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Lecture 10 
Synthesis of Program Differencing Techniques 

Logical Structural Diff 
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Today’s Agenda

• Discuss Yang’s syntactic diff 

• Synthesis of Program Differencing Techniques 

• Logical Structural diff 
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Example

Past Current

p0 mA (){ c0 mA (){ 

p1    if (pred_a) { c1    if (pred_a0) {

p2       foo() c2       if (pred_a) {

p3    }    c3          foo()

p4 }    c4       } 

p5 mB (b) { c5    } 

p6    a := 1 c6 } 

p7    b := b+1  c7 mB (b) { 

p8    fun (a,b)   c8    b := b+1 \\ c

p9 } c9    a := 1 

c10    fun (a,b) 

c11 }
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Yang 1992

function simple_tree_matching(A, B) 
if the roots of the two trees A and B contain distinct symbols, then 
return (0) 
m := the number of the first level subtrees of A 
n := the number of the first level subtrees of B 
Initialization M [i,0] := 0 for i=0, .., m, M[0,j]:= 0 for j=0,...,n 

for i:= 1 to m do 
   for j:= 1 to n do  
      M[i, j] = max (M[i, j-1], M[i-1,j] M[i-1,j-1]+W[i,j]) 
          where W[i,j] = simple_tree_matching (A_i, B_j) where A_i 
and B_j are the ith and jth first level subtrees of A and B 
      end for 
end for                 
return M[m,n]+1
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root

mA mB

Body

If

pred_a foo

arg_list

Body

:=

a 1

:=

b +

b 1

arg_list

b

fun

arg_list

a b

Past
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Current

root

mA mB

Body

If

pred_a0

foo

arg_list

Body

:=

a 1

:=

b +

b 1

arg_list

b

fun

arg_list

a b

If

pred_a
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AST matching

Past Current

p0 mA (){ c0 mA (){ 

p1    if (pred_a) { c1    if (pred_a0) {

p2       foo() c2       if (pred_a) {

p3    }    c3          foo()

p4 }    c4       } 

p5 mB (b) { c5    } 

p6    a := 1 c6 } 

p7    b := b+1  c7 mB (b) { 

p8    fun (a,b)   c8    b := b+1 

p9 } c9    a := 1 

c10    fun (a,b) 

c11 }



EE382V Software Evolution: Spring 2009, Instructor Miryung KimEE382V Software Evolution: Spring 2009, Instructor Miryung Kim

Program Differencing Techniques

• Problem: Computing semantic differences requires solving 
the problem of semantic program equivalence, which is an 
undecidable problem. 

• Solution: The problem is approximated by matching a code 
element by its syntactic and textual similarity. 

•
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Characterization of differencing 
techniques

• Differencing techniques depends on the choices of 

1. an underlying program representation

2. matching granularity

3. matching multiplicity

4. matching heuristics 
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What are the challenges of building 
program differencing techniques? 

• Various Granularity Support  / Problem of which 
granularity to support 

• Fine-grained  vs course grained --> what to use this for? 

• Consideration of representing diff results / matches

• Do you consider refactoring or not? 

• Ground truth 

• Lack of benchmarks 

• Copy and paste 

• Program languages 
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Challenges of Program Differencing 
(Code Matching) 

• Absence of Benchmarks

• Low inter-rater agreement 

• Programmers may have to inspect results

• Various Granularity Support

• Depends on which application it will be used for  

• Types of Code Changes

• Merging, splitting, and renaming of procedures, files, etc. 

• Copy and paste



Matching
Technique

Program 
Representation

Granularity
Multiplicity

(O:N)

Heuristics

Name
Posi-
tion

Similari
ty

name matching Entity Procedure/ File 1:1 !

diff [HS77] String Line 1:1 !

bdiff [Tic84] String Line 1:n !

cdiff [Yang91] AST AST node 1:1 ! !

Neamtiu et al. AST Type, Variable 1:1 ! !

jdiff [AOH04] ECFG CFG  node, 
Hammock 

1:1 ! !

BMAT [WPM00] Binary code Code block 1:1, n:1 ! ! !

Clone detectors Various Various n:n !

Zou, Godfrey Hybrid Procedure 1:1, n:1, 1:n ! !

S. Kim et al. Hybrid Procedure 1:1 ! !

Comparison



Matching
Technique

Program 
Representation

Granularity
Multiplicity

(O:N)

Heuristics

Name
Posi-
tion

Similari
ty

name matching Entity Procedure/ File 1:1 !

diff [HS77] String Line 1:1 !

bdiff [Tic84] String Line 1:n !

cdiff [Yang91] AST AST node 1:1 !

Neamtiu et al. AST Type, Variable 1:1 ! !

jdiff [AOH04] CFG CFG node 1:1 ! !

BMAT [WPM00] Binary code Code block 1:1, n:1 ! ! !

Clone detectors Various Various n:n !

Zou, Godfrey Hybrid Procedure 1:1, n:1, 1:n ! !

S. Kim et al. Hybrid Procedure 1:1 ! !

Comparison



Matching
Technique

Program 
Representation

Granularity Multiplicity
Heuristics

Name Posi-tion Similarity

name matching Entity Procedure/ File 1:1 !
diff [HS77] String Line 1:1 !
bdiff [Tic84] String Line 1:n !
cdiff [Yang91] AST AST node 1:1 !

Neamtiu et al. AST Type, Variable 1:1 !
jdiff [AOH04] CFG CFG node 1:1 ! !

BMAT [WPM00] Binary code Code block 1:1, n:1 ! ! !
Clone detectors Various Various n:n !
Zou, Godfrey Hybrid Procedure 1:1, n:1, 1:n ! !
S. Kim et al. Hybrid Procedure 1:1 !

Look at the “Granularity” column

Any observations?

• Most techniques support code matching at a 
fixed granularity

•



Matching
Technique

Program 
Representation

Granularity Multiplicity
Heuristics

Name Posi-tion Similarity

name matching Entity Procedure/ File 1:1 !
diff [HS77] String Line 1:1 !
bdiff [Tic84] String Line 1:n !
cdiff [Yang91] AST AST node 1:1 !

Neamtiu et al. AST Type, Variable 1:1 !
jdiff [AOH04] CFG CFG node 1:1 ! !

BMAT [WPM00] Binary code Code block 1:1, n:1 ! ! !
Clone detectors Various Various n:n !
Zou, Godfrey Hybrid Procedure 1:1, n:1, 1:n ! !
S. Kim et al. Hybrid Procedure 1:1 !

Look at the “Granularity” column

Any observations?
•Many techniques produce mappings at a fixed granularity
•Many fine-grained techniques require mappings at a higher 
level
•Many techniques will produce a long list of mappings, 
making it difficult to comprehend



Matching
Technique

Program 
Representation

Granularity Multiplicity
Heuristics

Name Posi-tion Similarity

name matching Entity Procedure/ File 1:1 !
diff [HS77] String Line 1:1 !
bdiff [Tic84] String Line 1:n !
cdiff [Yang91] AST AST node 1:1 !

Neamtiu et al. AST Type, Variable 1:1 !
jdiff [AOH04] CFG CFG node 1:1 ! !

BMAT [WPM00] Binary code Code block 1:1, n:1 ! ! !
Clone detectors Various Various n:n !
Zou, Godfrey Hybrid Procedure 1:1, n:1, 1:n ! !
S. Kim et al. Hybrid Procedure 1:1 ! !

Look at the “Multiplicity” column

Any observations?

• copy and paste 

• merging and splitting 

•



Matching
Technique

Program 
Representation

Granularity Multiplicity
Heuristics

Name Posi-tion Similarity

name matching Entity Procedure/ File 1:1 !
diff [HS77] String Line 1:1 !
bdiff [Tic84] String Line 1:n !
cdiff [Yang91] AST AST node 1:1 !

Neamtiu et al. AST Type, Variable 1:1 !
jdiff [AOH04] CFG CFG node 1:1 ! !

BMAT [WPM00] Binary code Code block 1:1, n:1 ! ! !
Clone detectors Various Various n:n !
Zou, Godfrey Hybrid Procedure 1:1, n:1, 1:n ! !
S. Kim et al. Hybrid Procedure 1:1 ! !

Look at the “Heuristics” column

Any observations?

• Many use name-based matching 



• We created a set of hypothetical program change 
scenarios.

• small change scenario 

• changes in the nested level of a control structure 

• semantics-preserving statement reordering

• large change scenario

• procedure level renaming and splitting 

• renaming, splitting, and merging scenarios at various 
granularities

Evaluation
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Small Change Scenario

Past Current

p0 mA (){ c0 mA (){ 

p1    if (pred_a) { c1    if (pred_a0) {

p2       foo() c2       if (pred_a) {

p3    }    c3          foo()

p4 }    c4       } 

p5 mB (b) { c5    } 

p6    a := 1 c6 } 

p7    b := b+1  c7 mB (b) { 

p8    fun (a,b)   c8    b := b+1 \\ c

p9 } c9    a := 1 

c10    fun (a,b) 

c11 }
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Large Change Scenario

•A file PElmtMatch changed its name to PMatching. 

•A procedure matchBlck are split into two procedures 
matchDBlck and matchCBlck. 

•A procedure matchAST changed its name to 
matchAbstractSyntaxTree. 



Matching
Technique

Scenario Transformation

WeaknessesSplit/Merge Rename

Small Large Proc File Proc File

diff ◯ ◯

bdiff ! ◒

cdiff ◯ ◯

Neamtiu et al. ◯ ◯ ◯ ◯ ◯ ◯ "partial AST matching

jdiff ! ◯
BMAT ◯ ! ◯ ◯ ! ! "1:1 mapping only 

"only applicable to binary code 

Zou, Godfrey ◯ ! ! ! ! ! "semi-automatic analysis

S. Kim et al. ◯ ! ◯ ◯ ! ! "1:1 mapping only

Evaluation based on Hypothetical Change 
Scenarios

! good, ◒ mediocre, ◯ poor



Matching
Technique

Scenario Transformation

WeaknessesSplit/Merge Rename

Small Large Proc File Proc File

diff ◒ ◯ ◯ ◯ ◒ ◯ "require file level mapping

bdiff ! ◯ ◒ ◯ ◒ ◯ "require file level mapping

cdiff ◯ ◯ ◯ ◯ ◯ ◯ "require procedure level mapping
"sensitive to nested level change

Neamtiu et al. ◯ ◯ ◯ ◯ ◯ ◯ "partial AST matching

jdiff ! ◒ ◯ ◯ ◒ ◒ "sensitive control structure change

BMAT ◯ ! ◯ ◯ ! ! "1:1 mapping only 
"only applicable to binary code 

Zou, Godfrey ◯ ! ! ! ! ! "semi-automatic analysis

S. Kim et al. ◯ ! ◯ ◯ ! ! "1:1 mapping only

Evaluation based on Hypothetical Change 
Scenarios

! good, ◒ mediocre, ◯ poor

Fine-grained 
matching techniques do 
not work well in case of 

large changes. 



Matching
Technique

Scenario Transformation

WeaknessesSplit/Merge Rename

Small Large Proc File Proc File

diff ◒ ◯ ◯ ◯ ◒ ◯ "require file level mapping

bdiff ! ◯ ◒ ◯ ◒ ◯ "require file level mapping

cdiff ◯ ◯ ◯ ◯ ◯ ◯ "require procedure level mapping
"sensitive to nested level change

Neamtiu et al. ◯ ◯ ◯ ◯ ◯ ◯ "partial AST matching

jdiff ! ◒ ◯ ◯ ◒ ◒ "sensitive control structure change

BMAT ◯ ! ◯ ◯ ! ! "1:1 mapping only 
"only applicable to binary code 

Zou, Godfrey ◯ ! ! ! ! ! "semi-automatic analysis

S. Kim et al. ◯ ! ◯ ◯ ! ! "1:1 mapping only

Evaluation based on Hypothetical Change 
Scenarios

! good, ◒ mediocre, ◯ poor

Due to 1:1 mapping 
assumptions, they perform 
poorly when splitting or 

merging. 



Matching
Technique

Scenario Transformation

WeaknessesSplit/Merge Rename

Small Large Proc File Proc File

diff ◒ ◯ ◯ ◯ ◒ ◯ "require file level mapping

bdiff ! ◯ ◒ ◯ ◒ ◯ "require file level mapping

cdiff ◯ ◯ ◯ ◯ ◯ ◯ "require procedure level mapping
"sensitive to nested level change

Neamtiu et al. ◯ ◯ ◯ ◯ ◯ ◯ "partial AST matching

jdiff ! ◒ ◯ ◯ ◒ ◒ "sensitive control structure change

BMAT ◯ ! ◯ ◯ ! ! "1:1 mapping only 
"only applicable to binary code 

Zou, Godfrey ◯ ! ! ! ! ! "semi-automatic analysis

S. Kim et al. ◯ ! ◯ ◯ ! ! "1:1 mapping only

Evaluation based on Hypothetical Change 
Scenarios

! good, ◒ mediocre, ◯ poor

Zou and Godfrey’s 
origin analysis will work 

well but is semi-automatic.



What are future research directions 
for program differencing tools? 

• Hybrid 

• Voting? 

• Improve representation 

• Improve heuristics 

• Design Benchmark 

• Dynamic information 



What are future research directions 
for program differencing tools? 

• Hybrid matcher

• Find consensus among many matching techniques? 

• Hierarchical matching

• Iterative fix-point matching algorithm 

• Leveraging dynamic information

• Concise representation / Aggregation differencing results

• Identification of exceptions
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Logical Structural Diff
Kim and Notkin, to be presented in ICSE 2009



Motivating Scenarios 

• “This program worked a month ago but is not 
working now.  What changed since then? Which 
change led to a bug?”

• “Did Bob implement the intended changes correctly?” 

• “There’s a merge conflict. What did Alice change?”



Diff Output

- public class CmiRegistry implements 

NameService {

+ public class CmiRegistry extends 

AbsRegistry implements NameService {

-    private int port = ... 

-    private String host = null 

-    public void setPort (int p) {

-       if (TraceCarol. isDebug()) { ...

-       }

-     }

-     public int getPort() {

-       return port;

-      }

-     public void setHost(String host) 

{ ....

   ...

Changed Code 

File Name Status Lines

DummyRegistry New 20 lines

AbsRegistry New 133 lines

JRMPRegistry Modified 123 lines

JeremieRegistry Modified 52 lines

JacORBCosNaming Modified 133 lines

IIOPCosNaming Modified 50 lines

CmiRegistry Modified 39 lines

NameService Modified 197 lines

NameServiceManager Modified 15 lines

Total Change:  9 files, 723 lines



Check-In Comment

“Common methods go in an abstract class. Easier to 
extend/maintain/fix”

Changed Code 

File Name Status Lines

DummyRegistry New 20 lines

AbsRegistry New 133 lines

JRMPRegistry Modified 123 lines

JeremieRegistry Modified 52 lines

JacORBCosNaming Modified 133 lines

IIOPCosNaming Modified 50 lines

CmiRegistry Modified 39 lines

NameService Modified 197 lines

NameServiceManager Modified 15 lines

Total Change:  9 files, 723 lines

which methods are the 
common methods?

Did this change happen for all 
subclasses? 

Did this person create a new class? 
Is it really easier to maintain?

Did this document other artifacts 
consistently?



What kinds of questions that 
programmers ask during change 

tasks?



LSdiff results 

• Fact 1. AbsRegistry is a new class

• Rule 1. All host fields in NameSvc’s subtypes were 
deleted except LmiRegisty class

• Rule 2. All setHost methods in NameSvc’s subtypes 
were deleted except LmiRegistry class 

• Rule 3. All getHost methods in NameSvc’s subtypes 
deleted calls to SQL.exec except LmiRegistry class. 



LSdiff ’s goal

• LSdiff concisely infers systematic changes and reports 
exceptions that deviate from these systematic 
changes. 

• To complement existing uses of diff 

• To detect potential bugs by finding potential 
inconsistent changes 

• To help programmers reason about related changes 

• To allow for top down reasoning as opposed to 
reading changes file-by-file



Systematic Changes

“Move related classes from one package to another package”

• Refactoring [Opdyke 92, Griswold 92, Fowler 99...]



“Update an API and all call sites of the API”

Systematic Changes

• Refactoring [Opdyke 92, Griswold 92, Fowler 99...]

• API update [Chow&Notkin 96, Henkel&Diwan 05, 
Dig&Johnson 05...]



“Adding logging feature throughout code”

Systematic Changes

• Refactoring [Opdyke 92, Griswold 92, Fowler 99...]

• API update [Chow&Notkin 96, Henkel&Diwan 05, 
Dig&Johnson 05...]

• Crosscutting concerns [Kiczales et. al. 97, Tarr et. al. 99, 
Griswold 01...]



“Apply similar changes to syntactically similar code fragments”

Systematic Changes

• Refactoring [Opdyke 92, Griswold 92, Fowler 99...]

• API update [Chow&Notkin 96, Henkel&Diwan 05, 
Dig&Johnson 05...]

• Crosscutting concerns [Kiczales et. al. 97, Tarr et. al. 99, 
Griswold 01...]

• Consistent updates on code clones [Miller&Myers 02, 
Toomim et. al. 04, Kim et. al. 05] 



Logical Structural Diff 
Algorithm

1. Extract a set of facts from a program using JQuery 
[ Jensen & DeVolder 03] 

2. Compute fact-level differences 

3. Learn Datalog rules using an inductive logic 
programming algorithm 

Output: logic rules and facts that describe changes to 
code elements and structural dependencies

Detail Steps



Step 1. Extract Facts

class GM extends Car

   void run(int c) {

      if (Util.flag)...

      bob();}

}

type(“GM”)

subtype(“Car”,”GM”)

method(“GM.run”,“run”,“GM”)

accesses(”Util.flag”,”GM.run”)

calls(“GM.run”,”GM.bob”)

GM Car

run bob

flag

subtype

contains

calls

accesses

Program Fact-base

A fact-base program representation approach has been used by many tools such as 
JQuery [Jensen&DeVolder 03], CodeQuest [Hajiev et. al. 06 ], Grok [Holt et. al.] , etc.



Step 2. Compute 
Fact-Level Differences 

=

Old Program (FBo) New Program (FBn) Differences (!FB)

-

set difference

added_method

(“exec”,”X”)

added_method

(“exec”,”Y”)

added_method

(“exec”,”Z”)

method

(“exec”,”X”)

method

(“exec”,”Y”)

...

subtype

(“Svc”,”X”)

...

subtype

(“Svc”,”X”)

subtype

(“Svc”,”Y”)

subtype

(“Svc”,”Z”)

subtype

(“Svc”,”NameSvc

”)

past_* current_* added_* / deleted_*



!FB Example 

•         

Table 1: A Fact-Base Representation of Two Program Versions and their Difference
Po (an old version) FBo (a fact-base of Po) Pn (a new version) FBn (a fact-base of Pn) ∆FB

class BMW implements Car subtype(“Car”,“BMW”), . . . class BMW implements Car subtype(“Car”,“BMW”), . . .
void start (Key c) { method(“BMW.start”, “start”, BMW) void start () { method(“BMW.start”, “start”, BMW)

... . . . Key.chk (null); ... calls(“BMW.start”, “Key.chk”) +calls(“BMW.start”, “Key.chk”)
class GM implements Car subtype(“Car”,“GM”), . . . class GM implements Car subtype(“Car”,“GM”), . . .
void start (Key c ) { method(“GM.start”, “start”, “GM”) void start (Key c ) { method(“GM.start”, “start”, “GM”)
if (c.on) { .... accesses(“Key.on”, “GM.start”) Key.chk (c ); calls(“GM.start”,“Key.chk”) -accesses(“Key.on”, “GM.start”)

... . . . ... . . . +calls(“GM.start”,“Key.chk”)
class Kia implements Car subtype(“Car”,“Kia”), . . . class Kia implements Car subtype(“Car”,“Kia”), . . .
void start (Key c ) { method(“Kia,start”,“start”, “Kia”) void start (Key c ) { method(“Kia,start”,“start”, “Kia”)
c.on = true; .... accesses(“Key.on”, “Kia.start”), . . . . . . -accesses(“Key.on”, “Kia.start”)

class Bus { type(“Bus”) class Bus { type(“Bus”)
void start (Key c) { method(“Bus,start”, “start”, Bus) void start (Key c); method(“Bus,start”, “start”, Bus) -accesses(“Key.on”, “Bus.start”)
c.on = false;} } accesses(“Key.on”, “Bus.start”) log(); } } calls(“Bus.start”,“log”) +calls(“Bus.start”,“log”)

class Key { type (“Key”) class Key { type (“Key”)
boolean on = false; field(“Key.on”, “on”,“Key”) boolean on = false; field(“Key.on”, “on”, “Key”)
void chk (Key c) { ... method (“Key.chk”, “chk”, “Key”) static void chk (Key c) { method (“Key.chk”, “chk”, “Key”)

* The deleted and added facts in ∆FB are noted with + and − sign respectively.

