Lecture |0

Synthesis of Program Differencing Techniques
Logical Structural Diff

EE382V Software Evolution: Spring 2009, Instructor Miryung Kim

Today’s Agenda

® Discuss Yang’s syntactic diff
® Synthesis of Program Differencing Techniques

® |ogical Structural diff

EE382V Software Evolution: Spring 2009, Instructor Miryung Kim

mA (){
if (pred_a) {
foo()

Example

cl

c2
c3
c4
c5

c6 }

c8
c9
clO

cll }

Current

c0 mA ()

if (pred_a0) {
if (pred_a) {

foo()

c7 mB (b){

b:=b+l \c

a:==|

EE382V Software Evolution: Spring 2009, Instructor Miryung Kim

Yang 1992

function simple_tree_matching(A, B)
if the roots of the two trees A and B contain distinct symbols, then
return (0)
m := the number of the first level subtrees of A
n := the number of the first level subtrees of B
Initialization M [i,0] := 0 for i=0, .., m, M[0,j]:= 0 for j=0,...,n

for i:= | to m do
for ;=1 ton do
MIi,] = max (M[i, 11, M[i- j] M[i- Lj- 1]+W[i])
where WI[i,j] = simple_tree_matching (A_i, B_j) where A_i

and B_j are the ith and jth first level subtrees of A and B

end for
end for
return M[m,n]+ 1

EE382V Software Evolution: Spring 2009, Instructor Miryung Kim

fun arg_list

arg_list

pred_a foo

arg_list

EE382V Software Evolution: Spring 2009, Instructor Miryung Kim

Current

fun arg_list

arg_list
pred_a0

O C
pred_a foo

arg_list

EE382V Software Evolution: Spring 2009, Instructor Miryung Kim

AST matching

Past Current

PO mA () 0 mA (f

pl i (pred_a){ ¢l if (pred_a0){
foo() 2 if (pred_a) {

3 foo()

c4

c5

cb

c/

c8

EE382V Software Evolution: Spring 2009, Instructor Miryung Kim

Program Differencing Techniques

® Problem: Computing semantic differences requires solving
the problem of semantic program equivalence, which is an
undecidable problem.

Solution: The problem is approximated by matching a code
element by its syntactic and textual similarity.

EE382V Software Evolution: Spring 2009, Instructor Miryung Kim

Characterization of differencing
techniques

e Differencing techniques depends on the choices of
|. an underlying program representation

. matching granularity

2
3. matching multiplicity
4

. matching heuristics

EE382V Software Evolution: Spring 2009, Instructor Miryung Kim

What are the challenges of building
program differencing techniques?

Various Granularity Support / Problem of which
granularity to support

® Fine-grained vs course grained --> what to use this for?
Consideration of representing diff results / matches

Do you consider refactoring or not!

® Ground truth

® lack of benchmarks

Copy and paste

Program languages

EE382V Software Evolution: Spring 2009, Instructor Miryung Kim

Challenges of Program Differencing
(Code Matching)

® Absence of Benchmarks
® Low inter-rater agreement
® Programmers may have to inspect results
® Various Granularity Support
® Depends on which application it will be used for
® Types of Code Changes
® Merging, splitting, and renaming of procedures, files, etc.

® Copy and paste

EE382V Software Evolution: Spring 2009, Instructor Miryung Kim

Comparison

Heuristics

Matching Program
Technique Representation

Multiplicity
(ON) Posi- | Similari

tion

Granularity

name matching Entity Procedure/ File

diff [Hs77
bdiff [Tics4] String

cdiff prangs1]

Neamtiu et al. AST Type,Variable

jdiff (aoHo4
BMAT wemooj Binary code Code block

Clone detectors Various Various

Zou, Godfrey Hybrid Procedure

S.Kim et al. Hybrid Procedure

Comparison

Matching
Technique

Program
Representation

Granularity

Multiplicity
(O:N)

Heuristics

Posi-
tion

Similari

name matching

diff [Hs77]

bdiff [Tice4

cdiff [vang91]

Neamtiu et al.

jdiff [aoHo4]

BMAT wemoo

Entity

String

AST

Binary code

Procedure/ File

Line

Type,Variable

Code block

[:1, n:I

Clone detectors

Various

Various

n:n

Zou, Godfrey

Hybrid

Procedure

[:1,n:1, I:n

S. Kim et al.

Hybrid

Procedure

Look at the “Granularity” column

Matching
Technique

Granularity

name matching

Procedure/ File

d Iff [HS77]

Line

bd |ff [Ticg4]

Line

Cdlff [Yang9!]

AST node

Neamtiu et al.

