined ~ MOre matCheS yet decreases the result size by 2GEglin _
as the percentage of agreement between two sets of origitiores. and it finds 3% more matches yet decreases the result size




by 62% inTomcat This result shows our approach achieves R
better matching coverage while retaining concise results. EHH\; .,
We also compared our matches and the matches generated / ] o
by WD’s tool. We manually inspected 50 sample check- _/?‘”' '

ins to estimate precision for the matches missed by one / f

tool but not the other as well as the matches found by both / The ral of refected seeds 0
tools. ForjEdit, our approach found 462 matches not iden- 7( % Precision

|

0.7

—x*— Recall of Seeds

0.6

tified by WD'’s RC.s:, and RChs; found just over 146 04 L Recal
matches that we failed to report. When combined with ] 03

the precision, this means our approach found about 430 02
(=462x0.93) additional useful matches, and their approach i/ 01
found about 61 (=1460.42) additional useful matches. | s ‘ : Lo
Tomcatshows roughly similar results. WD's tool missed ! Name":m”amyiimwd‘:; ;mdmgojeeds 0%
many matches when compound transformations were ap-

plied. Our tool missed some matches becays@.65 did

not generate enough seeds to find them. Figure 2. Impact of Seed Threshold ~

Comparison with S. Kim et al.'s Origin Analysis. For
comparison, both our tool and KPW's tool were applied
to jEdit and ArgoUML's check-in snapshots. Table 4 and
5 shows the comparison resuf50.65 ande=0.34). For
jEdit, our approach finds 40% more matches yet reduces
the result size by 22%, and férgoUML, it finds 21% more

and measured recall of seeds, precision, recall, and tiee rat
of rejected seeds to the total number of seeds. When

set high in the range of 0.9 to 0.8, the name matching tech-
nigue finds a relatively small number of seeds, but the seeds
) tend to be all good seeds. So our algorithm rejects very few
matches yet reduces the result size by 44%. seeds and leverages the good seeds to quickly reach the re-
_ We also compared our matches to KPW's matches andcq| of 9,65 to 0.85. However, the recall is still below 0.85
inspected the matches from 50 sample check-insto measurgq the seeds do not contain enough transformations; As

precision. FoiEdit, we found over 678 matches not identi- decreases, more seeds are produced and a higher percent-
fied by KPW's approach, and KPW's approach found about ¢ of them are bad seeds that our algorithm later rejects.

99 matches that we did not. When combined with the pre- Using a low threshold< 0.6) generally leads to higher re-

cision of szimpled matches, this means our approac!w found.5| above 0.9) but lowers precision and increases the run-
over 600 (=6780.89) usef_ul matches and that KPW's ap- i time since there are more candidate rules based on bad
proach found about 75 (=99.75) useful matchesAr- seeds. For the results in Figure 2, we observed a roughly lin-

goUML shows roughly similar results. This result is note- oo increase from 6 minutes<0.9) to 26 minutes{=0.5).
worthy because KPW's approach considers more informa- |, general, when the precision and recall of seed matches

tion such as calling relationships as well as clone detectio . low, our algorithm improves both measures signifi-

results in addition to name similarity. We suspect that it cantly. When the seed matches already have precision and
is because KPW's approach cannot accept correct matcheg, 5| over 0.9, the algorithm still improves both measures

when their overall similarity score is lower than a certain although less so because the seeds are already very good
threshold and cannot easily prune incorrect matches ONCqyowever, even in this case, our algorithm significantly im-

_the|_r overall similarity score is over a certain threshofia proves the conciseness measure. Effective seed generation
IS h_|gher than othgr maiches. On the other handf our al-and its interaction with our candidate rule selection algo-
gorithm tends to reject matches whose transformation is aNfithm needs additional research.

isolated incident even if the similarity score is high. Our

tool’s incorrect matches usually come from bad seeds thatException Threshold. We experimented with different
coincidentally have similar names. Overall, our approach exception thresholds: 0.25, 0.34, 0.5. Using a low thregshol
finds more matches without sacrificing its precision and rep- increases running time and slightly decreases the M/R.ratio

resents results more concisely than KPW's approach. Surprisingly we found that changing exception thresholds
does not affect precision and recall much. We suspect that
5.3. Impact of Threshold it is because most exceptions come from deleted entities.

Seed Threshold. Our results in part depend on the quan- 5.4. Threats to Validity

tity and quality of seeds. Figure 2 shows how our algorithm

behaves when we change the seed generation threshold  To measure precision, the first author manually inspected
for JFreechart(0.9.4—0.9.5). We variedy from 0.9 to 0.5 the matches generated by our tool and by other tools. Man-



ual labeling is subject to evaluator bias. All data are pub- their changes. Suppose that a programmer modified 14
licly available? so other researchers can independently as-methods to modify plot drawing APIs. Our tool can infer

sess our results (and use our data). the following rule, summarizing the changes concisely.
Our effort to date is limited in a number of ways. for all x in chart.plot.«Plot.draw Chartlnfo)
First, we have not explored other (non-Java) program- i nput Si gnatureRepl ace([ Chartlnfo],

ming languages, other (non-object-oriented) programming [Pl ot State, Pl ot | nfo])

paradigms, or even different naming conventions, all of If a programmer wants to examine instances of this change,

which could have consequences. Second, we have not exwe can simply display the matches found by the rule.