Table 2: LSD Rule Inference Example
∆FB′ ∆FB′′

1. past accesses(“Key. on”, m) 1. past accesses(“Key. on”, m)
⇒ deleted accesses(“Key.on”, m) ⇒ deleted accesses(“Key.on”, m)

2. added calls(“BMW.start”,“Key.chk”) 2. past method(m,“start”, t)
3. added calls(“GM.start”,“Key.chk”) ∧ past subtype(“Car”,t)
4. added calls(“Bus.start”,“log”) ⇒ added calls(m,“Key.chk”)

except t = Kia
3. added calls(“Bus.start”,“log”)

they appear in unmodified parts of a program.
The intuition behind our rule-based approach is that

there are many situations in which apparently independent
changes implement a higher-level, more systematic change
together. By inferring rules that correspond to such high-
level systematic changes, our approach concisely summarizes
structural information within and around changed code. For
instance, changing an API and subsequently changing all
invocations of the API is an example of such systematic
change. A crosscutting change that removes all dependen-
cies to a particular module is another familiar example.
LSD Predicate. Our prototype currently models struc-
tural dependencies in a Java program at the type, field, and
method level using the following twelve predicates. The first
seven predicates describe code elements and their contain-
ment relationships. For example, type(“org.foo.Bar”, “Bar”,
“org.foo”) means that there is either a class or an interface
with the name Bar in org.foo package, and its fully qualified
name is org.foo.Bar. The next five predicates describe
field access, method invocation, subtyping, and overriding
dependencies. For example, inheritedmethod(“foo”, “Boo”,
“Bob”) means that Bob inherits foo method of Boo class.

1. package (p:Package).
2. type (t:Type, tn:TypeName, p:Package).
3. method (m:Method, mn:MethodName, t:Type).
4. field (f:Field, fn:FieldName, t:Type).
5. return (m:Method, returnType:Type).
6. fieldoftype (f:Field, declaredType:Type).
7. typeintype (inner:Type, outer:Type).
8. accesses (f:Field, accessor:Method).
9. calls (caller:Method, callee:Method).
10. subtype (super:Type, sub:Type).
11. inheritedfield (fn:FieldName, super:Type, sub:Type).
12. inheritedmethod (mn:MethodName, super:Type, sub:Type).

To distinguish which fact-base each fact belongs to, we

prefix past and current to the facts in FBo and FBn

respectively. To distinguish which facts were deleted from
the old version and added to the new version, we prefix
deleted and added to the corresponding facts in ∆FB.

Currently LSD predicates do not model access modifiers,
local variable accesses, control logic, and temporal logic.
LSD Rule. A logic rule describes the relationship among
groups of related logic facts. An LSD rule describes a high-
level systematic change by relating groups of facts in the
three fact-bases.

To represent a group of similar facts at once, we create
a logic literal by binding some of a predicate’s arguments
to variables. For example, subtype(“Foo”, t) represents all
subtype facts that have Foo as a first argument.

Rules relate groups of facts by connecting literals with
boolean logic operators. In particular, our LSD rules are
horn clauses where the conjunction of one or more literals
in the antecedent implies a single literal in the conclusion,
i.e., A(x) ∧ B(x,y)... ∧ C(x,z) ⇒ D(x,z). In LSD rules,
all variables are universally quantified and variables do not
appear in the conclusion unless they are bound in the
antecedent. LSD rules are either ungrounded rules (rules
without constant bindings) or partially grounded rules (rules
with constant bindings).

A rule r has a match f in ∆FB if f is a fact created
by grounding r’s conclusion with constants that satisfy r’s
antecedent given FBo, FBn, and ∆FB. A rule r has an
exception if there is no match in ∆FB implied by a true
grounding of its antecedent. For example, a rule A(x)⇒B(x)
has a match B(c1) and an exception x=c2 if A(c1), A(c2),
and B(c1) are in the three fact-bases, but B(c2) is not in
∆FB. We explicitly encode exceptions as a part of a rule to
note anomalies to a systematic change.

Table 3 shows the rule styles and an example rule for each
style. These rule styles can express high-level systematic
changes such as dependency removal and addition, feature
addition and deletion, consistent maintenance, replacement
of API usage or related code change.
Example. Suppose that a programmer intended to remove
all accesses to a field Key.on and call Key.chk from the start
methods in the classes implementing Car. Table 1 presents
the fact-bases and Table 2 shows the rule inference and ∆FB
reduction process. Based on the fact that all accesses to
Key.on are removed from the old version, ∆FB is reduced
to ∆FB′ by replacing the three deleted accesses facts with

Table 1: A Fact-Base Representation of Two Program Versions and their Difference
Po (an old version) FBo (a fact-base of Po) Pn (a new version) FBn (a fact-base of Pn) ∆FB

class BMW implements Car subtype(“Car”,“BMW”), . . . class BMW implements Car subtype(“Car”,“BMW”), . . .
void start (Key c) { method(“BMW.start”, “start”, BMW) void start () { method(“BMW.start”, “start”, BMW)

... . . . Key.chk (null); ... calls(“BMW.start”, “Key.chk”) +calls(“BMW.start”, “Key.chk”)
class GM implements Car subtype(“Car”,“GM”), . . . class GM implements Car subtype(“Car”,“GM”), . . .
void start (Key c ) { method(“GM.start”, “start”, “GM”) void start (Key c ) { method(“GM.start”, “start”, “GM”)
if (c.on) { .... accesses(“Key.on”, “GM.start”) Key.chk (c ); calls(“GM.start”,“Key.chk”) -accesses(“Key.on”, “GM.start”)

... . . . ... . . . +calls(“GM.start”,“Key.chk”)
class Kia implements Car subtype(“Car”,“Kia”), . . . class Kia implements Car subtype(“Car”,“Kia”), . . .
void start (Key c ) { method(“Kia,start”,“start”, “Kia”) void start (Key c ) { method(“Kia,start”,“start”, “Kia”)
c.on = true; .... accesses(“Key.on”, “Kia.start”), . . . . . . -accesses(“Key.on”, “Kia.start”)

class Bus { type(“Bus”) class Bus { type(“Bus”)
void start (Key c) { method(“Bus,start”, “start”, Bus) void start (Key c); method(“Bus,start”, “start”, Bus) -accesses(“Key.on”, “Bus.start”)
c.on = false;} } accesses(“Key.on”, “Bus.start”) log(); } } calls(“Bus.start”,“log”) +calls(“Bus.start”,“log”)

class Key { type (“Key”) class Key { type (“Key”)
boolean on = false; field(“Key.on”, “on”,“Key”) boolean on = false; field(“Key.on”, “on”, “Key”)
void chk (Key c) { ... method (“Key.chk”, “chk”, “Key”) static void chk (Key c) { method (“Key.chk”, “chk”, “Key”)

* The deleted and added facts in ∆FB are noted with + and − sign respectively.

Table 2: LSD Rule Inference Example
∆FB′ ∆FB′′

1. past accesses(“Key. on”, m) 1. past accesses(“Key. on”, m)
⇒ deleted accesses(“Key.on”, m) ⇒ deleted accesses(“Key.on”, m)

2. added calls(“BMW.start”,“Key.chk”) 2. past method(m,“start”, t)
3. added calls(“GM.start”,“Key.chk”) ∧ past subtype(“Car”,t)
4. added calls(“Bus.start”,“log”) ⇒ added calls(m,“Key.chk”)

except t = Kia
3. added calls(“Bus.start”,“log”)

they appear in unmodified parts of a program.
The intuition behind our rule-based approach is that

there are many situations in which apparently independent
changes implement a higher-level, more systematic change
together. By inferring rules that correspond to such high-
level systematic changes, our approach concisely summarizes
structural information within and around changed code. For
instance, changing an API and subsequently changing all
invocations of the API is an example of such systematic
change. A crosscutting change that removes all dependen-
cies to a particular module is another familiar example.
LSD Predicate. Our prototype currently models struc-
tural dependencies in a Java program at the type, field, and
method level using the following twelve predicates. The first
seven predicates describe code elements and their contain-
ment relationships. For example, type(“org.foo.Bar”, “Bar”,
“org.foo”) means that there is either a class or an interface
with the name Bar in org.foo package, and its fully qualified
name is org.foo.Bar. The next five predicates describe
field access, method invocation, subtyping, and overriding
dependencies. For example, inheritedmethod(“foo”, “Boo”,
“Bob”) means that Bob inherits foo method of Boo class.

1. package (p:Package).
2. type (t:Type, tn:TypeName, p:Package).
3. method (m:Method, mn:MethodName, t:Type).
4. field (f:Field, fn:FieldName, t:Type).
5. return (m:Method, returnType:Type).
6. fieldoftype (f:Field, declaredType:Type).
7. typeintype (inner:Type, outer:Type).
8. accesses (f:Field, accessor:Method).
9. calls (caller:Method, callee:Method).
10. subtype (super:Type, sub:Type).
11. inheritedfield (fn:FieldName, super:Type, sub:Type).
12. inheritedmethod (mn:MethodName, super:Type, sub:Type).

To distinguish which fact-base each fact belongs to, we

prefix past and current to the facts in FBo and FBn

respectively. To distinguish which facts were deleted from
the old version and added to the new version, we prefix
deleted and added to the corresponding facts in ∆FB.

Currently LSD predicates do not model access modifiers,
local variable accesses, control logic, and temporal logic.
LSD Rule. A logic rule describes the relationship among
groups of related logic facts. An LSD rule describes a high-
level systematic change by relating groups of facts in the
three fact-bases.

To represent a group of similar facts at once, we create
a logic literal by binding some of a predicate’s arguments
to variables. For example, subtype(“Foo”, t) represents all
subtype facts that have Foo as a first argument.

Rules relate groups of facts by connecting literals with
boolean logic operators. In particular, our LSD rules are
horn clauses where the conjunction of one or more literals
in the antecedent implies a single literal in the conclusion,
i.e., A(x) ∧ B(x,y)... ∧ C(x,z) ⇒ D(x,z). In LSD rules,
all variables are universally quantified and variables do not
appear in the conclusion unless they are bound in the
antecedent. LSD rules are either ungrounded rules (rules
without constant bindings) or partially grounded rules (rules
with constant bindings).

A rule r has a match f in ∆FB if f is a fact created
by grounding r’s conclusion with constants that satisfy r’s
antecedent given FBo, FBn, and ∆FB. A rule r has an
exception if there is no match in ∆FB implied by a true
grounding of its antecedent. For example, a rule A(x)⇒B(x)
has a match B(c1) and an exception x=c2 if A(c1), A(c2),
and B(c1) are in the three fact-bases, but B(c2) is not in
∆FB. We explicitly encode exceptions as a part of a rule to
note anomalies to a systematic change.

Table 3 shows the rule styles and an example rule for each
style. These rule styles can express high-level systematic
changes such as dependency removal and addition, feature
addition and deletion, consistent maintenance, replacement
of API usage or related code change.
Example. Suppose that a programmer intended to remove
all accesses to a field Key.on and call Key.chk from the start
methods in the classes implementing Car. Table 1 presents
the fact-bases and Table 2 shows the rule inference and ∆FB
reduction process. Based on the fact that all accesses to
Key.on are removed from the old version, ∆FB is reduced
to ∆FB′ by replacing the three deleted accesses facts with

Table 1: A Fact-Base Representation of Two Program Versions and their Difference
Po (an old version) FBo (a fact-base of Po) Pn (a new version) FBn (a fact-base of Pn) ∆FB
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void start (Key c) { method(“BMW.start”, “start”, BMW) void start () { method(“BMW.start”, “start”, BMW)

... . . . Key.chk (null); ... calls(“BMW.start”, “Key.chk”) +calls(“BMW.start”, “Key.chk”)
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void start (Key c ) { method(“GM.start”, “start”, “GM”) void start (Key c ) { method(“GM.start”, “start”, “GM”)
if (c.on) { .... accesses(“Key.on”, “GM.start”) Key.chk (c ); calls(“GM.start”,“Key.chk”) -accesses(“Key.on”, “GM.start”)

... . . . ... . . . +calls(“GM.start”,“Key.chk”)
class Kia implements Car subtype(“Car”,“Kia”), . . . class Kia implements Car subtype(“Car”,“Kia”), . . .
void start (Key c ) { method(“Kia,start”,“start”, “Kia”) void start (Key c ) { method(“Kia,start”,“start”, “Kia”)
c.on = true; .... accesses(“Key.on”, “Kia.start”), . . . . . . -accesses(“Key.on”, “Kia.start”)

class Bus { type(“Bus”) class Bus { type(“Bus”)
void start (Key c) { method(“Bus,start”, “start”, Bus) void start (Key c); method(“Bus,start”, “start”, Bus) -accesses(“Key.on”, “Bus.start”)
c.on = false;} } accesses(“Key.on”, “Bus.start”) log(); } } calls(“Bus.start”,“log”) +calls(“Bus.start”,“log”)

class Key { type (“Key”) class Key { type (“Key”)
boolean on = false; field(“Key.on”, “on”,“Key”) boolean on = false; field(“Key.on”, “on”, “Key”)
void chk (Key c) { ... method (“Key.chk”, “chk”, “Key”) static void chk (Key c) { method (“Key.chk”, “chk”, “Key”)

* The deleted and added facts in ∆FB are noted with + and − sign respectively.

Table 2: LSD Rule Inference Example
∆FB′ ∆FB′′

1. past accesses(“Key. on”, m) 1. past accesses(“Key. on”, m)
⇒ deleted accesses(“Key.on”, m) ⇒ deleted accesses(“Key.on”, m)

2. added calls(“BMW.start”,“Key.chk”) 2. past method(m,“start”, t)
3. added calls(“GM.start”,“Key.chk”) ∧ past subtype(“Car”,t)
4. added calls(“Bus.start”,“log”) ⇒ added calls(m,“Key.chk”)

except t = Kia
3. added calls(“Bus.start”,“log”)

they appear in unmodified parts of a program.
The intuition behind our rule-based approach is that

there are many situations in which apparently independent
changes implement a higher-level, more systematic change
together. By inferring rules that correspond to such high-
level systematic changes, our approach concisely summarizes
structural information within and around changed code. For
instance, changing an API and subsequently changing all
invocations of the API is an example of such systematic
change. A crosscutting change that removes all dependen-
cies to a particular module is another familiar example.
LSD Predicate. Our prototype currently models struc-
tural dependencies in a Java program at the type, field, and
method level using the following twelve predicates. The first
seven predicates describe code elements and their contain-
ment relationships. For example, type(“org.foo.Bar”, “Bar”,
“org.foo”) means that there is either a class or an interface
with the name Bar in org.foo package, and its fully qualified
name is org.foo.Bar. The next five predicates describe
field access, method invocation, subtyping, and overriding
dependencies. For example, inheritedmethod(“foo”, “Boo”,
“Bob”) means that Bob inherits foo method of Boo class.

1. package (p:Package).
2. type (t:Type, tn:TypeName, p:Package).
3. method (m:Method, mn:MethodName, t:Type).
4. field (f:Field, fn:FieldName, t:Type).
5. return (m:Method, returnType:Type).
6. fieldoftype (f:Field, declaredType:Type).
7. typeintype (inner:Type, outer:Type).
8. accesses (f:Field, accessor:Method).
9. calls (caller:Method, callee:Method).
10. subtype (super:Type, sub:Type).
11. inheritedfield (fn:FieldName, super:Type, sub:Type).
12. inheritedmethod (mn:MethodName, super:Type, sub:Type).

To distinguish which fact-base each fact belongs to, we

prefix past and current to the facts in FBo and FBn

respectively. To distinguish which facts were deleted from
the old version and added to the new version, we prefix
deleted and added to the corresponding facts in ∆FB.

Currently LSD predicates do not model access modifiers,
local variable accesses, control logic, and temporal logic.
LSD Rule. A logic rule describes the relationship among
groups of related logic facts. An LSD rule describes a high-
level systematic change by relating groups of facts in the
three fact-bases.

To represent a group of similar facts at once, we create
a logic literal by binding some of a predicate’s arguments
to variables. For example, subtype(“Foo”, t) represents all
subtype facts that have Foo as a first argument.

Rules relate groups of facts by connecting literals with
boolean logic operators. In particular, our LSD rules are
horn clauses where the conjunction of one or more literals
in the antecedent implies a single literal in the conclusion,
i.e., A(x) ∧ B(x,y)... ∧ C(x,z) ⇒ D(x,z). In LSD rules,
all variables are universally quantified and variables do not
appear in the conclusion unless they are bound in the
antecedent. LSD rules are either ungrounded rules (rules
without constant bindings) or partially grounded rules (rules
with constant bindings).

A rule r has a match f in ∆FB if f is a fact created
by grounding r’s conclusion with constants that satisfy r’s
antecedent given FBo, FBn, and ∆FB. A rule r has an
exception if there is no match in ∆FB implied by a true
grounding of its antecedent. For example, a rule A(x)⇒B(x)
has a match B(c1) and an exception x=c2 if A(c1), A(c2),
and B(c1) are in the three fact-bases, but B(c2) is not in
∆FB. We explicitly encode exceptions as a part of a rule to
note anomalies to a systematic change.

Table 3 shows the rule styles and an example rule for each
style. These rule styles can express high-level systematic
changes such as dependency removal and addition, feature
addition and deletion, consistent maintenance, replacement
of API usage or related code change.
Example. Suppose that a programmer intended to remove
all accesses to a field Key.on and call Key.chk from the start
methods in the classes implementing Car. Table 1 presents
the fact-bases and Table 2 shows the rule inference and ∆FB
reduction process. Based on the fact that all accesses to
Key.on are removed from the old version, ∆FB is reduced
to ∆FB′ by replacing the three deleted accesses facts with
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void start (Key c) { method(“BMW.start”, “start”, BMW) void start () { method(“BMW.start”, “start”, BMW)

... . . . Key.chk (null); ... calls(“BMW.start”, “Key.chk”) +calls(“BMW.start”, “Key.chk”)
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class Bus { type(“Bus”) class Bus { type(“Bus”)
void start (Key c) { method(“Bus,start”, “start”, Bus) void start (Key c); method(“Bus,start”, “start”, Bus) -accesses(“Key.on”, “Bus.start”)
c.on = false;} } accesses(“Key.on”, “Bus.start”) log(); } } calls(“Bus.start”,“log”) +calls(“Bus.start”,“log”)

class Key { type (“Key”) class Key { type (“Key”)
boolean on = false; field(“Key.on”, “on”,“Key”) boolean on = false; field(“Key.on”, “on”, “Key”)
void chk (Key c) { ... method (“Key.chk”, “chk”, “Key”) static void chk (Key c) { method (“Key.chk”, “chk”, “Key”)

* The deleted and added facts in ∆FB are noted with + and − sign respectively.