Type,Variable

Id Iff [AOH04]

CFG node

BMAT weron

Code block

Clone detectors

Various

Zou, Godfrey

Procedure

S.Kim et al.

Procedure

Any observations!?

* Most techniques support code matching at a
fixed granularity

Look at the “Granularity” column

Matching
Technique

Granularity

name matching

Procedure/ File

d Iff [HS77]

Line

bd |ff [Ticg4]

Line

Cdlff [Yang9!]

AST node

Neamtiu et al.

Type,Variable

Id Iff [AOH04]

CFG node

BMAT weron

Code block

Clone detectors

Various

Zou, Godfrey

Procedure

S.Kim et al.

Procedure

Any observations!

*Many techniques produce mappings at a fixed granularity
*Many fine-grained techniques require mappings at a higher
level

*Many techniques will produce a long list of mappings,
making it difficult to comprehend

Look at the “Multiplicity” column

Matching o
Technique Multiplicity

name matching I:1
diff s, I:1
bdiff mceq
cdiff ranwon H
Neamtiu et al. I:1
jdiff oroq I:1

BMAT oo

Clone detectors
Zou, Godfrey
S. Kim et al.

Any observations!?
copy and paste
merging and splitting

Look at the “Heuristics’ column

Matching Heuristics
Tec h n iq ue Name Posi-tion Similarity

name matching o

d|ff THS771 l/

bd |ff [Tic841 Aa /

cdiff raneon V4

Neamtiu et al.

|d|ff TAOHO041 l/

BMAT TWWPMO0O01 l/

Clone detectors 4

Zou. Godfrey V4

S. Kim et al. W4

Any observations!?

Many use name-based matching

Evaluation

® We created a set of hypothetical program change
scenarios.

® small change scenario
® changes in the nested level of a control structure
® semantics-preserving statement reordering

® large change scenario
® procedure level renaming and splitting

® renaming, splitting, and merging scenarios at various
granularities

Small Change Scenario

Current

mA (){ 0 mA ()

if (pred_a) { cl if (pred_a0) {

foo() 2 if (pred_a) {

c3 foo()
c4
c5
c6 }
<7 mB(b){
c8 b:=b+l\c
9 a=|

clO

cll }

EE382V Software Evolution: Spring 2009, Instructor Miryung Kim

Large Change Scenario

*A file PEImtMatch changed its name to PMatching.
A procedure matchBlck are split into two procedures

matchDBIlck and matchCBIck.
*A procedure matchAST changed its name to
matchAbstractSyntaxTree.

EE382V Software Evolution: Spring 2009, Instructor Miryung Kim

Evaluation based on Hypothetical Change
Scenarios

Matching
Technique

Scenario

Transformation

Small

Large

Split/Merge

Rename

Proc

File

Proc

File

Weaknesses

diff

@

@

bdiff

cdiff

Neamtiu et al.

X partial AST matching

idiff

BMAT

X |:1 mapping only
X only applicable to binary code

Zou, Godfrey

X semi-automatic analysis

S. Kim et al.

O

@

X |:1 mapping only

® good, @ mediocre, O poor

Evaluation based on Hypothetical Change
Scenarios

Scenario

Matching
Technique

Large

diff O

; Fine-grained
Aol matching techniques do
cdiff not work well in case of
large changes.

Neamtiu et al.

idiff

BMAT

Zou, Godfrey G : ﬁ @ W ﬁ X semi-automatic analysis
S.Kim et al. Q Q . . X |:1 mapping only

® good, @ mediocre, O poor

Evaluation based on Hypothetical Change
Scenarios

Transformation
Split/Merge

Proc

diff O

Matching
Technique

bdiff Due to |:|1 mapping

assumptions, they perform
poorly when splitting or

Neamtiu et al. ’ merging.
e .

cdiff

idiff

BMAT

ZOU, Godfrey 3 ‘ “ ‘ X semi-automatic analysis
S.Kim et al. & O & @ |x 1.1 mapping only

® good, @ mediocre, O poor

Evaluation based on Hypothetical Change
Scenarios

Scenario Transformation

Matching
Technique

Split/Merge | Rename Weaknesses

Small | Large | proc | File | Proc | File

Zou and Godfrey’s
origin analysis will work
well but is semi-automatic.

Zou, Godfrey ® O O O® O |« i:comacanlss
S.Kim et al. ‘ &)) . ' X |:1 mapping only

® good, @ mediocre, O poor

What are future research directions
for program differencing tools!?

® Hybrid
® Voting!
® |mprove representation
® |[mprove heuristics
® Design Benchmark

® Dynamic information

What are future research directions
for program differencing tools!?