plored possible ways to exploit information from program- If inferring and documenting rules becomes a part of

ming environments (such as Eclipse) that support higher-standard development practice, this practice opens doors

level operations, such as some common refactorings. for richer software evolution research. In classic sofeavar

evolution studies [6], changes are often measured in terms

of LOC or the number of components. These quantitative

metrics do not necessarily depict an accurate picture of evo

_ ) ) lution in general. For the preceding example, while mea-
Our rules represent inferred changes in a concise andgying LOC changes may show that there were hundreds of

comprehensible form. This allows them to serve as a basisjjyag of dispersed changes, our rule can convey qualitative

for many software engineering applications that can benefitjnormation about evolution that conventional metricscan
from additional knowledge about change. We sketch several, ¢

such applications and include motivating examples from our

study. (Some of the example rules below are slightly modi- APl Evolution Analysis. ~ Our inferred rules may be
fied for presentation purposes.) able to shed light on understanding the evolution of APIs

[10]. Suppose that a programmer removeddhape type in
Bug Finding. ~ While examining the inferred rules, we some APIs to hide unnecessary details from clients. Before
found that exceptions often signal a bug arising from in- checking in this change, our tool can automatically infer th
complete or inconsistent changes. For example, the rule  fo|lowing rule and assist in describing what kinds of detail

6. Applications of Change Rules

for all x in Jx. addTitle(x) are hidden:
except { JThernoneter.addTitle(Title) } for all x in chart.+.+(Graphic, *, Shape)
procedur eRepl ace(x, addTitle, addSubtitle) argDel ete(x, Shape)

has one exception, which indicates that a programmer mis-Someone who sees this comment later will better under-
spelledaddsubtitie to addsubi t| e when modifying the  stand the intention of the change. More importantly, we
addTi tl e method ofJThermoneter, which is a subclass  found our inferred rules often reveal volatility of some API

of JFreechart. This misspelling causes dynamic dis- changes. In the following example, the first rule shows that

patching tQTher nonet er Not to function properly because  the use ofat egory type was replaced kykey, int] type.
addsubti t1 e is no longer overridden. for all x in .« *(Category)

. As_ another example, gonsider the following two rule_s, i nput Si gnat ur eRepl ace(x, [ Cat egory] , [ Key, int])

in which the second one is found one release after the first; or a1 x in «.+.+(Key, int)

one. We suspect that a programmer fixed only two out of  j hput si gnat ur eRepl ace(x, [Key, int],[Category])

the three problems, leaving one bug. In the next release, we found that that the same change was

for all x in ».drawm*, Key, *) quickly reversed based on the second rule.
except { Horizontal Bar, Vertical Bar, StatBar }

ar gRepl ace(x, Key, Category)
for all x in *Bar.draw(*, Key, *)

APl Update.  When an imported API is modified, pro-

grammers often have to update their code manually to adapt
except { Vertical Bar } to the modified interface. .One approach, e_‘m_bodieq by
ar gRepl ace(x, Key, Category) CatchUp! captures refactorings performed within Eclipse

A similar idea that detects potential errors from inferred and uses this information to help API users to update their

refactorings has been explored by Gérg and WeiBgerberCOde accordingly [7, 16]. In the absence of recorded refac-

[14]. However, they check only a predefined set of refac- torings, our tool can act as a refactoring reconstructiah to
toring consistency patterns. [9, 33], feeding input for an APl update tool.

Identifying Related Changes. Recent work has pro-
r_posed ways to use historical information to identify parts
of a software system that are likely to change together
[13, 36, 38]. By grouping related changes and represent-
3www.cs.washington.edu/homes/miryung/matching ing them as a rule, our tool can also identify what parts of

Assisted Documentation. By inferring change rules at
each check-in, our approach could be integrated into a ve
sion control system to assist programmers in documenting




a system change together. For example, consider this rule[14] C. Gérg and P. WeiRgerber. Error detection by refantprecon-
with 13 matches.

for all
ret urnRepl ace( x,

X in int x. % x(Charl ndex,
int, bool ean)

REMat ch)

[15]

This rule shows a programmer modified a group of methods [16]

similarly although they are not in the same class or package.
If one wants to factor out a set of related but scattered meth-
ods using the AspectJ programming language [22], we be-

[17]

lieve that the scope expressions in our rules can be extellen (18]
candidates for the point-cut descriptor.

7. Conclusions

Our approach is the first to automatically infer structural

[19]

[20]

[21]

changes, represent them concisely as a set of rules, and use

the rules to determine matches between two program ver-
sions. Our tool finds more and better matches than the othe
tools we surveyed and evaluated. Furthermore, the inferred

(122

change rules show promise in enabling new approaches to a[23]
wide variety of software engineering applications.
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