Table 2: LSD Rule Inference Example
∆FB′ ∆FB′′

1. past accesses(“Key. on”, m) 1. past accesses(“Key. on”, m)
⇒ deleted accesses(“Key.on”, m) ⇒ deleted accesses(“Key.on”, m)

2. added calls(“BMW.start”,“Key.chk”) 2. past method(m,“start”, t)
3. added calls(“GM.start”,“Key.chk”) ∧ past subtype(“Car”,t)
4. added calls(“Bus.start”,“log”) ⇒ added calls(m,“Key.chk”)

except t = Kia
3. added calls(“Bus.start”,“log”)

they appear in unmodified parts of a program.
The intuition behind our rule-based approach is that

there are many situations in which apparently independent
changes implement a higher-level, more systematic change
together. By inferring rules that correspond to such high-
level systematic changes, our approach concisely summarizes
structural information within and around changed code. For
instance, changing an API and subsequently changing all
invocations of the API is an example of such systematic
change. A crosscutting change that removes all dependen-
cies to a particular module is another familiar example.
LSD Predicate. Our prototype currently models struc-
tural dependencies in a Java program at the type, field, and
method level using the following twelve predicates. The first
seven predicates describe code elements and their contain-
ment relationships. For example, type(“org.foo.Bar”, “Bar”,
“org.foo”) means that there is either a class or an interface
with the name Bar in org.foo package, and its fully qualified
name is org.foo.Bar. The next five predicates describe
field access, method invocation, subtyping, and overriding
dependencies. For example, inheritedmethod(“foo”, “Boo”,
“Bob”) means that Bob inherits foo method of Boo class.

1. package (p:Package).
2. type (t:Type, tn:TypeName, p:Package).
3. method (m:Method, mn:MethodName, t:Type).
4. field (f:Field, fn:FieldName, t:Type).
5. return (m:Method, returnType:Type).
6. fieldoftype (f:Field, declaredType:Type).
7. typeintype (inner:Type, outer:Type).
8. accesses (f:Field, accessor:Method).
9. calls (caller:Method, callee:Method).
10. subtype (super:Type, sub:Type).
11. inheritedfield (fn:FieldName, super:Type, sub:Type).
12. inheritedmethod (mn:MethodName, super:Type, sub:Type).

To distinguish which fact-base each fact belongs to, we

prefix past and current to the facts in FBo and FBn

respectively. To distinguish which facts were deleted from
the old version and added to the new version, we prefix
deleted and added to the corresponding facts in ∆FB.

Currently LSD predicates do not model access modifiers,
local variable accesses, control logic, and temporal logic.
LSD Rule. A logic rule describes the relationship among
groups of related logic facts. An LSD rule describes a high-
level systematic change by relating groups of facts in the
three fact-bases.

To represent a group of similar facts at once, we create
a logic literal by binding some of a predicate’s arguments
to variables. For example, subtype(“Foo”, t) represents all
subtype facts that have Foo as a first argument.

Rules relate groups of facts by connecting literals with
boolean logic operators. In particular, our LSD rules are
horn clauses where the conjunction of one or more literals
in the antecedent implies a single literal in the conclusion,
i.e., A(x) ∧ B(x,y)... ∧ C(x,z) ⇒ D(x,z). In LSD rules,
all variables are universally quantified and variables do not
appear in the conclusion unless they are bound in the
antecedent. LSD rules are either ungrounded rules (rules
without constant bindings) or partially grounded rules (rules
with constant bindings).

A rule r has a match f in ∆FB if f is a fact created
by grounding r’s conclusion with constants that satisfy r’s
antecedent given FBo, FBn, and ∆FB. A rule r has an
exception if there is no match in ∆FB implied by a true
grounding of its antecedent. For example, a rule A(x)⇒B(x)
has a match B(c1) and an exception x=c2 if A(c1), A(c2),
and B(c1) are in the three fact-bases, but B(c2) is not in
∆FB. We explicitly encode exceptions as a part of a rule to
note anomalies to a systematic change.

Table 3 shows the rule styles and an example rule for each
style. These rule styles can express high-level systematic
changes such as dependency removal and addition, feature
addition and deletion, consistent maintenance, replacement
of API usage or related code change.
Example. Suppose that a programmer intended to remove
all accesses to a field Key.on and call Key.chk from the start
methods in the classes implementing Car. Table 1 presents
the fact-bases and Table 2 shows the rule inference and ∆FB
reduction process. Based on the fact that all accesses to
Key.on are removed from the old version, ∆FB is reduced
to ∆FB′ by replacing the three deleted accesses facts with
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void start (Key c) { method(“BMW.start”, “start”, BMW) void start () { method(“BMW.start”, “start”, BMW)

... . . . Key.chk (null); ... calls(“BMW.start”, “Key.chk”) +calls(“BMW.start”, “Key.chk”)
class GM implements Car subtype(“Car”,“GM”), . . . class GM implements Car subtype(“Car”,“GM”), . . .
void start (Key c ) { method(“GM.start”, “start”, “GM”) void start (Key c ) { method(“GM.start”, “start”, “GM”)
if (c.on) { .... accesses(“Key.on”, “GM.start”) Key.chk (c ); calls(“GM.start”,“Key.chk”) -accesses(“Key.on”, “GM.start”)

... . . . ... . . . +calls(“GM.start”,“Key.chk”)
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c.on = true; .... accesses(“Key.on”, “Kia.start”), . . . . . . -accesses(“Key.on”, “Kia.start”)

class Bus { type(“Bus”) class Bus { type(“Bus”)
void start (Key c) { method(“Bus,start”, “start”, Bus) void start (Key c); method(“Bus,start”, “start”, Bus) -accesses(“Key.on”, “Bus.start”)
c.on = false;} } accesses(“Key.on”, “Bus.start”) log(); } } calls(“Bus.start”,“log”) +calls(“Bus.start”,“log”)

class Key { type (“Key”) class Key { type (“Key”)
boolean on = false; field(“Key.on”, “on”,“Key”) boolean on = false; field(“Key.on”, “on”, “Key”)
void chk (Key c) { ... method (“Key.chk”, “chk”, “Key”) static void chk (Key c) { method (“Key.chk”, “chk”, “Key”)

* The deleted and added facts in ∆FB are noted with + and − sign respectively.

Table 2: LSD Rule Inference Example
∆FB′ ∆FB′′

1. past accesses(“Key. on”, m) 1. past accesses(“Key. on”, m)
⇒ deleted accesses(“Key.on”, m) ⇒ deleted accesses(“Key.on”, m)

2. added calls(“BMW.start”,“Key.chk”) 2. past method(m,“start”, t)
3. added calls(“GM.start”,“Key.chk”) ∧ past subtype(“Car”,t)
4. added calls(“Bus.start”,“log”) ⇒ added calls(m,“Key.chk”)

except t = Kia
3. added calls(“Bus.start”,“log”)

they appear in unmodified parts of a program.
The intuition behind our rule-based approach is that

there are many situations in which apparently independent
changes implement a higher-level, more systematic change
together. By inferring rules that correspond to such high-
level systematic changes, our approach concisely summarizes
structural information within and around changed code. For
instance, changing an API and subsequently changing all
invocations of the API is an example of such systematic
change. A crosscutting change that removes all dependen-
cies to a particular module is another familiar example.
LSD Predicate. Our prototype currently models struc-
tural dependencies in a Java program at the type, field, and
method level using the following twelve predicates. The first
seven predicates describe code elements and their contain-
ment relationships. For example, type(“org.foo.Bar”, “Bar”,
“org.foo”) means that there is either a class or an interface
with the name Bar in org.foo package, and its fully qualified
name is org.foo.Bar. The next five predicates describe
field access, method invocation, subtyping, and overriding
dependencies. For example, inheritedmethod(“foo”, “Boo”,
“Bob”) means that Bob inherits foo method of Boo class.

1. package (p:Package).
2. type (t:Type, tn:TypeName, p:Package).
3. method (m:Method, mn:MethodName, t:Type).
4. field (f:Field, fn:FieldName, t:Type).
5. return (m:Method, returnType:Type).
6. fieldoftype (f:Field, declaredType:Type).
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9. calls (caller:Method, callee:Method).
10. subtype (super:Type, sub:Type).
11. inheritedfield (fn:FieldName, super:Type, sub:Type).
12. inheritedmethod (mn:MethodName, super:Type, sub:Type).

To distinguish which fact-base each fact belongs to, we

prefix past and current to the facts in FBo and FBn

respectively. To distinguish which facts were deleted from
the old version and added to the new version, we prefix
deleted and added to the corresponding facts in ∆FB.

Currently LSD predicates do not model access modifiers,
local variable accesses, control logic, and temporal logic.
LSD Rule. A logic rule describes the relationship among
groups of related logic facts. An LSD rule describes a high-
level systematic change by relating groups of facts in the
three fact-bases.

To represent a group of similar facts at once, we create
a logic literal by binding some of a predicate’s arguments
to variables. For example, subtype(“Foo”, t) represents all
subtype facts that have Foo as a first argument.

Rules relate groups of facts by connecting literals with
boolean logic operators. In particular, our LSD rules are
horn clauses where the conjunction of one or more literals
in the antecedent implies a single literal in the conclusion,
i.e., A(x) ∧ B(x,y)... ∧ C(x,z) ⇒ D(x,z). In LSD rules,
all variables are universally quantified and variables do not
appear in the conclusion unless they are bound in the
antecedent. LSD rules are either ungrounded rules (rules
without constant bindings) or partially grounded rules (rules
with constant bindings).

A rule r has a match f in ∆FB if f is a fact created
by grounding r’s conclusion with constants that satisfy r’s
antecedent given FBo, FBn, and ∆FB. A rule r has an
exception if there is no match in ∆FB implied by a true
grounding of its antecedent. For example, a rule A(x)⇒B(x)
has a match B(c1) and an exception x=c2 if A(c1), A(c2),
and B(c1) are in the three fact-bases, but B(c2) is not in
∆FB. We explicitly encode exceptions as a part of a rule to
note anomalies to a systematic change.

Table 3 shows the rule styles and an example rule for each
style. These rule styles can express high-level systematic
changes such as dependency removal and addition, feature
addition and deletion, consistent maintenance, replacement
of API usage or related code change.
Example. Suppose that a programmer intended to remove
all accesses to a field Key.on and call Key.chk from the start
methods in the classes implementing Car. Table 1 presents
the fact-bases and Table 2 shows the rule inference and ∆FB
reduction process. Based on the fact that all accesses to
Key.on are removed from the old version, ∆FB is reduced
to ∆FB′ by replacing the three deleted accesses facts with

Table 1: A Fact-Base Representation of Two Program Versions and their Difference
Po (an old version) FBo (a fact-base of Po) Pn (a new version) FBn (a fact-base of Pn) ∆FB

class BMW implements Car subtype(“Car”,“BMW”), . . . class BMW implements Car subtype(“Car”,“BMW”), . . .
void start (Key c) { method(“BMW.start”, “start”, BMW) void start () { method(“BMW.start”, “start”, BMW)

... . . . Key.chk (null); ... calls(“BMW.start”, “Key.chk”) +calls(“BMW.start”, “Key.chk”)
class GM implements Car subtype(“Car”,“GM”), . . . class GM implements Car subtype(“Car”,“GM”), . . .
void start (Key c ) { method(“GM.start”, “start”, “GM”) void start (Key c ) { method(“GM.start”, “start”, “GM”)
if (c.on) { .... accesses(“Key.on”, “GM.start”) Key.chk (c ); calls(“GM.start”,“Key.chk”) -accesses(“Key.on”, “GM.start”)

... . . . ... . . . +calls(“GM.start”,“Key.chk”)
class Kia implements Car subtype(“Car”,“Kia”), . . . class Kia implements Car subtype(“Car”,“Kia”), . . .
void start (Key c ) { method(“Kia,start”,“start”, “Kia”) void start (Key c ) { method(“Kia,start”,“start”, “Kia”)
c.on = true; .... accesses(“Key.on”, “Kia.start”), . . . . . . -accesses(“Key.on”, “Kia.start”)

class Bus { type(“Bus”) class Bus { type(“Bus”)
void start (Key c) { method(“Bus,start”, “start”, Bus) void start (Key c); method(“Bus,start”, “start”, Bus) -accesses(“Key.on”, “Bus.start”)
c.on = false;} } accesses(“Key.on”, “Bus.start”) log(); } } calls(“Bus.start”,“log”) +calls(“Bus.start”,“log”)

class Key { type (“Key”) class Key { type (“Key”)
boolean on = false; field(“Key.on”, “on”,“Key”) boolean on = false; field(“Key.on”, “on”, “Key”)
void chk (Key c) { ... method (“Key.chk”, “chk”, “Key”) static void chk (Key c) { method (“Key.chk”, “chk”, “Key”)

* The deleted and added facts in ∆FB are noted with + and − sign respectively.

Table 2: LSD Rule Inference Example
∆FB′ ∆FB′′

1. past accesses(“Key. on”, m) 1. past accesses(“Key. on”, m)
⇒ deleted accesses(“Key.on”, m) ⇒ deleted accesses(“Key.on”, m)

2. added calls(“BMW.start”,“Key.chk”) 2. past method(m,“start”, t)
3. added calls(“GM.start”,“Key.chk”) ∧ past subtype(“Car”,t)
4. added calls(“Bus.start”,“log”) ⇒ added calls(m,“Key.chk”)

except t = Kia
3. added calls(“Bus.start”,“log”)

they appear in unmodified parts of a program.
The intuition behind our rule-based approach is that

there are many situations in which apparently independent
changes implement a higher-level, more systematic change
together. By inferring rules that correspond to such high-
level systematic changes, our approach concisely summarizes
structural information within and around changed code. For
instance, changing an API and subsequently changing all
invocations of the API is an example of such systematic
change. A crosscutting change that removes all dependen-
cies to a particular module is another familiar example.
LSD Predicate. Our prototype currently models struc-
tural dependencies in a Java program at the type, field, and
method level using the following twelve predicates. The first
seven predicates describe code elements and their contain-
ment relationships. For example, type(“org.foo.Bar”, “Bar”,
“org.foo”) means that there is either a class or an interface
with the name Bar in org.foo package, and its fully qualified
name is org.foo.Bar. The next five predicates describe
field access, method invocation, subtyping, and overriding
dependencies. For example, inheritedmethod(“foo”, “Boo”,
“Bob”) means that Bob inherits foo method of Boo class.

1. package (p:Package).
2. type (t:Type, tn:TypeName, p:Package).
3. method (m:Method, mn:MethodName, t:Type).
4. field (f:Field, fn:FieldName, t:Type).
5. return (m:Method, returnType:Type).
6. fieldoftype (f:Field, declaredType:Type).
7. typeintype (inner:Type, outer:Type).
8. accesses (f:Field, accessor:Method).
9. calls (caller:Method, callee:Method).
10. subtype (super:Type, sub:Type).
11. inheritedfield (fn:FieldName, super:Type, sub:Type).
12. inheritedmethod (mn:MethodName, super:Type, sub:Type).

To distinguish which fact-base each fact belongs to, we

prefix past and current to the facts in FBo and FBn

respectively. To distinguish which facts were deleted from
the old version and added to the new version, we prefix
deleted and added to the corresponding facts in ∆FB.

Currently LSD predicates do not model access modifiers,
local variable accesses, control logic, and temporal logic.
LSD Rule. A logic rule describes the relationship among
groups of related logic facts. An LSD rule describes a high-
level systematic change by relating groups of facts in the
three fact-bases.

To represent a group of similar facts at once, we create
a logic literal by binding some of a predicate’s arguments
to variables. For example, subtype(“Foo”, t) represents all
subtype facts that have Foo as a first argument.

Rules relate groups of facts by connecting literals with
boolean logic operators. In particular, our LSD rules are
horn clauses where the conjunction of one or more literals
in the antecedent implies a single literal in the conclusion,
i.e., A(x) ∧ B(x,y)... ∧ C(x,z) ⇒ D(x,z). In LSD rules,
all variables are universally quantified and variables do not
appear in the conclusion unless they are bound in the
antecedent. LSD rules are either ungrounded rules (rules
without constant bindings) or partially grounded rules (rules
with constant bindings).

A rule r has a match f in ∆FB if f is a fact created
by grounding r’s conclusion with constants that satisfy r’s
antecedent given FBo, FBn, and ∆FB. A rule r has an
exception if there is no match in ∆FB implied by a true
grounding of its antecedent. For example, a rule A(x)⇒B(x)
has a match B(c1) and an exception x=c2 if A(c1), A(c2),
and B(c1) are in the three fact-bases, but B(c2) is not in
∆FB. We explicitly encode exceptions as a part of a rule to
note anomalies to a systematic change.

Table 3 shows the rule styles and an example rule for each
style. These rule styles can express high-level systematic
changes such as dependency removal and addition, feature
addition and deletion, consistent maintenance, replacement
of API usage or related code change.
Example. Suppose that a programmer intended to remove
all accesses to a field Key.on and call Key.chk from the start
methods in the classes implementing Car. Table 1 presents
the fact-bases and Table 2 shows the rule inference and ∆FB
reduction process. Based on the fact that all accesses to
Key.on are removed from the old version, ∆FB is reduced
to ∆FB′ by replacing the three deleted accesses facts with
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Table 1: A Fact-Base Representation of Two Program Versions and their Difference
Po (an old version) FBo (a fact-base of Po) Pn (a new version) FBn (a fact-base of Pn) ∆FB

class BMW implements Car subtype(“Car”,“BMW”), . . . class BMW implements Car subtype(“Car”,“BMW”), . . .
void start (Key c) { method(“BMW.start”, “start”, BMW) void start () { method(“BMW.start”, “start”, BMW)

... . . . Key.chk (null); ... calls(“BMW.start”, “Key.chk”) +calls(“BMW.start”, “Key.chk”)
class GM implements Car subtype(“Car”,“GM”), . . . class GM implements Car subtype(“Car”,“GM”), . . .
void start (Key c ) { method(“GM.start”, “start”, “GM”) void start (Key c ) { method(“GM.start”, “start”, “GM”)
if (c.on) { .... accesses(“Key.on”, “GM.start”) Key.chk (c ); calls(“GM.start”,“Key.chk”) -accesses(“Key.on”, “GM.start”)

... . . . ... . . . +calls(“GM.start”,“Key.chk”)
class Kia implements Car subtype(“Car”,“Kia”), . . . class Kia implements Car subtype(“Car”,“Kia”), . . .
void start (Key c ) { method(“Kia,start”,“start”, “Kia”) void start (Key c ) { method(“Kia,start”,“start”, “Kia”)
c.on = true; .... accesses(“Key.on”, “Kia.start”), . . . . . . -accesses(“Key.on”, “Kia.start”)

class Bus { type(“Bus”) class Bus { type(“Bus”)
void start (Key c) { method(“Bus,start”, “start”, Bus) void start (Key c); method(“Bus,start”, “start”, Bus) -accesses(“Key.on”, “Bus.start”)
c.on = false;} } accesses(“Key.on”, “Bus.start”) log(); } } calls(“Bus.start”,“log”) +calls(“Bus.start”,“log”)

class Key { type (“Key”) class Key { type (“Key”)
boolean on = false; field(“Key.on”, “on”,“Key”) boolean on = false; field(“Key.on”, “on”, “Key”)
void chk (Key c) { ... method (“Key.chk”, “chk”, “Key”) static void chk (Key c) { method (“Key.chk”, “chk”, “Key”)

* The deleted and added facts in ∆FB are noted with + and − sign respectively.

Table 2: LSD Rule Inference Example
∆FB′ ∆FB′′

1. past accesses(“Key. on”, m) 1. past accesses(“Key. on”, m)
⇒ deleted accesses(“Key.on”, m) ⇒ deleted accesses(“Key.on”, m)

2. added calls(“BMW.start”,“Key.chk”) 2. past method(m,“start”, t)
3. added calls(“GM.start”,“Key.chk”) ∧ past subtype(“Car”,t)
4. added calls(“Bus.start”,“log”) ⇒ added calls(m,“Key.chk”)

except t = Kia
3. added calls(“Bus.start”,“log”)

they appear in unmodified parts of a program.
The intuition behind our rule-based approach is that

there are many situations in which apparently independent
changes implement a higher-level, more systematic change
together. By inferring rules that correspond to such high-
level systematic changes, our approach concisely summarizes
structural information within and around changed code. For
instance, changing an API and subsequently changing all
invocations of the API is an example of such systematic
change. A crosscutting change that removes all dependen-
cies to a particular module is another familiar example.
LSD Predicate. Our prototype currently models struc-
tural dependencies in a Java program at the type, field, and
method level using the following twelve predicates. The first
seven predicates describe code elements and their contain-
ment relationships. For example, type(“org.foo.Bar”, “Bar”,
“org.foo”) means that there is either a class or an interface
with the name Bar in org.foo package, and its fully qualified
name is org.foo.Bar. The next five predicates describe
field access, method invocation, subtyping, and overriding
dependencies. For example, inheritedmethod(“foo”, “Boo”,
“Bob”) means that Bob inherits foo method of Boo class.