Hybrid matcher

® Find consensus among many matching techniques?
Hierarchical matching

Iterative fix-point matching algorithm

Leveraging dynamic information

Concise representation / Aggregation differencing results

|dentification of exceptions

Logical Structural Diff

Kim and Notkin, to be presented in ICSE 2009

EE382V Software Evolution: Spring 2009, Instructor Miryung Kim

Motivating Scenarios

“This program worked a month ago but is not
working now. What changed since then? Which
change led to a bug?”

“Did Bob implement the intended changes correctly?”

“There’s a merge conflict. What did Alice change?”

Diff Output

Changed(:ode - public class CmiRegistry implements
NameService {

+ public class CmiRegistry extends
DummyRegistry New 20 lines AbsRegistry implements NameService {
private int port =

private String host = null
JRMPRegistry Modified 123 lines public void setPort (int p) {

if (TraceCarol. isDebug()) { ...

}

File Name Status Lines

AbsRegistry New 133 lines

JeremieRegistry Modified 52 lines

JacORBCosNaming Modified 133 lines }

IIOPCosNaming Modified 50 lines public int getPort() {
return port;

CmiRegistry Modified 39 lines }

NameService Modified 197 lines public void setHost(String host)

NameServiceManager |Modified 15 lines

Total Change: 9 files, 723 lines

Check-In Comment

“Common methods go in an abstract class. Easier to
extend/maintain/fix”

Changed Code

File Name

Status

Lines

DummyRegistry

New

20 lines

AbsRegistry

New

133 lines

JRMPRegistry

Modified

123 lines

JeremieRegistry

Modified

52 lines

JacORBCosNaming

Modified

133 lines

ITOPCosNaming

Modified

50 lines

CmiRegistry

Modified

39 lines

NameService

Modified

197 lines

NameServiceManager

Modified

15 lines

Total Change: 9 files, 723 lines

which methods are the
common methods!?
Did this change happen for all
subclasses?
Did this person create a new class?
Is it really easier to maintain?
Did this document other artifacts
consistently?

What kinds of questions that
programmers ask during change
tasks!?

LSdiff results

Fact |.AbsRegistry is a new class

Rule |.All host fields in NameSvc’s subtypes were
deleted except LmiRegisty class

Rule 2. All setHost methods in NameSvc’s subtypes
were deleted except LmiRegistry class

Rule 3.All getHost methods in NameSvc’s subtypes
deleted calls to SQL.exec except LmiRegistry class.

LSdiff’s goal

LSdiff concisely infers systematic changes and reports
exceptions that deviate from these systematic
changes.

To complement existing uses of diff

To detect potential bugs by finding potential
inconsistent changes

To help programmers reason about related changes

To allow for top down reasoning as opposed to
reading changes file-by-file

Systematic Changes

® Refactoring [Opdyke 92, Griswold 92, Fowler 99...]

“Move related classes from one package to another package”

Systematic Changes

® Refactoring [Opdyke 92, Griswold 92, Fowler 99...]

® API| update [Chow&Notkin 96, Henkel&Diwan 05,
Dig&Johnson 05...]

“Update an API and all call sites of the API”

Systematic Changes

Refactoring [Opdyke 92, Griswold 92, Fowler 99...]

APl update [Chow&Notkin 96, Henkel&Diwan 05,
Dig&Johnson 05...]

Crosscutting concerns [Kiczales et.al. 97, Tarr et. al. 99,
Griswold 01...]

“Adding logging feature throughout code”

Systematic Changes

Refactoring [Opdyke 92, Griswold 92, Fowler 99...]

APl update [Chow&Notkin 96, Henkel&Diwan 05,
Dig&Johnson 05...]

Crosscutting concerns [Kiczales et.al. 97, Tarr et. al. 99,
Griswold 01...]

Consistent updates on code clones [Miller&Myers 02,
Toomim et. al. 04, Kim et. al. 05]

“Apply similar changes to syntactically similar code fragments”

Logical Structural Diff
Algorithm

Output: logic rules and facts that describe changes to
code elements and structural dependencies

. Extract a set of facts from a program using JQuery
[Jensen & DeVolder 03]

. Compute fact-level differences

. Learn Datalog rules using an inductive logic
programming algorithm

Detail Steps

Step |. Extract Facts

subtype

class GM extends Car @ type (“GM")
void run(int c) { subtype(“Car”,"”"GM")

contains X«

D e 1 oy IO 0 7 o) AR @ i @ method (“GM.run”,“run”,“GM")
bob();} .! .

accesses(”Util.flag”,”GM.run”)

accesses
calls(“GM.run”,"”GM.bob")

Program Fact-base

A fact-base program representation approach has been used by many tools such as
JQuery [Jensen&DeVolder 03], CodeQuest [Hajiev et. al. 06], Grok [Holt et.al.] , etc.