1. package (p:Package).
2. type (t:Type, tn:TypeName, p:Package).
3. method (m:Method, mn:MethodName, t:Type).
4. field (f:Field, fn:FieldName, t:Type).
5. return (m:Method, returnType:Type).
6. fieldoftype (f:Field, declaredType:Type).
7. typeintype (inner:Type, outer:Type).
8. accesses (f:Field, accessor:Method).
9. calls (caller:Method, callee:Method).
10. subtype (super:Type, sub:Type).
11. inheritedfield (fn:FieldName, super:Type, sub:Type).
12. inheritedmethod (mn:MethodName, super:Type, sub:Type).

To distinguish which fact-base each fact belongs to, we

prefix past and current to the facts in FBo and FBn

respectively. To distinguish which facts were deleted from
the old version and added to the new version, we prefix
deleted and added to the corresponding facts in ∆FB.

Currently LSD predicates do not model access modifiers,
local variable accesses, control logic, and temporal logic.
LSD Rule. A logic rule describes the relationship among
groups of related logic facts. An LSD rule describes a high-
level systematic change by relating groups of facts in the
three fact-bases.

To represent a group of similar facts at once, we create
a logic literal by binding some of a predicate’s arguments
to variables. For example, subtype(“Foo”, t) represents all
subtype facts that have Foo as a first argument.

Rules relate groups of facts by connecting literals with
boolean logic operators. In particular, our LSD rules are
horn clauses where the conjunction of one or more literals
in the antecedent implies a single literal in the conclusion,
i.e., A(x) ∧ B(x,y)... ∧ C(x,z) ⇒ D(x,z). In LSD rules,
all variables are universally quantified and variables do not
appear in the conclusion unless they are bound in the
antecedent. LSD rules are either ungrounded rules (rules
without constant bindings) or partially grounded rules (rules
with constant bindings).

A rule r has a match f in ∆FB if f is a fact created
by grounding r’s conclusion with constants that satisfy r’s
antecedent given FBo, FBn, and ∆FB. A rule r has an
exception if there is no match in ∆FB implied by a true
grounding of its antecedent. For example, a rule A(x)⇒B(x)
has a match B(c1) and an exception x=c2 if A(c1), A(c2),
and B(c1) are in the three fact-bases, but B(c2) is not in
∆FB. We explicitly encode exceptions as a part of a rule to
note anomalies to a systematic change.

Table 3 shows the rule styles and an example rule for each
style. These rule styles can express high-level systematic
changes such as dependency removal and addition, feature
addition and deletion, consistent maintenance, replacement
of API usage or related code change.
Example. Suppose that a programmer intended to remove
all accesses to a field Key.on and call Key.chk from the start
methods in the classes implementing Car. Table 1 presents
the fact-bases and Table 2 shows the rule inference and ∆FB
reduction process. Based on the fact that all accesses to
Key.on are removed from the old version, ∆FB is reduced
to ∆FB′ by replacing the three deleted accesses facts with

Table 1: A Fact-Base Representation of Two Program Versions and their Difference
Po (an old version) FBo (a fact-base of Po) Pn (a new version) FBn (a fact-base of Pn) ∆FB

class BMW implements Car subtype(“Car”,“BMW”), . . . class BMW implements Car subtype(“Car”,“BMW”), . . .
void start (Key c) { method(“BMW.start”, “start”, BMW) void start () { method(“BMW.start”, “start”, BMW)

... . . . Key.chk (null); ... calls(“BMW.start”, “Key.chk”) +calls(“BMW.start”, “Key.chk”)
class GM implements Car subtype(“Car”,“GM”), . . . class GM implements Car subtype(“Car”,“GM”), . . .
void start (Key c ) { method(“GM.start”, “start”, “GM”) void start (Key c ) { method(“GM.start”, “start”, “GM”)
if (c.on) { .... accesses(“Key.on”, “GM.start”) Key.chk (c ); calls(“GM.start”,“Key.chk”) -accesses(“Key.on”, “GM.start”)

... . . . ... . . . +calls(“GM.start”,“Key.chk”)
class Kia implements Car subtype(“Car”,“Kia”), . . . class Kia implements Car subtype(“Car”,“Kia”), . . .
void start (Key c ) { method(“Kia,start”,“start”, “Kia”) void start (Key c ) { method(“Kia,start”,“start”, “Kia”)
c.on = true; .... accesses(“Key.on”, “Kia.start”), . . . . . . -accesses(“Key.on”, “Kia.start”)

class Bus { type(“Bus”) class Bus { type(“Bus”)
void start (Key c) { method(“Bus,start”, “start”, Bus) void start (Key c); method(“Bus,start”, “start”, Bus) -accesses(“Key.on”, “Bus.start”)
c.on = false;} } accesses(“Key.on”, “Bus.start”) log(); } } calls(“Bus.start”,“log”) +calls(“Bus.start”,“log”)

class Key { type (“Key”) class Key { type (“Key”)
boolean on = false; field(“Key.on”, “on”,“Key”) boolean on = false; field(“Key.on”, “on”, “Key”)
void chk (Key c) { ... method (“Key.chk”, “chk”, “Key”) static void chk (Key c) { method (“Key.chk”, “chk”, “Key”)

* The deleted and added facts in ∆FB are noted with + and − sign respectively.

Table 2: LSD Rule Inference Example
∆FB′ ∆FB′′

1. past accesses(“Key. on”, m) 1. past accesses(“Key. on”, m)
⇒ deleted accesses(“Key.on”, m) ⇒ deleted accesses(“Key.on”, m)

2. added calls(“BMW.start”,“Key.chk”) 2. past method(m,“start”, t)
3. added calls(“GM.start”,“Key.chk”) ∧ past subtype(“Car”,t)
4. added calls(“Bus.start”,“log”) ⇒ added calls(m,“Key.chk”)

except t = Kia
3. added calls(“Bus.start”,“log”)

they appear in unmodified parts of a program.
The intuition behind our rule-based approach is that

there are many situations in which apparently independent
changes implement a higher-level, more systematic change
together. By inferring rules that correspond to such high-
level systematic changes, our approach concisely summarizes
structural information within and around changed code. For
instance, changing an API and subsequently changing all
invocations of the API is an example of such systematic
change. A crosscutting change that removes all dependen-
cies to a particular module is another familiar example.
LSD Predicate. Our prototype currently models struc-
tural dependencies in a Java program at the type, field, and
method level using the following twelve predicates. The first
seven predicates describe code elements and their contain-
ment relationships. For example, type(“org.foo.Bar”, “Bar”,
“org.foo”) means that there is either a class or an interface
with the name Bar in org.foo package, and its fully qualified
name is org.foo.Bar. The next five predicates describe
field access, method invocation, subtyping, and overriding
dependencies. For example, inheritedmethod(“foo”, “Boo”,
“Bob”) means that Bob inherits foo method of Boo class.

1. package (p:Package).
2. type (t:Type, tn:TypeName, p:Package).
3. method (m:Method, mn:MethodName, t:Type).
4. field (f:Field, fn:FieldName, t:Type).
5. return (m:Method, returnType:Type).
6. fieldoftype (f:Field, declaredType:Type).
7. typeintype (inner:Type, outer:Type).
8. accesses (f:Field, accessor:Method).
9. calls (caller:Method, callee:Method).
10. subtype (super:Type, sub:Type).
11. inheritedfield (fn:FieldName, super:Type, sub:Type).
12. inheritedmethod (mn:MethodName, super:Type, sub:Type).

To distinguish which fact-base each fact belongs to, we

prefix past and current to the facts in FBo and FBn

respectively. To distinguish which facts were deleted from
the old version and added to the new version, we prefix
deleted and added to the corresponding facts in ∆FB.

Currently LSD predicates do not model access modifiers,
local variable accesses, control logic, and temporal logic.
LSD Rule. A logic rule describes the relationship among
groups of related logic facts. An LSD rule describes a high-
level systematic change by relating groups of facts in the
three fact-bases.

To represent a group of similar facts at once, we create
a logic literal by binding some of a predicate’s arguments
to variables. For example, subtype(“Foo”, t) represents all
subtype facts that have Foo as a first argument.

Rules relate groups of facts by connecting literals with
boolean logic operators. In particular, our LSD rules are
horn clauses where the conjunction of one or more literals
in the antecedent implies a single literal in the conclusion,
i.e., A(x) ∧ B(x,y)... ∧ C(x,z) ⇒ D(x,z). In LSD rules,
all variables are universally quantified and variables do not
appear in the conclusion unless they are bound in the
antecedent. LSD rules are either ungrounded rules (rules
without constant bindings) or partially grounded rules (rules
with constant bindings).

A rule r has a match f in ∆FB if f is a fact created
by grounding r’s conclusion with constants that satisfy r’s
antecedent given FBo, FBn, and ∆FB. A rule r has an
exception if there is no match in ∆FB implied by a true
grounding of its antecedent. For example, a rule A(x)⇒B(x)
has a match B(c1) and an exception x=c2 if A(c1), A(c2),
and B(c1) are in the three fact-bases, but B(c2) is not in
∆FB. We explicitly encode exceptions as a part of a rule to
note anomalies to a systematic change.

Table 3 shows the rule styles and an example rule for each
style. These rule styles can express high-level systematic
changes such as dependency removal and addition, feature
addition and deletion, consistent maintenance, replacement
of API usage or related code change.
Example. Suppose that a programmer intended to remove
all accesses to a field Key.on and call Key.chk from the start
methods in the classes implementing Car. Table 1 presents
the fact-bases and Table 2 shows the rule inference and ∆FB
reduction process. Based on the fact that all accesses to
Key.on are removed from the old version, ∆FB is reduced
to ∆FB′ by replacing the three deleted accesses facts with

Table 1: A Fact-Base Representation of Two Program Versions and their Difference
Po (an old version) FBo (a fact-base of Po) Pn (a new version) FBn (a fact-base of Pn) ∆FB

class BMW implements Car subtype(“Car”,“BMW”), . . . class BMW implements Car subtype(“Car”,“BMW”), . . .
void start (Key c) { method(“BMW.start”, “start”, BMW) void start () { method(“BMW.start”, “start”, BMW)

... . . . Key.chk (null); ... calls(“BMW.start”, “Key.chk”) +calls(“BMW.start”, “Key.chk”)
class GM implements Car subtype(“Car”,“GM”), . . . class GM implements Car subtype(“Car”,“GM”), . . .
void start (Key c ) { method(“GM.start”, “start”, “GM”) void start (Key c ) { method(“GM.start”, “start”, “GM”)
if (c.on) { .... accesses(“Key.on”, “GM.start”) Key.chk (c ); calls(“GM.start”,“Key.chk”) -accesses(“Key.on”, “GM.start”)

... . . . ... . . . +calls(“GM.start”,“Key.chk”)
class Kia implements Car subtype(“Car”,“Kia”), . . . class Kia implements Car subtype(“Car”,“Kia”), . . .
void start (Key c ) { method(“Kia,start”,“start”, “Kia”) void start (Key c ) { method(“Kia,start”,“start”, “Kia”)
c.on = true; .... accesses(“Key.on”, “Kia.start”), . . . . . . -accesses(“Key.on”, “Kia.start”)

class Bus { type(“Bus”) class Bus { type(“Bus”)
void start (Key c) { method(“Bus,start”, “start”, Bus) void start (Key c); method(“Bus,start”, “start”, Bus) -accesses(“Key.on”, “Bus.start”)
c.on = false;} } accesses(“Key.on”, “Bus.start”) log(); } } calls(“Bus.start”,“log”) +calls(“Bus.start”,“log”)

class Key { type (“Key”) class Key { type (“Key”)
boolean on = false; field(“Key.on”, “on”,“Key”) boolean on = false; field(“Key.on”, “on”, “Key”)
void chk (Key c) { ... method (“Key.chk”, “chk”, “Key”) static void chk (Key c) { method (“Key.chk”, “chk”, “Key”)

* The deleted and added facts in ∆FB are noted with + and − sign respectively.

Table 2: LSD Rule Inference Example
∆FB′ ∆FB′′

1. past accesses(“Key. on”, m) 1. past accesses(“Key. on”, m)
⇒ deleted accesses(“Key.on”, m) ⇒ deleted accesses(“Key.on”, m)

2. added calls(“BMW.start”,“Key.chk”) 2. past method(m,“start”, t)
3. added calls(“GM.start”,“Key.chk”) ∧ past subtype(“Car”,t)
4. added calls(“Bus.start”,“log”) ⇒ added calls(m,“Key.chk”)

except t = Kia
3. added calls(“Bus.start”,“log”)

they appear in unmodified parts of a program.
The intuition behind our rule-based approach is that

there are many situations in which apparently independent
changes implement a higher-level, more systematic change
together. By inferring rules that correspond to such high-
level systematic changes, our approach concisely summarizes
structural information within and around changed code. For
instance, changing an API and subsequently changing all
invocations of the API is an example of such systematic
change. A crosscutting change that removes all dependen-
cies to a particular module is another familiar example.
LSD Predicate. Our prototype currently models struc-
tural dependencies in a Java program at the type, field, and
method level using the following twelve predicates. The first
seven predicates describe code elements and their contain-
ment relationships. For example, type(“org.foo.Bar”, “Bar”,
“org.foo”) means that there is either a class or an interface
with the name Bar in org.foo package, and its fully qualified
name is org.foo.Bar. The next five predicates describe
field access, method invocation, subtyping, and overriding
dependencies. For example, inheritedmethod(“foo”, “Boo”,
“Bob”) means that Bob inherits foo method of Boo class.

1. package (p:Package).
2. type (t:Type, tn:TypeName, p:Package).
3. method (m:Method, mn:MethodName, t:Type).
4. field (f:Field, fn:FieldName, t:Type).
5. return (m:Method, returnType:Type).
6. fieldoftype (f:Field, declaredType:Type).
7. typeintype (inner:Type, outer:Type).
8. accesses (f:Field, accessor:Method).
9. calls (caller:Method, callee:Method).
10. subtype (super:Type, sub:Type).
11. inheritedfield (fn:FieldName, super:Type, sub:Type).
12. inheritedmethod (mn:MethodName, super:Type, sub:Type).

To distinguish which fact-base each fact belongs to, we

prefix past and current to the facts in FBo and FBn

respectively. To distinguish which facts were deleted from
the old version and added to the new version, we prefix
deleted and added to the corresponding facts in ∆FB.

Currently LSD predicates do not model access modifiers,
local variable accesses, control logic, and temporal logic.
LSD Rule. A logic rule describes the relationship among
groups of related logic facts. An LSD rule describes a high-
level systematic change by relating groups of facts in the
three fact-bases.

To represent a group of similar facts at once, we create
a logic literal by binding some of a predicate’s arguments
to variables. For example, subtype(“Foo”, t) represents all
subtype facts that have Foo as a first argument.

Rules relate groups of facts by connecting literals with
boolean logic operators. In particular, our LSD rules are
horn clauses where the conjunction of one or more literals
in the antecedent implies a single literal in the conclusion,
i.e., A(x) ∧ B(x,y)... ∧ C(x,z) ⇒ D(x,z). In LSD rules,
all variables are universally quantified and variables do not
appear in the conclusion unless they are bound in the
antecedent. LSD rules are either ungrounded rules (rules
without constant bindings) or partially grounded rules (rules
with constant bindings).

A rule r has a match f in ∆FB if f is a fact created
by grounding r’s conclusion with constants that satisfy r’s
antecedent given FBo, FBn, and ∆FB. A rule r has an
exception if there is no match in ∆FB implied by a true
grounding of its antecedent. For example, a rule A(x)⇒B(x)
has a match B(c1) and an exception x=c2 if A(c1), A(c2),
and B(c1) are in the three fact-bases, but B(c2) is not in
∆FB. We explicitly encode exceptions as a part of a rule to
note anomalies to a systematic change.

Table 3 shows the rule styles and an example rule for each
style. These rule styles can express high-level systematic
changes such as dependency removal and addition, feature
addition and deletion, consistent maintenance, replacement
of API usage or related code change.
Example. Suppose that a programmer intended to remove
all accesses to a field Key.on and call Key.chk from the start
methods in the classes implementing Car. Table 1 presents
the fact-bases and Table 2 shows the rule inference and ∆FB
reduction process. Based on the fact that all accesses to
Key.on are removed from the old version, ∆FB is reduced
to ∆FB′ by replacing the three deleted accesses facts with

Limitation 1: Verbosity

remove all accesses to Key.on 



Limitation 2: Lack of 
Contextual Information

Table 1: A Fact-Base Representation of Two Program Versions and their Difference
Po (an old version) FBo (a fact-base of Po) Pn (a new version) FBn (a fact-base of Pn) ∆FB

class BMW implements Car subtype(“Car”,“BMW”), . . . class BMW implements Car subtype(“Car”,“BMW”), . . .
void start (Key c) { method(“BMW.start”, “start”, BMW) void start () { method(“BMW.start”, “start”, BMW)

... . . . Key.chk (null); ... calls(“BMW.start”, “Key.chk”) +calls(“BMW.start”, “Key.chk”)
class GM implements Car subtype(“Car”,“GM”), . . . class GM implements Car subtype(“Car”,“GM”), . . .
void start (Key c ) { method(“GM.start”, “start”, “GM”) void start (Key c ) { method(“GM.start”, “start”, “GM”)
if (c.on) { .... accesses(“Key.on”, “GM.start”) Key.chk (c ); calls(“GM.start”,“Key.chk”) -accesses(“Key.on”, “GM.start”)

... . . . ... . . . +calls(“GM.start”,“Key.chk”)
class Kia implements Car subtype(“Car”,“Kia”), . . . class Kia implements Car subtype(“Car”,“Kia”), . . .
void start (Key c ) { method(“Kia,start”,“start”, “Kia”) void start (Key c ) { method(“Kia,start”,“start”, “Kia”)
c.on = true; .... accesses(“Key.on”, “Kia.start”), . . . . . . -accesses(“Key.on”, “Kia.start”)

class Bus { type(“Bus”) class Bus { type(“Bus”)
void start (Key c) { method(“Bus,start”, “start”, Bus) void start (Key c); method(“Bus,start”, “start”, Bus) -accesses(“Key.on”, “Bus.start”)
c.on = false;} } accesses(“Key.on”, “Bus.start”) log(); } } calls(“Bus.start”,“log”) +calls(“Bus.start”,“log”)

class Key { type (“Key”) class Key { type (“Key”)
boolean on = false; field(“Key.on”, “on”,“Key”) boolean on = false; field(“Key.on”, “on”, “Key”)
void chk (Key c) { ... method (“Key.chk”, “chk”, “Key”) static void chk (Key c) { method (“Key.chk”, “chk”, “Key”)

* The deleted and added facts in ∆FB are noted with + and − sign respectively.

Table 2: LSD Rule Inference Example
∆FB′ ∆FB′′

1. past accesses(“Key. on”, m) 1. past accesses(“Key. on”, m)
⇒ deleted accesses(“Key.on”, m) ⇒ deleted accesses(“Key.on”, m)

2. added calls(“BMW.start”,“Key.chk”) 2. past method(m,“start”, t)
3. added calls(“GM.start”,“Key.chk”) ∧ past subtype(“Car”,t)
4. added calls(“Bus.start”,“log”) ⇒ added calls(m,“Key.chk”)

except t = Kia
3. added calls(“Bus.start”,“log”)

they appear in unmodified parts of a program.
The intuition behind our rule-based approach is that

there are many situations in which apparently independent
changes implement a higher-level, more systematic change
together. By inferring rules that correspond to such high-
level systematic changes, our approach concisely summarizes
structural information within and around changed code. For
instance, changing an API and subsequently changing all
invocations of the API is an example of such systematic
change. A crosscutting change that removes all dependen-
cies to a particular module is another familiar example.
LSD Predicate. Our prototype currently models struc-
tural dependencies in a Java program at the type, field, and
method level using the following twelve predicates. The first
seven predicates describe code elements and their contain-
ment relationships. For example, type(“org.foo.Bar”, “Bar”,
“org.foo”) means that there is either a class or an interface
with the name Bar in org.foo package, and its fully qualified
name is org.foo.Bar. The next five predicates describe
field access, method invocation, subtyping, and overriding
dependencies. For example, inheritedmethod(“foo”, “Boo”,
“Bob”) means that Bob inherits foo method of Boo class.

1. package (p:Package).
2. type (t:Type, tn:TypeName, p:Package).
3. method (m:Method, mn:MethodName, t:Type).
4. field (f:Field, fn:FieldName, t:Type).
5. return (m:Method, returnType:Type).
6. fieldoftype (f:Field, declaredType:Type).
7. typeintype (inner:Type, outer:Type).
8. accesses (f:Field, accessor:Method).
9. calls (caller:Method, callee:Method).
10. subtype (super:Type, sub:Type).
11. inheritedfield (fn:FieldName, super:Type, sub:Type).
12. inheritedmethod (mn:MethodName, super:Type, sub:Type).

To distinguish which fact-base each fact belongs to, we

prefix past and current to the facts in FBo and FBn

respectively. To distinguish which facts were deleted from
the old version and added to the new version, we prefix
deleted and added to the corresponding facts in ∆FB.

Currently LSD predicates do not model access modifiers,
local variable accesses, control logic, and temporal logic.
LSD Rule. A logic rule describes the relationship among
groups of related logic facts. An LSD rule describes a high-
level systematic change by relating groups of facts in the
three fact-bases.

To represent a group of similar facts at once, we create
a logic literal by binding some of a predicate’s arguments
to variables. For example, subtype(“Foo”, t) represents all
subtype facts that have Foo as a first argument.

Rules relate groups of facts by connecting literals with
boolean logic operators. In particular, our LSD rules are
horn clauses where the conjunction of one or more literals
in the antecedent implies a single literal in the conclusion,
i.e., A(x) ∧ B(x,y)... ∧ C(x,z) ⇒ D(x,z). In LSD rules,
all variables are universally quantified and variables do not
appear in the conclusion unless they are bound in the
antecedent. LSD rules are either ungrounded rules (rules
without constant bindings) or partially grounded rules (rules
with constant bindings).

A rule r has a match f in ∆FB if f is a fact created
by grounding r’s conclusion with constants that satisfy r’s
antecedent given FBo, FBn, and ∆FB. A rule r has an
exception if there is no match in ∆FB implied by a true
grounding of its antecedent. For example, a rule A(x)⇒B(x)
has a match B(c1) and an exception x=c2 if A(c1), A(c2),
and B(c1) are in the three fact-bases, but B(c2) is not in
∆FB. We explicitly encode exceptions as a part of a rule to
note anomalies to a systematic change.

Table 3 shows the rule styles and an example rule for each
style. These rule styles can express high-level systematic
changes such as dependency removal and addition, feature
addition and deletion, consistent maintenance, replacement
of API usage or related code change.
Example. Suppose that a programmer intended to remove
all accesses to a field Key.on and call Key.chk from the start
methods in the classes implementing Car. Table 1 presents
the fact-bases and Table 2 shows the rule inference and ∆FB
reduction process. Based on the fact that all accesses to
Key.on are removed from the old version, ∆FB is reduced
to ∆FB′ by replacing the three deleted accesses facts with

Table 1: A Fact-Base Representation of Two Program Versions and their Difference
Po (an old version) FBo (a fact-base of Po) Pn (a new version) FBn (a fact-base of Pn) ∆FB

class BMW implements Car subtype(“Car”,“BMW”), . . . class BMW implements Car subtype(“Car”,“BMW”), . . .
void start (Key c) { method(“BMW.start”, “start”, BMW) void start () { method(“BMW.start”, “start”, BMW)

... . . . Key.chk (null); ... calls(“BMW.start”, “Key.chk”) +calls(“BMW.start”, “Key.chk”)
class GM implements Car subtype(“Car”,“GM”), . . . class GM implements Car subtype(“Car”,“GM”), . . .
void start (Key c ) { method(“GM.start”, “start”, “GM”) void start (Key c ) { method(“GM.start”, “start”, “GM”)
if (c.on) { .... accesses(“Key.on”, “GM.start”) Key.chk (c ); calls(“GM.start”,“Key.chk”) -accesses(“Key.on”, “GM.start”)

... . . . ... . . . +calls(“GM.start”,“Key.chk”)
class Kia implements Car subtype(“Car”,“Kia”), . . . class Kia implements Car subtype(“Car”,“Kia”), . . .
void start (Key c ) { method(“Kia,start”,“start”, “Kia”) void start (Key c ) { method(“Kia,start”,“start”, “Kia”)
c.on = true; .... accesses(“Key.on”, “Kia.start”), . . . . . . -accesses(“Key.on”, “Kia.start”)

class Bus { type(“Bus”) class Bus { type(“Bus”)
void start (Key c) { method(“Bus,start”, “start”, Bus) void start (Key c); method(“Bus,start”, “start”, Bus) -accesses(“Key.on”, “Bus.start”)
c.on = false;} } accesses(“Key.on”, “Bus.start”) log(); } } calls(“Bus.start”,“log”) +calls(“Bus.start”,“log”)

class Key { type (“Key”) class Key { type (“Key”)
boolean on = false; field(“Key.on”, “on”,“Key”) boolean on = false; field(“Key.on”, “on”, “Key”)
void chk (Key c) { ... method (“Key.chk”, “chk”, “Key”) static void chk (Key c) { method (“Key.chk”, “chk”, “Key”)

* The deleted and added facts in ∆FB are noted with + and − sign respectively.

Table 2: LSD Rule Inference Example
∆FB′ ∆FB′′

1. past accesses(“Key. on”, m) 1. past accesses(“Key. on”, m)
⇒ deleted accesses(“Key.on”, m) ⇒ deleted accesses(“Key.on”, m)

2. added calls(“BMW.start”,“Key.chk”) 2. past method(m,“start”, t)
3. added calls(“GM.start”,“Key.chk”) ∧ past subtype(“Car”,t)
4. added calls(“Bus.start”,“log”) ⇒ added calls(m,“Key.chk”)

except t = Kia
3. added calls(“Bus.start”,“log”)

they appear in unmodified parts of a program.
The intuition behind our rule-based approach is that

there are many situations in which apparently independent
changes implement a higher-level, more systematic change
together. By inferring rules that correspond to such high-
level systematic changes, our approach concisely summarizes
structural information within and around changed code. For
instance, changing an API and subsequently changing all
invocations of the API is an example of such systematic
change. A crosscutting change that removes all dependen-
cies to a particular module is another familiar example.
LSD Predicate. Our prototype currently models struc-
tural dependencies in a Java program at the type, field, and
method level using the following twelve predicates. The first
seven predicates describe code elements and their contain-
ment relationships. For example, type(“org.foo.Bar”, “Bar”,
“org.foo”) means that there is either a class or an interface
with the name Bar in org.foo package, and its fully qualified
name is org.foo.Bar. The next five predicates describe
field access, method invocation, subtyping, and overriding
dependencies. For example, inheritedmethod(“foo”, “Boo”,
“Bob”) means that Bob inherits foo method of Boo class.

1. package (p:Package).
2. type (t:Type, tn:TypeName, p:Package).
3. method (m:Method, mn:MethodName, t:Type).
4. field (f:Field, fn:FieldName, t:Type).
5. return (m:Method, returnType:Type).
6. fieldoftype (f:Field, declaredType:Type).
7. typeintype (inner:Type, outer:Type).
8. accesses (f:Field, accessor:Method).
9. calls (caller:Method, callee:Method).
10. subtype (super:Type, sub:Type).
11. inheritedfield (fn:FieldName, super:Type, sub:Type).
12. inheritedmethod (mn:MethodName, super:Type, sub:Type).

To distinguish which fact-base each fact belongs to, we

prefix past and current to the facts in FBo and FBn

respectively. To distinguish which facts were deleted from
the old version and added to the new version, we prefix
deleted and added to the corresponding facts in ∆FB.

Currently LSD predicates do not model access modifiers,
local variable accesses, control logic, and temporal logic.
LSD Rule. A logic rule describes the relationship among
groups of related logic facts. An LSD rule describes a high-
level systematic change by relating groups of facts in the
three fact-bases.

To represent a group of similar facts at once, we create
a logic literal by binding some of a predicate’s arguments
to variables. For example, subtype(“Foo”, t) represents all
subtype facts that have Foo as a first argument.

Rules relate groups of facts by connecting literals with
boolean logic operators. In particular, our LSD rules are
horn clauses where the conjunction of one or more literals
in the antecedent implies a single literal in the conclusion,
i.e., A(x) ∧ B(x,y)... ∧ C(x,z) ⇒ D(x,z). In LSD rules,
all variables are universally quantified and variables do not
appear in the conclusion unless they are bound in the
antecedent. LSD rules are either ungrounded rules (rules
without constant bindings) or partially grounded rules (rules
with constant bindings).

A rule r has a match f in ∆FB if f is a fact created
by grounding r’s conclusion with constants that satisfy r’s
antecedent given FBo, FBn, and ∆FB. A rule r has an
exception if there is no match in ∆FB implied by a true
grounding of its antecedent. For example, a rule A(x)⇒B(x)
has a match B(c1) and an exception x=c2 if A(c1), A(c2),
and B(c1) are in the three fact-bases, but B(c2) is not in
∆FB. We explicitly encode exceptions as a part of a rule to
note anomalies to a systematic change.

Table 3 shows the rule styles and an example rule for each
style. These rule styles can express high-level systematic
changes such as dependency removal and addition, feature
addition and deletion, consistent maintenance, replacement
of API usage or related code change.
Example. Suppose that a programmer intended to remove
all accesses to a field Key.on and call Key.chk from the start
methods in the classes implementing Car. Table 1 presents
the fact-bases and Table 2 shows the rule inference and ∆FB
reduction process. Based on the fact that all accesses to
Key.on are removed from the old version, ∆FB is reduced
to ∆FB′ by replacing the three deleted accesses facts with

Table 1: A Fact-Base Representation of Two Program Versions and their Difference
Po (an old version) FBo (a fact-base of Po) Pn (a new version) FBn (a fact-base of Pn) ∆FB

class BMW implements Car subtype(“Car”,“BMW”), . . . class BMW implements Car subtype(“Car”,“BMW”), . . .
void start (Key c) { method(“BMW.start”, “start”, BMW) void start () { method(“BMW.start”, “start”, BMW)

... . . . Key.chk (null); ... calls(“BMW.start”, “Key.chk”) +calls(“BMW.start”, “Key.chk”)
class GM implements Car subtype(“Car”,“GM”), . . . class GM implements Car subtype(“Car”,“GM”), . . .
void start (Key c ) { method(“GM.start”, “start”, “GM”) void start (Key c ) { method(“GM.start”, “start”, “GM”)
if (c.on) { .... accesses(“Key.on”, “GM.start”) Key.chk (c ); calls(“GM.start”,“Key.chk”) -accesses(“Key.on”, “GM.start”)

... . . . ... . . . +calls(“GM.start”,“Key.chk”)
class Kia implements Car subtype(“Car”,“Kia”), . . . class Kia implements Car subtype(“Car”,“Kia”), . . .
void start (Key c ) { method(“Kia,start”,“start”, “Kia”) void start (Key c ) { method(“Kia,start”,“start”, “Kia”)
c.on = true; .... accesses(“Key.on”, “Kia.start”), . . . . . . -accesses(“Key.on”, “Kia.start”)

class Bus { type(“Bus”) class Bus { type(“Bus”)
void start (Key c) { method(“Bus,start”, “start”, Bus) void start (Key c); method(“Bus,start”, “start”, Bus) -accesses(“Key.on”, “Bus.start”)
c.on = false;} } accesses(“Key.on”, “Bus.start”) log(); } } calls(“Bus.start”,“log”) +calls(“Bus.start”,“log”)

class Key { type (“Key”) class Key { type (“Key”)
boolean on = false; field(“Key.on”, “on”,“Key”) boolean on = false; field(“Key.on”, “on”, “Key”)
void chk (Key c) { ... method (“Key.chk”, “chk”, “Key”) static void chk (Key c) { method (“Key.chk”, “chk”, “Key”)

* The deleted and added facts in ∆FB are noted with + and − sign respectively.

Table 2: LSD Rule Inference Example
∆FB′ ∆FB′′

1. past accesses(“Key. on”, m) 1. past accesses(“Key. on”, m)
⇒ deleted accesses(“Key.on”, m) ⇒ deleted accesses(“Key.on”, m)

2. added calls(“BMW.start”,“Key.chk”) 2. past method(m,“start”, t)
3. added calls(“GM.start”,“Key.chk”) ∧ past subtype(“Car”,t)
4. added calls(“Bus.start”,“log”) ⇒ added calls(m,“Key.chk”)

except t = Kia
3. added calls(“Bus.start”,“log”)

they appear in unmodified parts of a program.
The intuition behind our rule-based approach is that

there are many situations in which apparently independent
changes implement a higher-level, more systematic change
together. By inferring rules that correspond to such high-
level systematic changes, our approach concisely summarizes
structural information within and around changed code. For
instance, changing an API and subsequently changing all
invocations of the API is an example of such systematic
change. A crosscutting change that removes all dependen-
cies to a particular module is another familiar example.
LSD Predicate. Our prototype currently models struc-
tural dependencies in a Java program at the type, field, and
method level using the following twelve predicates. The first
seven predicates describe code elements and their contain-
ment relationships. For example, type(“org.foo.Bar”, “Bar”,
“org.foo”) means that there is either a class or an interface
with the name Bar in org.foo package, and its fully qualified
name is org.foo.Bar. The next five predicates describe
field access, method invocation, subtyping, and overriding
dependencies. For example, inheritedmethod(“foo”, “Boo”,
“Bob”) means that Bob inherits foo method of Boo class.

1. package (p:Package).
2. type (t:Type, tn:TypeName, p:Package).
3. method (m:Method, mn:MethodName, t:Type).
4. field (f:Field, fn:FieldName, t:Type).
5. return (m:Method, returnType:Type).
6. fieldoftype (f:Field, declaredType:Type).
7. typeintype (inner:Type, outer:Type).
8. accesses (f:Field, accessor:Method).
9. calls (caller:Method, callee:Method).
10. subtype (super:Type, sub:Type).
11. inheritedfield (fn:FieldName, super:Type, sub:Type).
12. inheritedmethod (mn:MethodName, super:Type, sub:Type).

To distinguish which fact-base each fact belongs to, we

prefix past and current to the facts in FBo and FBn

respectively. To distinguish which facts were deleted from
the old version and added to the new version, we prefix
deleted and added to the corresponding facts in ∆FB.

Currently LSD predicates do not model access modifiers,
local variable accesses, control logic, and temporal logic.
LSD Rule. A logic rule describes the relationship among
groups of related logic facts. An LSD rule describes a high-
level systematic change by relating groups of facts in the
three fact-bases.

To represent a group of similar facts at once, we create
a logic literal by binding some of a predicate’s arguments
to variables. For example, subtype(“Foo”, t) represents all
subtype facts that have Foo as a first argument.

Rules relate groups of facts by connecting literals with
boolean logic operators. In particular, our LSD rules are
horn clauses where the conjunction of one or more literals
in the antecedent implies a single literal in the conclusion,
i.e., A(x) ∧ B(x,y)... ∧ C(x,z) ⇒ D(x,z). In LSD rules,
all variables are universally quantified and variables do not
appear in the conclusion unless they are bound in the
antecedent. LSD rules are either ungrounded rules (rules
without constant bindings) or partially grounded rules (rules
with constant bindings).

A rule r has a match f in ∆FB if f is a fact created
by grounding r’s conclusion with constants that satisfy r’s
antecedent given FBo, FBn, and ∆FB. A rule r has an
exception if there is no match in ∆FB implied by a true
grounding of its antecedent. For example, a rule A(x)⇒B(x)
has a match B(c1) and an exception x=c2 if A(c1), A(c2),
and B(c1) are in the three fact-bases, but B(c2) is not in
∆FB. We explicitly encode exceptions as a part of a rule to
note anomalies to a systematic change.

Table 3 shows the rule styles and an example rule for each
style. These rule styles can express high-level systematic
changes such as dependency removal and addition, feature
addition and deletion, consistent maintenance, replacement
of API usage or related code change.
Example. Suppose that a programmer intended to remove
all accesses to a field Key.on and call Key.chk from the start
methods in the classes implementing Car. Table 1 presents
the fact-bases and Table 2 shows the rule inference and ∆FB
reduction process. Based on the fact that all accesses to
Key.on are removed from the old version, ∆FB is reduced
to ∆FB′ by replacing the three deleted accesses facts with

•         

Table 1: A Fact-Base Representation of Two Program Versions and their Difference
Po (an old version) FBo (a fact-base of Po) Pn (a new version) FBn (a fact-base of Pn) ∆FB

class BMW implements Car subtype(“Car”,“BMW”), . . . class BMW implements Car subtype(“Car”,“BMW”), . . .
void start (Key c) { method(“BMW.start”, “start”, BMW) void start () { method(“BMW.start”, “start”, BMW)

... . . . Key.chk (null); ... calls(“BMW.start”, “Key.chk”) +calls(“BMW.start”, “Key.chk”)
class GM implements Car subtype(“Car”,“GM”), . . . class GM implements Car subtype(“Car”,“GM”), . . .
void start (Key c ) { method(“GM.start”, “start”, “GM”) void start (Key c ) { method(“GM.start”, “start”, “GM”)
if (c.on) { .... accesses(“Key.on”, “GM.start”) Key.chk (c ); calls(“GM.start”,“Key.chk”) -accesses(“Key.on”, “GM.start”)

... . . . ... . . . +calls(“GM.start”,“Key.chk”)
class Kia implements Car subtype(“Car”,“Kia”), . . . class Kia implements Car subtype(“Car”,“Kia”), . . .
void start (Key c ) { method(“Kia,start”,“start”, “Kia”) void start (Key c ) { method(“Kia,start”,“start”, “Kia”)
c.on = true; .... accesses(“Key.on”, “Kia.start”), . . . . . . -accesses(“Key.on”, “Kia.start”)

class Bus { type(“Bus”) class Bus { type(“Bus”)
void start (Key c) { method(“Bus,start”, “start”, Bus) void start (Key c); method(“Bus,start”, “start”, Bus) -accesses(“Key.on”, “Bus.start”)
c.on = false;} } accesses(“Key.on”, “Bus.start”) log(); } } calls(“Bus.start”,“log”) +calls(“Bus.start”,“log”)

class Key { type (“Key”) class Key { type (“Key”)
boolean on = false; field(“Key.on”, “on”,“Key”) boolean on = false; field(“Key.on”, “on”, “Key”)
void chk (Key c) { ... method (“Key.chk”, “chk”, “Key”) static void chk (Key c) { method (“Key.chk”, “chk”, “Key”)

* The deleted and added facts in ∆FB are noted with + and − sign respectively.

Table 2: LSD Rule Inference Example
∆FB′ ∆FB′′

1. past accesses(“Key. on”, m) 1. past accesses(“Key. on”, m)
⇒ deleted accesses(“Key.on”, m) ⇒ deleted accesses(“Key.on”, m)

2. added calls(“BMW.start”,“Key.chk”) 2. past method(m,“start”, t)
3. added calls(“GM.start”,“Key.chk”) ∧ past subtype(“Car”,t)
4. added calls(“Bus.start”,“log”) ⇒ added calls(m,“Key.chk”)

except t = Kia
3. added calls(“Bus.start”,“log”)

they appear in unmodified parts of a program.
The intuition behind our rule-based approach is that

there are many situations in which apparently independent
changes implement a higher-level, more systematic change
together. By inferring rules that correspond to such high-
level systematic changes, our approach concisely summarizes
structural information within and around changed code. For
instance, changing an API and subsequently changing all
invocations of the API is an example of such systematic
change. A crosscutting change that removes all dependen-
cies to a particular module is another familiar example.
LSD Predicate. Our prototype currently models struc-
tural dependencies in a Java program at the type, field, and
method level using the following twelve predicates. The first
seven predicates describe code elements and their contain-
ment relationships. For example, type(“org.foo.Bar”, “Bar”,
“org.foo”) means that there is either a class or an interface
with the name Bar in org.foo package, and its fully qualified
name is org.foo.Bar. The next five predicates describe
field access, method invocation, subtyping, and overriding
dependencies. For example, inheritedmethod(“foo”, “Boo”,
“Bob”) means that Bob inherits foo method of Boo class.