Step 2. Compute
Fact-Level Differences

Old Program (FBo) New Program (FBn)
past_* current_*

subtype

(ugye , ') SUbtype

subtype (ugye” , ')

(ugye” , nyn)

sgbtyse" " method

;u::c é Z) (”exeC", "X")
ug YE ” S method

(vc™, NameSvc : (vaxec” , ny)

Il)

set di:fference

Differences (AFB)
added_* / deleted_*

added_method
(llexecll . IIXII)
added method
(llexecll 4 IIYII)
added method
(llexecll " IIZII)

AFB Example

FB, (a fact-base of P,)

FB,, (a fact-base of P,,)

AFB

subtype(“Car’,"BMW"), ...
method(“BMW . start”, “start”, BMW)

subtype(“Car”’"BMW"), ...
method(“BMW.start”, “start”, BMW)
calls("BMW.start”, “Key.chk”)

+calls(“BMW.start”, “Key.chk”)

subtype(“Car","GM"), ...
method(“GM .start”, “start”, “GM")
accesses(“Key.on”, “GM .start”)

subtype(“Car","GM"), ...
method(“GM.start”, “start”, “GM")
calls("GM.start”, “Key.chk”)

-accesses(“Key.on”, “GM.start”)
+calls(“"GM.start”, “Key.chk”)

subtype(“Car”,"Kia"), ...
method("Kia,start”, “start”, “Kia")
accesses(“Key.on”, “Kia.start”), ...

subtype(“Car”,"Kia"), ...
method(“Kia,start”, “start”, “Kia")

-accesses(“Key.on”, “Kia.start”)

type(“Bus”)
method("'Bus,start”, “start”, Bus)
accesses(“Key.on”, “Bus.start”)

type(“Bus”)
method(“Bus,start”, “start”, Bus)
calls(*Bus.start”, “log™)

-accesses(Key.on”, “Bus.start”)
+calls(“Bus.start”, “log”)

type (“Key")
field(“Key.on", “on”, “Key")
method (“Key.chk”, “chk’”, “Key”)

type (“Key")
field(*Key.on", “on”, “Key")
method (“Key.chk”, “chk”, “Key")

Limitation |:Verbosity

FB, (a fact-base of P,)

FB,, (a fact-base of P,,)

AFB

subtype(“Car’,"BMW"), ...
method(“BMW . start”, “start”, BMW)

subtype(“Car”’"BMW"), ...
method(“BMW.start”, “start”, BMW)
calls("BMW.start”, “Key.chk”)

+calls(“BMW.start”, “Key.chk”)

subtype(“Car","GM"), ...
method(“GM .start”, “start”, “GM")
accesses(“Key.on”, “GM.start”)

;c,LJ.btype(“Car”,“Kia”), . ”
method(“Kia,start”, “st remove a

accesses(“Key.on”, “Kiz:

type(“Bus”)
method("'Bus,start”, “start”, Bus)
accesses(“Key.on”, “Bus.start”)

subtype(“Car","GM"), ...
method(“GM.start”, “start”, “GM")
calls(“GM .start”, “Key.chk™)

/(accesses(“Key.on”, “GM .start”))

+calls("GM.start”, "Key.chk"”)

accesses to Key.on &

(—accesses(“Key.on”, “Kia.start”))

type(“Bus”)
method(“Bus,start”, “start”, Bus)
calls(*Bus.start”, “log™)

\

(—accesses(“Key.on”, “Bus.start”»
+calls("Bus.start”, “log")

type (“Key")
field(“Key.on", “on”, “Key")
method (“Key.chk”, “chk’”, “Key”)

type ("Key")
field(“Key.on”, “on”, “Key")

method (“Key.chk”, “chk”, “Key")

Limitation 2: Lack of

Contextual Information

FB, (a fact-base of P,)

FB,, (a fact-base of P,,)

AFB

subtype(“Car’,"BMW"), ...
method(“BMW . start”, “start”, BMW)

subtype(“Car”’"BMW"), ...
method(“BMW.start”, “start”, BMW)
calls("BMW.start”, “Key.chk”)

(+calls(“BMW.start”, “Key.chk”)

subtype(“Car","GM"), ...
method(“GM .start”, “start”, “GM")
accesses(“Key.on”, “GM .start”)

subtype(“Car”,"Kia"), ...
method("Kia,start”, “start”, “Kia")
accesses(“Key.on”, “Kia.start”), ...