1. package (p:Package).
2. type (t:Type, tn:TypeName, p:Package).
3. method (m:Method, mn:MethodName, t:Type).
4. field (f:Field, fn:FieldName, t:Type).
5. return (m:Method, returnType:Type).
6. fieldoftype (f:Field, declaredType:Type).
7. typeintype (inner:Type, outer:Type).
8. accesses (f:Field, accessor:Method).
9. calls (caller:Method, callee:Method).
10. subtype (super:Type, sub:Type).
11. inheritedfield (fn:FieldName, super:Type, sub:Type).
12. inheritedmethod (mn:MethodName, super:Type, sub:Type).

To distinguish which fact-base each fact belongs to, we

prefix past and current to the facts in FBo and FBn

respectively. To distinguish which facts were deleted from
the old version and added to the new version, we prefix
deleted and added to the corresponding facts in ∆FB.

Currently LSD predicates do not model access modifiers,
local variable accesses, control logic, and temporal logic.
LSD Rule. A logic rule describes the relationship among
groups of related logic facts. An LSD rule describes a high-
level systematic change by relating groups of facts in the
three fact-bases.

To represent a group of similar facts at once, we create
a logic literal by binding some of a predicate’s arguments
to variables. For example, subtype(“Foo”, t) represents all
subtype facts that have Foo as a first argument.

Rules relate groups of facts by connecting literals with
boolean logic operators. In particular, our LSD rules are
horn clauses where the conjunction of one or more literals
in the antecedent implies a single literal in the conclusion,
i.e., A(x) ∧ B(x,y)... ∧ C(x,z) ⇒ D(x,z). In LSD rules,
all variables are universally quantified and variables do not
appear in the conclusion unless they are bound in the
antecedent. LSD rules are either ungrounded rules (rules
without constant bindings) or partially grounded rules (rules
with constant bindings).

A rule r has a match f in ∆FB if f is a fact created
by grounding r’s conclusion with constants that satisfy r’s
antecedent given FBo, FBn, and ∆FB. A rule r has an
exception if there is no match in ∆FB implied by a true
grounding of its antecedent. For example, a rule A(x)⇒B(x)
has a match B(c1) and an exception x=c2 if A(c1), A(c2),
and B(c1) are in the three fact-bases, but B(c2) is not in
∆FB. We explicitly encode exceptions as a part of a rule to
note anomalies to a systematic change.

Table 3 shows the rule styles and an example rule for each
style. These rule styles can express high-level systematic
changes such as dependency removal and addition, feature
addition and deletion, consistent maintenance, replacement
of API usage or related code change.
Example. Suppose that a programmer intended to remove
all accesses to a field Key.on and call Key.chk from the start
methods in the classes implementing Car. Table 1 presents
the fact-bases and Table 2 shows the rule inference and ∆FB
reduction process. Based on the fact that all accesses to
Key.on are removed from the old version, ∆FB is reduced
to ∆FB′ by replacing the three deleted accesses facts with

Table 1: A Fact-Base Representation of Two Program Versions and their Difference
Po (an old version) FBo (a fact-base of Po) Pn (a new version) FBn (a fact-base of Pn) ∆FB

class BMW implements Car subtype(“Car”,“BMW”), . . . class BMW implements Car subtype(“Car”,“BMW”), . . .
void start (Key c) { method(“BMW.start”, “start”, BMW) void start () { method(“BMW.start”, “start”, BMW)

... . . . Key.chk (null); ... calls(“BMW.start”, “Key.chk”) +calls(“BMW.start”, “Key.chk”)
class GM implements Car subtype(“Car”,“GM”), . . . class GM implements Car subtype(“Car”,“GM”), . . .
void start (Key c ) { method(“GM.start”, “start”, “GM”) void start (Key c ) { method(“GM.start”, “start”, “GM”)
if (c.on) { .... accesses(“Key.on”, “GM.start”) Key.chk (c ); calls(“GM.start”,“Key.chk”) -accesses(“Key.on”, “GM.start”)

... . . . ... . . . +calls(“GM.start”,“Key.chk”)
class Kia implements Car subtype(“Car”,“Kia”), . . . class Kia implements Car subtype(“Car”,“Kia”), . . .
void start (Key c ) { method(“Kia,start”,“start”, “Kia”) void start (Key c ) { method(“Kia,start”,“start”, “Kia”)
c.on = true; .... accesses(“Key.on”, “Kia.start”), . . . . . . -accesses(“Key.on”, “Kia.start”)

class Bus { type(“Bus”) class Bus { type(“Bus”)
void start (Key c) { method(“Bus,start”, “start”, Bus) void start (Key c); method(“Bus,start”, “start”, Bus) -accesses(“Key.on”, “Bus.start”)
c.on = false;} } accesses(“Key.on”, “Bus.start”) log(); } } calls(“Bus.start”,“log”) +calls(“Bus.start”,“log”)

class Key { type (“Key”) class Key { type (“Key”)
boolean on = false; field(“Key.on”, “on”,“Key”) boolean on = false; field(“Key.on”, “on”, “Key”)
void chk (Key c) { ... method (“Key.chk”, “chk”, “Key”) static void chk (Key c) { method (“Key.chk”, “chk”, “Key”)

* The deleted and added facts in ∆FB are noted with + and − sign respectively.

Table 2: LSD Rule Inference Example
∆FB′ ∆FB′′

1. past accesses(“Key. on”, m) 1. past accesses(“Key. on”, m)
⇒ deleted accesses(“Key.on”, m) ⇒ deleted accesses(“Key.on”, m)

2. added calls(“BMW.start”,“Key.chk”) 2. past method(m,“start”, t)
3. added calls(“GM.start”,“Key.chk”) ∧ past subtype(“Car”,t)
4. added calls(“Bus.start”,“log”) ⇒ added calls(m,“Key.chk”)

except t = Kia
3. added calls(“Bus.start”,“log”)

they appear in unmodified parts of a program.
The intuition behind our rule-based approach is that

there are many situations in which apparently independent
changes implement a higher-level, more systematic change
together. By inferring rules that correspond to such high-
level systematic changes, our approach concisely summarizes
structural information within and around changed code. For
instance, changing an API and subsequently changing all
invocations of the API is an example of such systematic
change. A crosscutting change that removes all dependen-
cies to a particular module is another familiar example.
LSD Predicate. Our prototype currently models struc-
tural dependencies in a Java program at the type, field, and
method level using the following twelve predicates. The first
seven predicates describe code elements and their contain-
ment relationships. For example, type(“org.foo.Bar”, “Bar”,
“org.foo”) means that there is either a class or an interface
with the name Bar in org.foo package, and its fully qualified
name is org.foo.Bar. The next five predicates describe
field access, method invocation, subtyping, and overriding
dependencies. For example, inheritedmethod(“foo”, “Boo”,
“Bob”) means that Bob inherits foo method of Boo class.

1. package (p:Package).
2. type (t:Type, tn:TypeName, p:Package).
3. method (m:Method, mn:MethodName, t:Type).
4. field (f:Field, fn:FieldName, t:Type).
5. return (m:Method, returnType:Type).
6. fieldoftype (f:Field, declaredType:Type).
7. typeintype (inner:Type, outer:Type).
8. accesses (f:Field, accessor:Method).
9. calls (caller:Method, callee:Method).
10. subtype (super:Type, sub:Type).
11. inheritedfield (fn:FieldName, super:Type, sub:Type).
12. inheritedmethod (mn:MethodName, super:Type, sub:Type).

To distinguish which fact-base each fact belongs to, we

prefix past and current to the facts in FBo and FBn

respectively. To distinguish which facts were deleted from
the old version and added to the new version, we prefix
deleted and added to the corresponding facts in ∆FB.

Currently LSD predicates do not model access modifiers,
local variable accesses, control logic, and temporal logic.
LSD Rule. A logic rule describes the relationship among
groups of related logic facts. An LSD rule describes a high-
level systematic change by relating groups of facts in the
three fact-bases.

To represent a group of similar facts at once, we create
a logic literal by binding some of a predicate’s arguments
to variables. For example, subtype(“Foo”, t) represents all
subtype facts that have Foo as a first argument.

Rules relate groups of facts by connecting literals with
boolean logic operators. In particular, our LSD rules are
horn clauses where the conjunction of one or more literals
in the antecedent implies a single literal in the conclusion,
i.e., A(x) ∧ B(x,y)... ∧ C(x,z) ⇒ D(x,z). In LSD rules,
all variables are universally quantified and variables do not
appear in the conclusion unless they are bound in the
antecedent. LSD rules are either ungrounded rules (rules
without constant bindings) or partially grounded rules (rules
with constant bindings).

A rule r has a match f in ∆FB if f is a fact created
by grounding r’s conclusion with constants that satisfy r’s
antecedent given FBo, FBn, and ∆FB. A rule r has an
exception if there is no match in ∆FB implied by a true
grounding of its antecedent. For example, a rule A(x)⇒B(x)
has a match B(c1) and an exception x=c2 if A(c1), A(c2),
and B(c1) are in the three fact-bases, but B(c2) is not in
∆FB. We explicitly encode exceptions as a part of a rule to
note anomalies to a systematic change.

Table 3 shows the rule styles and an example rule for each
style. These rule styles can express high-level systematic
changes such as dependency removal and addition, feature
addition and deletion, consistent maintenance, replacement
of API usage or related code change.
Example. Suppose that a programmer intended to remove
all accesses to a field Key.on and call Key.chk from the start
methods in the classes implementing Car. Table 1 presents
the fact-bases and Table 2 shows the rule inference and ∆FB
reduction process. Based on the fact that all accesses to
Key.on are removed from the old version, ∆FB is reduced
to ∆FB′ by replacing the three deleted accesses facts with

Table 1: A Fact-Base Representation of Two Program Versions and their Difference
Po (an old version) FBo (a fact-base of Po) Pn (a new version) FBn (a fact-base of Pn) ∆FB

class BMW implements Car subtype(“Car”,“BMW”), . . . class BMW implements Car subtype(“Car”,“BMW”), . . .
void start (Key c) { method(“BMW.start”, “start”, BMW) void start () { method(“BMW.start”, “start”, BMW)

... . . . Key.chk (null); ... calls(“BMW.start”, “Key.chk”) +calls(“BMW.start”, “Key.chk”)
class GM implements Car subtype(“Car”,“GM”), . . . class GM implements Car subtype(“Car”,“GM”), . . .
void start (Key c ) { method(“GM.start”, “start”, “GM”) void start (Key c ) { method(“GM.start”, “start”, “GM”)
if (c.on) { .... accesses(“Key.on”, “GM.start”) Key.chk (c ); calls(“GM.start”,“Key.chk”) -accesses(“Key.on”, “GM.start”)

... . . . ... . . . +calls(“GM.start”,“Key.chk”)
class Kia implements Car subtype(“Car”,“Kia”), . . . class Kia implements Car subtype(“Car”,“Kia”), . . .
void start (Key c ) { method(“Kia,start”,“start”, “Kia”) void start (Key c ) { method(“Kia,start”,“start”, “Kia”)
c.on = true; .... accesses(“Key.on”, “Kia.start”), . . . . . . -accesses(“Key.on”, “Kia.start”)

class Bus { type(“Bus”) class Bus { type(“Bus”)
void start (Key c) { method(“Bus,start”, “start”, Bus) void start (Key c); method(“Bus,start”, “start”, Bus) -accesses(“Key.on”, “Bus.start”)
c.on = false;} } accesses(“Key.on”, “Bus.start”) log(); } } calls(“Bus.start”,“log”) +calls(“Bus.start”,“log”)

class Key { type (“Key”) class Key { type (“Key”)
boolean on = false; field(“Key.on”, “on”,“Key”) boolean on = false; field(“Key.on”, “on”, “Key”)
void chk (Key c) { ... method (“Key.chk”, “chk”, “Key”) static void chk (Key c) { method (“Key.chk”, “chk”, “Key”)

* The deleted and added facts in ∆FB are noted with + and − sign respectively.

Table 2: LSD Rule Inference Example
∆FB′ ∆FB′′

1. past accesses(“Key. on”, m) 1. past accesses(“Key. on”, m)
⇒ deleted accesses(“Key.on”, m) ⇒ deleted accesses(“Key.on”, m)

2. added calls(“BMW.start”,“Key.chk”) 2. past method(m,“start”, t)
3. added calls(“GM.start”,“Key.chk”) ∧ past subtype(“Car”,t)
4. added calls(“Bus.start”,“log”) ⇒ added calls(m,“Key.chk”)

except t = Kia
3. added calls(“Bus.start”,“log”)

they appear in unmodified parts of a program.
The intuition behind our rule-based approach is that

there are many situations in which apparently independent
changes implement a higher-level, more systematic change
together. By inferring rules that correspond to such high-
level systematic changes, our approach concisely summarizes
structural information within and around changed code. For
instance, changing an API and subsequently changing all
invocations of the API is an example of such systematic
change. A crosscutting change that removes all dependen-
cies to a particular module is another familiar example.
LSD Predicate. Our prototype currently models struc-
tural dependencies in a Java program at the type, field, and
method level using the following twelve predicates. The first
seven predicates describe code elements and their contain-
ment relationships. For example, type(“org.foo.Bar”, “Bar”,
“org.foo”) means that there is either a class or an interface
with the name Bar in org.foo package, and its fully qualified
name is org.foo.Bar. The next five predicates describe
field access, method invocation, subtyping, and overriding
dependencies. For example, inheritedmethod(“foo”, “Boo”,
“Bob”) means that Bob inherits foo method of Boo class.

1. package (p:Package).
2. type (t:Type, tn:TypeName, p:Package).
3. method (m:Method, mn:MethodName, t:Type).
4. field (f:Field, fn:FieldName, t:Type).
5. return (m:Method, returnType:Type).
6. fieldoftype (f:Field, declaredType:Type).
7. typeintype (inner:Type, outer:Type).
8. accesses (f:Field, accessor:Method).
9. calls (caller:Method, callee:Method).
10. subtype (super:Type, sub:Type).
11. inheritedfield (fn:FieldName, super:Type, sub:Type).
12. inheritedmethod (mn:MethodName, super:Type, sub:Type).

To distinguish which fact-base each fact belongs to, we

prefix past and current to the facts in FBo and FBn

respectively. To distinguish which facts were deleted from
the old version and added to the new version, we prefix
deleted and added to the corresponding facts in ∆FB.

Currently LSD predicates do not model access modifiers,
local variable accesses, control logic, and temporal logic.
LSD Rule. A logic rule describes the relationship among
groups of related logic facts. An LSD rule describes a high-
level systematic change by relating groups of facts in the
three fact-bases.

To represent a group of similar facts at once, we create
a logic literal by binding some of a predicate’s arguments
to variables. For example, subtype(“Foo”, t) represents all
subtype facts that have Foo as a first argument.

Rules relate groups of facts by connecting literals with
boolean logic operators. In particular, our LSD rules are
horn clauses where the conjunction of one or more literals
in the antecedent implies a single literal in the conclusion,
i.e., A(x) ∧ B(x,y)... ∧ C(x,z) ⇒ D(x,z). In LSD rules,
all variables are universally quantified and variables do not
appear in the conclusion unless they are bound in the
antecedent. LSD rules are either ungrounded rules (rules
without constant bindings) or partially grounded rules (rules
with constant bindings).

A rule r has a match f in ∆FB if f is a fact created
by grounding r’s conclusion with constants that satisfy r’s
antecedent given FBo, FBn, and ∆FB. A rule r has an
exception if there is no match in ∆FB implied by a true
grounding of its antecedent. For example, a rule A(x)⇒B(x)
has a match B(c1) and an exception x=c2 if A(c1), A(c2),
and B(c1) are in the three fact-bases, but B(c2) is not in
∆FB. We explicitly encode exceptions as a part of a rule to
note anomalies to a systematic change.

Table 3 shows the rule styles and an example rule for each
style. These rule styles can express high-level systematic
changes such as dependency removal and addition, feature
addition and deletion, consistent maintenance, replacement
of API usage or related code change.
Example. Suppose that a programmer intended to remove
all accesses to a field Key.on and call Key.chk from the start
methods in the classes implementing Car. Table 1 presents
the fact-bases and Table 2 shows the rule inference and ∆FB
reduction process. Based on the fact that all accesses to
Key.on are removed from the old version, ∆FB is reduced
to ∆FB′ by replacing the three deleted accesses facts with

invoke Key.chk 
from the start 

methods in Car’s 
subtypes.



Limitation 2: Lack of 
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Table 1: A Fact-Base Representation of Two Program Versions and their Difference
Po (an old version) FBo (a fact-base of Po) Pn (a new version) FBn (a fact-base of Pn) ∆FB

class BMW implements Car subtype(“Car”,“BMW”), . . . class BMW implements Car subtype(“Car”,“BMW”), . . .
void start (Key c) { method(“BMW.start”, “start”, BMW) void start () { method(“BMW.start”, “start”, BMW)

... . . . Key.chk (null); ... calls(“BMW.start”, “Key.chk”) +calls(“BMW.start”, “Key.chk”)
class GM implements Car subtype(“Car”,“GM”), . . . class GM implements Car subtype(“Car”,“GM”), . . .
void start (Key c ) { method(“GM.start”, “start”, “GM”) void start (Key c ) { method(“GM.start”, “start”, “GM”)
if (c.on) { .... accesses(“Key.on”, “GM.start”) Key.chk (c ); calls(“GM.start”,“Key.chk”) -accesses(“Key.on”, “GM.start”)

... . . . ... . . . +calls(“GM.start”,“Key.chk”)
class Kia implements Car subtype(“Car”,“Kia”), . . . class Kia implements Car subtype(“Car”,“Kia”), . . .
void start (Key c ) { method(“Kia,start”,“start”, “Kia”) void start (Key c ) { method(“Kia,start”,“start”, “Kia”)
c.on = true; .... accesses(“Key.on”, “Kia.start”), . . . . . . -accesses(“Key.on”, “Kia.start”)

class Bus { type(“Bus”) class Bus { type(“Bus”)
void start (Key c) { method(“Bus,start”, “start”, Bus) void start (Key c); method(“Bus,start”, “start”, Bus) -accesses(“Key.on”, “Bus.start”)
c.on = false;} } accesses(“Key.on”, “Bus.start”) log(); } } calls(“Bus.start”,“log”) +calls(“Bus.start”,“log”)

class Key { type (“Key”) class Key { type (“Key”)
boolean on = false; field(“Key.on”, “on”,“Key”) boolean on = false; field(“Key.on”, “on”, “Key”)
void chk (Key c) { ... method (“Key.chk”, “chk”, “Key”) static void chk (Key c) { method (“Key.chk”, “chk”, “Key”)

* The deleted and added facts in ∆FB are noted with + and − sign respectively.

Table 2: LSD Rule Inference Example
∆FB′ ∆FB′′

1. past accesses(“Key. on”, m) 1. past accesses(“Key. on”, m)
⇒ deleted accesses(“Key.on”, m) ⇒ deleted accesses(“Key.on”, m)

2. added calls(“BMW.start”,“Key.chk”) 2. past method(m,“start”, t)
3. added calls(“GM.start”,“Key.chk”) ∧ past subtype(“Car”,t)
4. added calls(“Bus.start”,“log”) ⇒ added calls(m,“Key.chk”)

except t = Kia
3. added calls(“Bus.start”,“log”)

they appear in unmodified parts of a program.
The intuition behind our rule-based approach is that

there are many situations in which apparently independent
changes implement a higher-level, more systematic change
together. By inferring rules that correspond to such high-
level systematic changes, our approach concisely summarizes
structural information within and around changed code. For
instance, changing an API and subsequently changing all
invocations of the API is an example of such systematic
change. A crosscutting change that removes all dependen-
cies to a particular module is another familiar example.
LSD Predicate. Our prototype currently models struc-
tural dependencies in a Java program at the type, field, and
method level using the following twelve predicates. The first
seven predicates describe code elements and their contain-
ment relationships. For example, type(“org.foo.Bar”, “Bar”,
“org.foo”) means that there is either a class or an interface
with the name Bar in org.foo package, and its fully qualified
name is org.foo.Bar. The next five predicates describe
field access, method invocation, subtyping, and overriding
dependencies. For example, inheritedmethod(“foo”, “Boo”,
“Bob”) means that Bob inherits foo method of Boo class.

1. package (p:Package).
2. type (t:Type, tn:TypeName, p:Package).
3. method (m:Method, mn:MethodName, t:Type).
4. field (f:Field, fn:FieldName, t:Type).
5. return (m:Method, returnType:Type).
6. fieldoftype (f:Field, declaredType:Type).
7. typeintype (inner:Type, outer:Type).
8. accesses (f:Field, accessor:Method).
9. calls (caller:Method, callee:Method).
10. subtype (super:Type, sub:Type).
11. inheritedfield (fn:FieldName, super:Type, sub:Type).
12. inheritedmethod (mn:MethodName, super:Type, sub:Type).

To distinguish which fact-base each fact belongs to, we

prefix past and current to the facts in FBo and FBn

respectively. To distinguish which facts were deleted from
the old version and added to the new version, we prefix
deleted and added to the corresponding facts in ∆FB.

Currently LSD predicates do not model access modifiers,
local variable accesses, control logic, and temporal logic.
LSD Rule. A logic rule describes the relationship among
groups of related logic facts. An LSD rule describes a high-
level systematic change by relating groups of facts in the
three fact-bases.

To represent a group of similar facts at once, we create
a logic literal by binding some of a predicate’s arguments
to variables. For example, subtype(“Foo”, t) represents all
subtype facts that have Foo as a first argument.

Rules relate groups of facts by connecting literals with
boolean logic operators. In particular, our LSD rules are
horn clauses where the conjunction of one or more literals
in the antecedent implies a single literal in the conclusion,
i.e., A(x) ∧ B(x,y)... ∧ C(x,z) ⇒ D(x,z). In LSD rules,
all variables are universally quantified and variables do not
appear in the conclusion unless they are bound in the
antecedent. LSD rules are either ungrounded rules (rules
without constant bindings) or partially grounded rules (rules
with constant bindings).

A rule r has a match f in ∆FB if f is a fact created
by grounding r’s conclusion with constants that satisfy r’s
antecedent given FBo, FBn, and ∆FB. A rule r has an
exception if there is no match in ∆FB implied by a true
grounding of its antecedent. For example, a rule A(x)⇒B(x)
has a match B(c1) and an exception x=c2 if A(c1), A(c2),
and B(c1) are in the three fact-bases, but B(c2) is not in
∆FB. We explicitly encode exceptions as a part of a rule to
note anomalies to a systematic change.

Table 3 shows the rule styles and an example rule for each
style. These rule styles can express high-level systematic
changes such as dependency removal and addition, feature
addition and deletion, consistent maintenance, replacement
of API usage or related code change.
Example. Suppose that a programmer intended to remove
all accesses to a field Key.on and call Key.chk from the start
methods in the classes implementing Car. Table 1 presents
the fact-bases and Table 2 shows the rule inference and ∆FB
reduction process. Based on the fact that all accesses to
Key.on are removed from the old version, ∆FB is reduced
to ∆FB′ by replacing the three deleted accesses facts with

Table 1: A Fact-Base Representation of Two Program Versions and their Difference
Po (an old version) FBo (a fact-base of Po) Pn (a new version) FBn (a fact-base of Pn) ∆FB

class BMW implements Car subtype(“Car”,“BMW”), . . . class BMW implements Car subtype(“Car”,“BMW”), . . .
void start (Key c) { method(“BMW.start”, “start”, BMW) void start () { method(“BMW.start”, “start”, BMW)

... . . . Key.chk (null); ... calls(“BMW.start”, “Key.chk”) +calls(“BMW.start”, “Key.chk”)
class GM implements Car subtype(“Car”,“GM”), . . . class GM implements Car subtype(“Car”,“GM”), . . .
void start (Key c ) { method(“GM.start”, “start”, “GM”) void start (Key c ) { method(“GM.start”, “start”, “GM”)
if (c.on) { .... accesses(“Key.on”, “GM.start”) Key.chk (c ); calls(“GM.start”,“Key.chk”) -accesses(“Key.on”, “GM.start”)

... . . . ... . . . +calls(“GM.start”,“Key.chk”)
class Kia implements Car subtype(“Car”,“Kia”), . . . class Kia implements Car subtype(“Car”,“Kia”), . . .
void start (Key c ) { method(“Kia,start”,“start”, “Kia”) void start (Key c ) { method(“Kia,start”,“start”, “Kia”)
c.on = true; .... accesses(“Key.on”, “Kia.start”), . . . . . . -accesses(“Key.on”, “Kia.start”)

class Bus { type(“Bus”) class Bus { type(“Bus”)
void start (Key c) { method(“Bus,start”, “start”, Bus) void start (Key c); method(“Bus,start”, “start”, Bus) -accesses(“Key.on”, “Bus.start”)
c.on = false;} } accesses(“Key.on”, “Bus.start”) log(); } } calls(“Bus.start”,“log”) +calls(“Bus.start”,“log”)

class Key { type (“Key”) class Key { type (“Key”)
boolean on = false; field(“Key.on”, “on”,“Key”) boolean on = false; field(“Key.on”, “on”, “Key”)
void chk (Key c) { ... method (“Key.chk”, “chk”, “Key”) static void chk (Key c) { method (“Key.chk”, “chk”, “Key”)

* The deleted and added facts in ∆FB are noted with + and − sign respectively.

Table 2: LSD Rule Inference Example
∆FB′ ∆FB′′

1. past accesses(“Key. on”, m) 1. past accesses(“Key. on”, m)
⇒ deleted accesses(“Key.on”, m) ⇒ deleted accesses(“Key.on”, m)

2. added calls(“BMW.start”,“Key.chk”) 2. past method(m,“start”, t)
3. added calls(“GM.start”,“Key.chk”) ∧ past subtype(“Car”,t)
4. added calls(“Bus.start”,“log”) ⇒ added calls(m,“Key.chk”)

except t = Kia
3. added calls(“Bus.start”,“log”)

they appear in unmodified parts of a program.
The intuition behind our rule-based approach is that

there are many situations in which apparently independent
changes implement a higher-level, more systematic change
together. By inferring rules that correspond to such high-
level systematic changes, our approach concisely summarizes
structural information within and around changed code. For
instance, changing an API and subsequently changing all
invocations of the API is an example of such systematic
change. A crosscutting change that removes all dependen-
cies to a particular module is another familiar example.
LSD Predicate. Our prototype currently models struc-
tural dependencies in a Java program at the type, field, and
method level using the following twelve predicates. The first
seven predicates describe code elements and their contain-
ment relationships. For example, type(“org.foo.Bar”, “Bar”,
“org.foo”) means that there is either a class or an interface
with the name Bar in org.foo package, and its fully qualified
name is org.foo.Bar. The next five predicates describe
field access, method invocation, subtyping, and overriding
dependencies. For example, inheritedmethod(“foo”, “Boo”,
“Bob”) means that Bob inherits foo method of Boo class.

1. package (p:Package).
2. type (t:Type, tn:TypeName, p:Package).
3. method (m:Method, mn:MethodName, t:Type).
4. field (f:Field, fn:FieldName, t:Type).
5. return (m:Method, returnType:Type).
6. fieldoftype (f:Field, declaredType:Type).
7. typeintype (inner:Type, outer:Type).
8. accesses (f:Field, accessor:Method).
9. calls (caller:Method, callee:Method).
10. subtype (super:Type, sub:Type).
11. inheritedfield (fn:FieldName, super:Type, sub:Type).
12. inheritedmethod (mn:MethodName, super:Type, sub:Type).

To distinguish which fact-base each fact belongs to, we

prefix past and current to the facts in FBo and FBn

respectively. To distinguish which facts were deleted from
the old version and added to the new version, we prefix
deleted and added to the corresponding facts in ∆FB.

Currently LSD predicates do not model access modifiers,
local variable accesses, control logic, and temporal logic.
LSD Rule. A logic rule describes the relationship among
groups of related logic facts. An LSD rule describes a high-
level systematic change by relating groups of facts in the
three fact-bases.

To represent a group of similar facts at once, we create
a logic literal by binding some of a predicate’s arguments
to variables. For example, subtype(“Foo”, t) represents all
subtype facts that have Foo as a first argument.

Rules relate groups of facts by connecting literals with
boolean logic operators. In particular, our LSD rules are
horn clauses where the conjunction of one or more literals
in the antecedent implies a single literal in the conclusion,
i.e., A(x) ∧ B(x,y)... ∧ C(x,z) ⇒ D(x,z). In LSD rules,
all variables are universally quantified and variables do not
appear in the conclusion unless they are bound in the
antecedent. LSD rules are either ungrounded rules (rules
without constant bindings) or partially grounded rules (rules
with constant bindings).

A rule r has a match f in ∆FB if f is a fact created
by grounding r’s conclusion with constants that satisfy r’s
antecedent given FBo, FBn, and ∆FB. A rule r has an
exception if there is no match in ∆FB implied by a true
grounding of its antecedent. For example, a rule A(x)⇒B(x)
has a match B(c1) and an exception x=c2 if A(c1), A(c2),
and B(c1) are in the three fact-bases, but B(c2) is not in
∆FB. We explicitly encode exceptions as a part of a rule to
note anomalies to a systematic change.

Table 3 shows the rule styles and an example rule for each
style. These rule styles can express high-level systematic
changes such as dependency removal and addition, feature
addition and deletion, consistent maintenance, replacement
of API usage or related code change.
Example. Suppose that a programmer intended to remove
all accesses to a field Key.on and call Key.chk from the start
methods in the classes implementing Car. Table 1 presents
the fact-bases and Table 2 shows the rule inference and ∆FB
reduction process. Based on the fact that all accesses to
Key.on are removed from the old version, ∆FB is reduced
to ∆FB′ by replacing the three deleted accesses facts with

Table 1: A Fact-Base Representation of Two Program Versions and their Difference
Po (an old version) FBo (a fact-base of Po) Pn (a new version) FBn (a fact-base of Pn) ∆FB

class BMW implements Car subtype(“Car”,“BMW”), . . . class BMW implements Car subtype(“Car”,“BMW”), . . .
void start (Key c) { method(“BMW.start”, “start”, BMW) void start () { method(“BMW.start”, “start”, BMW)

... . . . Key.chk (null); ... calls(“BMW.start”, “Key.chk”) +calls(“BMW.start”, “Key.chk”)
class GM implements Car subtype(“Car”,“GM”), . . . class GM implements Car subtype(“Car”,“GM”), . . .
void start (Key c ) { method(“GM.start”, “start”, “GM”) void start (Key c ) { method(“GM.start”, “start”, “GM”)
if (c.on) { .... accesses(“Key.on”, “GM.start”) Key.chk (c ); calls(“GM.start”,“Key.chk”) -accesses(“Key.on”, “GM.start”)

... . . . ... . . . +calls(“GM.start”,“Key.chk”)
class Kia implements Car subtype(“Car”,“Kia”), . . . class Kia implements Car subtype(“Car”,“Kia”), . . .
void start (Key c ) { method(“Kia,start”,“start”, “Kia”) void start (Key c ) { method(“Kia,start”,“start”, “Kia”)
c.on = true; .... accesses(“Key.on”, “Kia.start”), . . . . . . -accesses(“Key.on”, “Kia.start”)

class Bus { type(“Bus”) class Bus { type(“Bus”)
void start (Key c) { method(“Bus,start”, “start”, Bus) void start (Key c); method(“Bus,start”, “start”, Bus) -accesses(“Key.on”, “Bus.start”)
c.on = false;} } accesses(“Key.on”, “Bus.start”) log(); } } calls(“Bus.start”,“log”) +calls(“Bus.start”,“log”)

class Key { type (“Key”) class Key { type (“Key”)
boolean on = false; field(“Key.on”, “on”,“Key”) boolean on = false; field(“Key.on”, “on”, “Key”)
void chk (Key c) { ... method (“Key.chk”, “chk”, “Key”) static void chk (Key c) { method (“Key.chk”, “chk”, “Key”)

* The deleted and added facts in ∆FB are noted with + and − sign respectively.

Table 2: LSD Rule Inference Example
∆FB′ ∆FB′′

1. past accesses(“Key. on”, m) 1. past accesses(“Key. on”, m)
⇒ deleted accesses(“Key.on”, m) ⇒ deleted accesses(“Key.on”, m)

2. added calls(“BMW.start”,“Key.chk”) 2. past method(m,“start”, t)
3. added calls(“GM.start”,“Key.chk”) ∧ past subtype(“Car”,t)
4. added calls(“Bus.start”,“log”) ⇒ added calls(m,“Key.chk”)

except t = Kia
3. added calls(“Bus.start”,“log”)

they appear in unmodified parts of a program.
The intuition behind our rule-based approach is that

there are many situations in which apparently independent
changes implement a higher-level, more systematic change
together. By inferring rules that correspond to such high-
level systematic changes, our approach concisely summarizes
structural information within and around changed code. For
instance, changing an API and subsequently changing all
invocations of the API is an example of such systematic
change. A crosscutting change that removes all dependen-
cies to a particular module is another familiar example.
LSD Predicate. Our prototype currently models struc-
tural dependencies in a Java program at the type, field, and
method level using the following twelve predicates. The first
seven predicates describe code elements and their contain-
ment relationships. For example, type(“org.foo.Bar”, “Bar”,
“org.foo”) means that there is either a class or an interface
with the name Bar in org.foo package, and its fully qualified
name is org.foo.Bar. The next five predicates describe
field access, method invocation, subtyping, and overriding
dependencies. For example, inheritedmethod(“foo”, “Boo”,
“Bob”) means that Bob inherits foo method of Boo class.

1. package (p:Package).
2. type (t:Type, tn:TypeName, p:Package).
3. method (m:Method, mn:MethodName, t:Type).
4. field (f:Field, fn:FieldName, t:Type).
5. return (m:Method, returnType:Type).
6. fieldoftype (f:Field, declaredType:Type).
7. typeintype (inner:Type, outer:Type).
8. accesses (f:Field, accessor:Method).
9. calls (caller:Method, callee:Method).
10. subtype (super:Type, sub:Type).
11. inheritedfield (fn:FieldName, super:Type, sub:Type).
12. inheritedmethod (mn:MethodName, super:Type, sub:Type).

To distinguish which fact-base each fact belongs to, we

prefix past and current to the facts in FBo and FBn

respectively. To distinguish which facts were deleted from
the old version and added to the new version, we prefix
deleted and added to the corresponding facts in ∆FB.

Currently LSD predicates do not model access modifiers,
local variable accesses, control logic, and temporal logic.
LSD Rule. A logic rule describes the relationship among
groups of related logic facts. An LSD rule describes a high-
level systematic change by relating groups of facts in the
three fact-bases.

To represent a group of similar facts at once, we create
a logic literal by binding some of a predicate’s arguments
to variables. For example, subtype(“Foo”, t) represents all
subtype facts that have Foo as a first argument.

Rules relate groups of facts by connecting literals with
boolean logic operators. In particular, our LSD rules are
horn clauses where the conjunction of one or more literals
in the antecedent implies a single literal in the conclusion,
i.e., A(x) ∧ B(x,y)... ∧ C(x,z) ⇒ D(x,z). In LSD rules,
all variables are universally quantified and variables do not
appear in the conclusion unless they are bound in the
antecedent. LSD rules are either ungrounded rules (rules
without constant bindings) or partially grounded rules (rules
with constant bindings).

A rule r has a match f in ∆FB if f is a fact created
by grounding r’s conclusion with constants that satisfy r’s
antecedent given FBo, FBn, and ∆FB. A rule r has an
exception if there is no match in ∆FB implied by a true
grounding of its antecedent. For example, a rule A(x)⇒B(x)
has a match B(c1) and an exception x=c2 if A(c1), A(c2),
and B(c1) are in the three fact-bases, but B(c2) is not in
∆FB. We explicitly encode exceptions as a part of a rule to
note anomalies to a systematic change.

Table 3 shows the rule styles and an example rule for each
style. These rule styles can express high-level systematic
changes such as dependency removal and addition, feature
addition and deletion, consistent maintenance, replacement
of API usage or related code change.
Example. Suppose that a programmer intended to remove
all accesses to a field Key.on and call Key.chk from the start
methods in the classes implementing Car. Table 1 presents
the fact-bases and Table 2 shows the rule inference and ∆FB
reduction process. Based on the fact that all accesses to
Key.on are removed from the old version, ∆FB is reduced
to ∆FB′ by replacing the three deleted accesses facts with
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Po (an old version) FBo (a fact-base of Po) Pn (a new version) FBn (a fact-base of Pn) ∆FB

class BMW implements Car subtype(“Car”,“BMW”), . . . class BMW implements Car subtype(“Car”,“BMW”), . . .
void start (Key c) { method(“BMW.start”, “start”, BMW) void start () { method(“BMW.start”, “start”, BMW)

... . . . Key.chk (null); ... calls(“BMW.start”, “Key.chk”) +calls(“BMW.start”, “Key.chk”)
class GM implements Car subtype(“Car”,“GM”), . . . class GM implements Car subtype(“Car”,“GM”), . . .
void start (Key c ) { method(“GM.start”, “start”, “GM”) void start (Key c ) { method(“GM.start”, “start”, “GM”)
if (c.on) { .... accesses(“Key.on”, “GM.start”) Key.chk (c ); calls(“GM.start”,“Key.chk”) -accesses(“Key.on”, “GM.start”)

... . . . ... . . . +calls(“GM.start”,“Key.chk”)
class Kia implements Car subtype(“Car”,“Kia”), . . . class Kia implements Car subtype(“Car”,“Kia”), . . .
void start (Key c ) { method(“Kia,start”,“start”, “Kia”) void start (Key c ) { method(“Kia,start”,“start”, “Kia”)
c.on = true; .... accesses(“Key.on”, “Kia.start”), . . . . . . -accesses(“Key.on”, “Kia.start”)

class Bus { type(“Bus”) class Bus { type(“Bus”)
void start (Key c) { method(“Bus,start”, “start”, Bus) void start (Key c); method(“Bus,start”, “start”, Bus) -accesses(“Key.on”, “Bus.start”)
c.on = false;} } accesses(“Key.on”, “Bus.start”) log(); } } calls(“Bus.start”,“log”) +calls(“Bus.start”,“log”)

class Key { type (“Key”) class Key { type (“Key”)
boolean on = false; field(“Key.on”, “on”,“Key”) boolean on = false; field(“Key.on”, “on”, “Key”)
void chk (Key c) { ... method (“Key.chk”, “chk”, “Key”) static void chk (Key c) { method (“Key.chk”, “chk”, “Key”)

* The deleted and added facts in ∆FB are noted with + and − sign respectively.

Table 2: LSD Rule Inference Example
∆FB′ ∆FB′′

1. past accesses(“Key. on”, m) 1. past accesses(“Key. on”, m)
⇒ deleted accesses(“Key.on”, m) ⇒ deleted accesses(“Key.on”, m)

2. added calls(“BMW.start”,“Key.chk”) 2. past method(m,“start”, t)
3. added calls(“GM.start”,“Key.chk”) ∧ past subtype(“Car”,t)
4. added calls(“Bus.start”,“log”) ⇒ added calls(m,“Key.chk”)

except t = Kia
3. added calls(“Bus.start”,“log”)

they appear in unmodified parts of a program.
The intuition behind our rule-based approach is that

there are many situations in which apparently independent
changes implement a higher-level, more systematic change
together. By inferring rules that correspond to such high-
level systematic changes, our approach concisely summarizes
structural information within and around changed code. For
instance, changing an API and subsequently changing all
invocations of the API is an example of such systematic
change. A crosscutting change that removes all dependen-
cies to a particular module is another familiar example.
LSD Predicate. Our prototype currently models struc-
tural dependencies in a Java program at the type, field, and
method level using the following twelve predicates. The first
seven predicates describe code elements and their contain-
ment relationships. For example, type(“org.foo.Bar”, “Bar”,
“org.foo”) means that there is either a class or an interface
with the name Bar in org.foo package, and its fully qualified
name is org.foo.Bar. The next five predicates describe
field access, method invocation, subtyping, and overriding
dependencies. For example, inheritedmethod(“foo”, “Boo”,
“Bob”) means that Bob inherits foo method of Boo class.