type(“Bus”)
method("'Bus,start”, “start”, Bus)
accesses(“Key.on”, “Bus.start”)

invoke Key.chk
from the start
methods in Car’s

', “GM.start”
+calls(“"GM.start”, “Key.chk”)

-accesses('Key.on’

-accesses(“Key.on”, “Kia.start”)

subtypes.

calls(*Bus.start”, “log™)

-accesses(Key.on”, “Bus.start”)
+calls(“Bus.start”, “log”)

type (“Key")
field(“Key.on", “on”, “Key")
method (“Key.chk”, “chk’”, “Key”)

type (“Key")
field(*Key.on", “on”, “Key")
method (“Key.chk”, “chk”, “Key")

Limitation 2: Lack of

Contextual Information

FB, (a fact-base of P,) FB,. (a fact-base of P,,) AFB

ssubtype(“Car’,"BMW"), .. ;""" subtype(“Car”,"BMW"), ...
.method(“BMW start”, “start” BIVIW) method(“BMW.start”, “start”, BMW)

""""""""""""""""""""""" s calls("BMW.start”, “Key.chk”) (—I—calls(“BMW.start”, “Key.chk')
's'dB:cS/'p'é(ar’,'GM"), ..o L s
' method(‘GM. start” “start” GM’) S s . k

Sctsses(Reyor oM sary %% | invoke Key.chk e R Y
. _ “’:'a from the start +calls(“"GM.start”, “Key.chk”)
subtype(Car""Kia"), ... &
method(.K.'.éa.S.t.%ct....%E?.rr....K.@.)....F methods in Car’s

accesses(Key.on™, “Kia.start™), ... -accesses(“Key.on”, “Kia.start”)
type(“Bus”) SUbt)’PeS.

method("'Bus,start”, “start”, Bus) -accesses(Key.on”, “Bus.start”)
accesses(“Key.on”, “Bus.start”) calls(*Bus.start”, “log™) +calls(“Bus.start”, “log”)

type (“Key") type (“Key")

field(“Key.on", “on”, “Key") field(“Key.on”, “on”, “Key")

method (“Key.chk”, “chk”, “Key") method (“Key.chk”, “chk”, “Key")

Step 3. Learn Rules

® Our rule learner uses a bounded depth search
algorithm that finds Datalog rules in a domain
specific form.

® We have input parameters that determine the
validity of a rule.

Example.
past _calls (x, “foo0”)

® ‘' mi => deleted_calls(x, “foo0”)
m: min support (8710, B2 5%0 gt K-

® k:the length of antecedant

® g:accuracy

Step 3. Learn Rules

Input: F'B,, FB,, AFB, m, a, k, and (3

QOutput: L and U

/* Initialize R, a set of ungrounded rules; L,
a set of learned rules; and U, a set of
facts in AFB that are not covered by L. */

R:=0,L:=0,U:= AFB;

U := applyDefaultWinnowingRules (AF B, F'B,,

FB,); /* reduce AFB with default winnowing

rules. */

R := createInitialRules (m); /* create rules

with an empty antecedent by enumerating all

possible consequents. */

foreach ¢ =1 ... k do

R := extendUngroundedRules (R) ; /* extend

all ungrounded rules in R by adding all

possible literals to their antecedent. */

foreach r € R do
G := createPartiallyGroundedRules (r) ;

/* try all possible constant
substitutions for r’s variable. */
foreach g in G do
if isValid (g) then
L :=L U {g};
U :=U — {g.matches};
end
end

end
R :=selectRules (R, () ; /* select the best (3
rules in R */

end

Recap

® Many differencing techniques individually compare
code elements at particular granularities using
similarity measures.

® Hard to comprehend as a long list of matches

® Difficult to identify exceptions that violate
systematic patterns

® | Sdiff uses rule-based change representations to
explicitly capture systematic changes and
automatically infers these rules.

Preview for This VWednesday

® Thomas Zimmermann, Peter Weillgerber, Stephan Diehl,
and Andreas Zeller. "Mining version histories to guide

software changes”, IEEE Transactions on Software
Engineering, 31(6):429—445, 2005.

® Association rule mining
® How can we recover transactions from CVS history!?

® What are the objectives of their evaluation? Are they
sufficiently validating their claims!?

EE382V Software Evolution: Spring 2009, Instructor Miryung Kim

Annhouncement

® Project Checkpoint Due on this thursday.

| won’t grade them.

It is not mandatory.

You are encouraged to submit to seek my feedback.

Available for both research project, literature survey, and
tool evaluation

EE382V Software Evolution: Spring 2009, Instructor Miryung Kim