1. package (p:Package).
2. type (t:Type, tn:TypeName, p:Package).
3. method (m:Method, mn:MethodName, t:Type).
4. field (f:Field, fn:FieldName, t:Type).
5. return (m:Method, returnType:Type).
6. fieldoftype (f:Field, declaredType:Type).
7. typeintype (inner:Type, outer:Type).
8. accesses (f:Field, accessor:Method).
9. calls (caller:Method, callee:Method).
10. subtype (super:Type, sub:Type).
11. inheritedfield (fn:FieldName, super:Type, sub:Type).
12. inheritedmethod (mn:MethodName, super:Type, sub:Type).

To distinguish which fact-base each fact belongs to, we

prefix past and current to the facts in FBo and FBn

respectively. To distinguish which facts were deleted from
the old version and added to the new version, we prefix
deleted and added to the corresponding facts in ∆FB.

Currently LSD predicates do not model access modifiers,
local variable accesses, control logic, and temporal logic.
LSD Rule. A logic rule describes the relationship among
groups of related logic facts. An LSD rule describes a high-
level systematic change by relating groups of facts in the
three fact-bases.

To represent a group of similar facts at once, we create
a logic literal by binding some of a predicate’s arguments
to variables. For example, subtype(“Foo”, t) represents all
subtype facts that have Foo as a first argument.

Rules relate groups of facts by connecting literals with
boolean logic operators. In particular, our LSD rules are
horn clauses where the conjunction of one or more literals
in the antecedent implies a single literal in the conclusion,
i.e., A(x) ∧ B(x,y)... ∧ C(x,z) ⇒ D(x,z). In LSD rules,
all variables are universally quantified and variables do not
appear in the conclusion unless they are bound in the
antecedent. LSD rules are either ungrounded rules (rules
without constant bindings) or partially grounded rules (rules
with constant bindings).

A rule r has a match f in ∆FB if f is a fact created
by grounding r’s conclusion with constants that satisfy r’s
antecedent given FBo, FBn, and ∆FB. A rule r has an
exception if there is no match in ∆FB implied by a true
grounding of its antecedent. For example, a rule A(x)⇒B(x)
has a match B(c1) and an exception x=c2 if A(c1), A(c2),
and B(c1) are in the three fact-bases, but B(c2) is not in
∆FB. We explicitly encode exceptions as a part of a rule to
note anomalies to a systematic change.

Table 3 shows the rule styles and an example rule for each
style. These rule styles can express high-level systematic
changes such as dependency removal and addition, feature
addition and deletion, consistent maintenance, replacement
of API usage or related code change.
Example. Suppose that a programmer intended to remove
all accesses to a field Key.on and call Key.chk from the start
methods in the classes implementing Car. Table 1 presents
the fact-bases and Table 2 shows the rule inference and ∆FB
reduction process. Based on the fact that all accesses to
Key.on are removed from the old version, ∆FB is reduced
to ∆FB′ by replacing the three deleted accesses facts with

Table 1: A Fact-Base Representation of Two Program Versions and their Difference
Po (an old version) FBo (a fact-base of Po) Pn (a new version) FBn (a fact-base of Pn) ∆FB

class BMW implements Car subtype(“Car”,“BMW”), . . . class BMW implements Car subtype(“Car”,“BMW”), . . .
void start (Key c) { method(“BMW.start”, “start”, BMW) void start () { method(“BMW.start”, “start”, BMW)

... . . . Key.chk (null); ... calls(“BMW.start”, “Key.chk”) +calls(“BMW.start”, “Key.chk”)
class GM implements Car subtype(“Car”,“GM”), . . . class GM implements Car subtype(“Car”,“GM”), . . .
void start (Key c ) { method(“GM.start”, “start”, “GM”) void start (Key c ) { method(“GM.start”, “start”, “GM”)
if (c.on) { .... accesses(“Key.on”, “GM.start”) Key.chk (c ); calls(“GM.start”,“Key.chk”) -accesses(“Key.on”, “GM.start”)

... . . . ... . . . +calls(“GM.start”,“Key.chk”)
class Kia implements Car subtype(“Car”,“Kia”), . . . class Kia implements Car subtype(“Car”,“Kia”), . . .
void start (Key c ) { method(“Kia,start”,“start”, “Kia”) void start (Key c ) { method(“Kia,start”,“start”, “Kia”)
c.on = true; .... accesses(“Key.on”, “Kia.start”), . . . . . . -accesses(“Key.on”, “Kia.start”)

class Bus { type(“Bus”) class Bus { type(“Bus”)
void start (Key c) { method(“Bus,start”, “start”, Bus) void start (Key c); method(“Bus,start”, “start”, Bus) -accesses(“Key.on”, “Bus.start”)
c.on = false;} } accesses(“Key.on”, “Bus.start”) log(); } } calls(“Bus.start”,“log”) +calls(“Bus.start”,“log”)

class Key { type (“Key”) class Key { type (“Key”)
boolean on = false; field(“Key.on”, “on”,“Key”) boolean on = false; field(“Key.on”, “on”, “Key”)
void chk (Key c) { ... method (“Key.chk”, “chk”, “Key”) static void chk (Key c) { method (“Key.chk”, “chk”, “Key”)

* The deleted and added facts in ∆FB are noted with + and − sign respectively.

Table 2: LSD Rule Inference Example
∆FB′ ∆FB′′

1. past accesses(“Key. on”, m) 1. past accesses(“Key. on”, m)
⇒ deleted accesses(“Key.on”, m) ⇒ deleted accesses(“Key.on”, m)

2. added calls(“BMW.start”,“Key.chk”) 2. past method(m,“start”, t)
3. added calls(“GM.start”,“Key.chk”) ∧ past subtype(“Car”,t)
4. added calls(“Bus.start”,“log”) ⇒ added calls(m,“Key.chk”)

except t = Kia
3. added calls(“Bus.start”,“log”)

they appear in unmodified parts of a program.
The intuition behind our rule-based approach is that

there are many situations in which apparently independent
changes implement a higher-level, more systematic change
together. By inferring rules that correspond to such high-
level systematic changes, our approach concisely summarizes
structural information within and around changed code. For
instance, changing an API and subsequently changing all
invocations of the API is an example of such systematic
change. A crosscutting change that removes all dependen-
cies to a particular module is another familiar example.
LSD Predicate. Our prototype currently models struc-
tural dependencies in a Java program at the type, field, and
method level using the following twelve predicates. The first
seven predicates describe code elements and their contain-
ment relationships. For example, type(“org.foo.Bar”, “Bar”,
“org.foo”) means that there is either a class or an interface
with the name Bar in org.foo package, and its fully qualified
name is org.foo.Bar. The next five predicates describe
field access, method invocation, subtyping, and overriding
dependencies. For example, inheritedmethod(“foo”, “Boo”,
“Bob”) means that Bob inherits foo method of Boo class.

1. package (p:Package).
2. type (t:Type, tn:TypeName, p:Package).
3. method (m:Method, mn:MethodName, t:Type).
4. field (f:Field, fn:FieldName, t:Type).
5. return (m:Method, returnType:Type).
6. fieldoftype (f:Field, declaredType:Type).
7. typeintype (inner:Type, outer:Type).
8. accesses (f:Field, accessor:Method).
9. calls (caller:Method, callee:Method).
10. subtype (super:Type, sub:Type).
11. inheritedfield (fn:FieldName, super:Type, sub:Type).
12. inheritedmethod (mn:MethodName, super:Type, sub:Type).

To distinguish which fact-base each fact belongs to, we

prefix past and current to the facts in FBo and FBn

respectively. To distinguish which facts were deleted from
the old version and added to the new version, we prefix
deleted and added to the corresponding facts in ∆FB.

Currently LSD predicates do not model access modifiers,
local variable accesses, control logic, and temporal logic.
LSD Rule. A logic rule describes the relationship among
groups of related logic facts. An LSD rule describes a high-
level systematic change by relating groups of facts in the
three fact-bases.

To represent a group of similar facts at once, we create
a logic literal by binding some of a predicate’s arguments
to variables. For example, subtype(“Foo”, t) represents all
subtype facts that have Foo as a first argument.

Rules relate groups of facts by connecting literals with
boolean logic operators. In particular, our LSD rules are
horn clauses where the conjunction of one or more literals
in the antecedent implies a single literal in the conclusion,
i.e., A(x) ∧ B(x,y)... ∧ C(x,z) ⇒ D(x,z). In LSD rules,
all variables are universally quantified and variables do not
appear in the conclusion unless they are bound in the
antecedent. LSD rules are either ungrounded rules (rules
without constant bindings) or partially grounded rules (rules
with constant bindings).

A rule r has a match f in ∆FB if f is a fact created
by grounding r’s conclusion with constants that satisfy r’s
antecedent given FBo, FBn, and ∆FB. A rule r has an
exception if there is no match in ∆FB implied by a true
grounding of its antecedent. For example, a rule A(x)⇒B(x)
has a match B(c1) and an exception x=c2 if A(c1), A(c2),
and B(c1) are in the three fact-bases, but B(c2) is not in
∆FB. We explicitly encode exceptions as a part of a rule to
note anomalies to a systematic change.

Table 3 shows the rule styles and an example rule for each
style. These rule styles can express high-level systematic
changes such as dependency removal and addition, feature
addition and deletion, consistent maintenance, replacement
of API usage or related code change.
Example. Suppose that a programmer intended to remove
all accesses to a field Key.on and call Key.chk from the start
methods in the classes implementing Car. Table 1 presents
the fact-bases and Table 2 shows the rule inference and ∆FB
reduction process. Based on the fact that all accesses to
Key.on are removed from the old version, ∆FB is reduced
to ∆FB′ by replacing the three deleted accesses facts with

Table 1: A Fact-Base Representation of Two Program Versions and their Difference
Po (an old version) FBo (a fact-base of Po) Pn (a new version) FBn (a fact-base of Pn) ∆FB

class BMW implements Car subtype(“Car”,“BMW”), . . . class BMW implements Car subtype(“Car”,“BMW”), . . .
void start (Key c) { method(“BMW.start”, “start”, BMW) void start () { method(“BMW.start”, “start”, BMW)

... . . . Key.chk (null); ... calls(“BMW.start”, “Key.chk”) +calls(“BMW.start”, “Key.chk”)
class GM implements Car subtype(“Car”,“GM”), . . . class GM implements Car subtype(“Car”,“GM”), . . .
void start (Key c ) { method(“GM.start”, “start”, “GM”) void start (Key c ) { method(“GM.start”, “start”, “GM”)
if (c.on) { .... accesses(“Key.on”, “GM.start”) Key.chk (c ); calls(“GM.start”,“Key.chk”) -accesses(“Key.on”, “GM.start”)

... . . . ... . . . +calls(“GM.start”,“Key.chk”)
class Kia implements Car subtype(“Car”,“Kia”), . . . class Kia implements Car subtype(“Car”,“Kia”), . . .
void start (Key c ) { method(“Kia,start”,“start”, “Kia”) void start (Key c ) { method(“Kia,start”,“start”, “Kia”)
c.on = true; .... accesses(“Key.on”, “Kia.start”), . . . . . . -accesses(“Key.on”, “Kia.start”)

class Bus { type(“Bus”) class Bus { type(“Bus”)
void start (Key c) { method(“Bus,start”, “start”, Bus) void start (Key c); method(“Bus,start”, “start”, Bus) -accesses(“Key.on”, “Bus.start”)
c.on = false;} } accesses(“Key.on”, “Bus.start”) log(); } } calls(“Bus.start”,“log”) +calls(“Bus.start”,“log”)

class Key { type (“Key”) class Key { type (“Key”)
boolean on = false; field(“Key.on”, “on”,“Key”) boolean on = false; field(“Key.on”, “on”, “Key”)
void chk (Key c) { ... method (“Key.chk”, “chk”, “Key”) static void chk (Key c) { method (“Key.chk”, “chk”, “Key”)

* The deleted and added facts in ∆FB are noted with + and − sign respectively.

Table 2: LSD Rule Inference Example
∆FB′ ∆FB′′

1. past accesses(“Key. on”, m) 1. past accesses(“Key. on”, m)
⇒ deleted accesses(“Key.on”, m) ⇒ deleted accesses(“Key.on”, m)

2. added calls(“BMW.start”,“Key.chk”) 2. past method(m,“start”, t)
3. added calls(“GM.start”,“Key.chk”) ∧ past subtype(“Car”,t)
4. added calls(“Bus.start”,“log”) ⇒ added calls(m,“Key.chk”)

except t = Kia
3. added calls(“Bus.start”,“log”)

they appear in unmodified parts of a program.
The intuition behind our rule-based approach is that

there are many situations in which apparently independent
changes implement a higher-level, more systematic change
together. By inferring rules that correspond to such high-
level systematic changes, our approach concisely summarizes
structural information within and around changed code. For
instance, changing an API and subsequently changing all
invocations of the API is an example of such systematic
change. A crosscutting change that removes all dependen-
cies to a particular module is another familiar example.
LSD Predicate. Our prototype currently models struc-
tural dependencies in a Java program at the type, field, and
method level using the following twelve predicates. The first
seven predicates describe code elements and their contain-
ment relationships. For example, type(“org.foo.Bar”, “Bar”,
“org.foo”) means that there is either a class or an interface
with the name Bar in org.foo package, and its fully qualified
name is org.foo.Bar. The next five predicates describe
field access, method invocation, subtyping, and overriding
dependencies. For example, inheritedmethod(“foo”, “Boo”,
“Bob”) means that Bob inherits foo method of Boo class.

1. package (p:Package).
2. type (t:Type, tn:TypeName, p:Package).
3. method (m:Method, mn:MethodName, t:Type).
4. field (f:Field, fn:FieldName, t:Type).
5. return (m:Method, returnType:Type).
6. fieldoftype (f:Field, declaredType:Type).
7. typeintype (inner:Type, outer:Type).
8. accesses (f:Field, accessor:Method).
9. calls (caller:Method, callee:Method).
10. subtype (super:Type, sub:Type).
11. inheritedfield (fn:FieldName, super:Type, sub:Type).
12. inheritedmethod (mn:MethodName, super:Type, sub:Type).

To distinguish which fact-base each fact belongs to, we

prefix past and current to the facts in FBo and FBn

respectively. To distinguish which facts were deleted from
the old version and added to the new version, we prefix
deleted and added to the corresponding facts in ∆FB.

Currently LSD predicates do not model access modifiers,
local variable accesses, control logic, and temporal logic.
LSD Rule. A logic rule describes the relationship among
groups of related logic facts. An LSD rule describes a high-
level systematic change by relating groups of facts in the
three fact-bases.

To represent a group of similar facts at once, we create
a logic literal by binding some of a predicate’s arguments
to variables. For example, subtype(“Foo”, t) represents all
subtype facts that have Foo as a first argument.

Rules relate groups of facts by connecting literals with
boolean logic operators. In particular, our LSD rules are
horn clauses where the conjunction of one or more literals
in the antecedent implies a single literal in the conclusion,
i.e., A(x) ∧ B(x,y)... ∧ C(x,z) ⇒ D(x,z). In LSD rules,
all variables are universally quantified and variables do not
appear in the conclusion unless they are bound in the
antecedent. LSD rules are either ungrounded rules (rules
without constant bindings) or partially grounded rules (rules
with constant bindings).

A rule r has a match f in ∆FB if f is a fact created
by grounding r’s conclusion with constants that satisfy r’s
antecedent given FBo, FBn, and ∆FB. A rule r has an
exception if there is no match in ∆FB implied by a true
grounding of its antecedent. For example, a rule A(x)⇒B(x)
has a match B(c1) and an exception x=c2 if A(c1), A(c2),
and B(c1) are in the three fact-bases, but B(c2) is not in
∆FB. We explicitly encode exceptions as a part of a rule to
note anomalies to a systematic change.

Table 3 shows the rule styles and an example rule for each
style. These rule styles can express high-level systematic
changes such as dependency removal and addition, feature
addition and deletion, consistent maintenance, replacement
of API usage or related code change.
Example. Suppose that a programmer intended to remove
all accesses to a field Key.on and call Key.chk from the start
methods in the classes implementing Car. Table 1 presents
the fact-bases and Table 2 shows the rule inference and ∆FB
reduction process. Based on the fact that all accesses to
Key.on are removed from the old version, ∆FB is reduced
to ∆FB′ by replacing the three deleted accesses facts with

invoke Key.chk 
from the start 

methods in Car’s 
subtypes.



Step 3. Learn Rules

• Our rule learner uses a bounded depth search 
algorithm that finds Datalog rules in a domain 
specific form.   

• We have input parameters that determine the 
validity of a rule. 

• a: accuracy 

• m: min support 

• k: the length of antecedant 

Example. 

past_calls (x, “foo”) 

  => deleted_calls(x, “foo”)  

(8/10) a = 0.80, m=8, k=1.  



        

Step 3. Learn Rules

Back

Algorithm 1: LSdiff Rule Inference Algorithm
Input: FBo, FBn, ∆FB, m, a, k, and β
Output: L and U
/* Initialize R, a set of ungrounded rules; L,

a set of learned rules; and U, a set of
facts in ∆FB that are not covered by L. */

R := ∅, L := ∅, U := ∆FB;
U := applyDefaultWinnowingRules (∆FB, FBo,
FBn); /* reduce ∆FB with default winnowing
rules. */
R := createInitialRules (m); /* create rules
with an empty antecedent by enumerating all
possible consequents. */
foreach i = 1 . . . k do

R := extendUngroundedRules (R) ; /* extend
all ungrounded rules in R by adding all
possible literals to their antecedent. */
foreach r ∈ R do

G := createPartiallyGroundedRules (r) ;
/* try all possible constant
substitutions for r’s variable. */
foreach g in G do

if isValid (g) then
L :=L ∪ {g};
U :=U − {g.matches};

end

end

end
R :=selectRules (R, β) ; /* select the best β
rules in R */

end

code changes as they are always true regardless of
change content. For example, deleting a package
deletes all contained types in the package and deleting
a method implies deleting all structural dependencies
involving the method. To prevent LSdiff from learning
such rules, we have written 30 default winnowing
rules by hand ([18], pp. 228–229) and remove the facts
implied by these rules from U before rule inference.

As the size of the rule search space increases expo-
nentially with the number of variables in ungrounded
rules, enumerating rules quickly becomes infeasible for
longer rules. To tame this exponential growth, we use
a beam search heuristic: in each iteration, we save only
the best β number of ungrounded rules and pass them
to the next iteration. The beam search is a widely
used heuristic in first order logic rule learning [23]. As
our tests found no improvement when β was increased
beyond 100, we used this as a default. To select the
best β rules, we rank rules by their number of matches.
The first tie-breaker prefers rules with fewer number
of exceptions, as these rules are worth refining further.
The second tie-breaker prefers rules whose variables are

more general in terms of Java containment hierarchy:
package > type > field = method > name.

Our rule inference algorithm is summarized in Algo-
rithm 1, and the pseudo code of its subroutines appears
in [18], pp. 143–145.
Part 3. Post Processing. Rules with the same
length may still have overlapping matches after Part 2.
To avoid outputting rules that cover the same set of
facts in the ∆FB, we select a subset of the rules using
the SET-COVER algorithm [2] and output the selected
rules and the remaining facts in ∆FB.

5 Focus Group Study

To understand our target users’ perspectives on
LSdiff, we conducted a focus group study with pro-
fessional software engineers from a large E-commerce
company. A focus group is typically carried out in
early stages of product design to seek target users’
feedback on new products, concepts, or messages [8].
We selected this study method as a low-cost way
to assess LSdiff’s potential benefits before investing
further efforts in its development.

The goal of the focus group was to answer: (1)
In which task contexts do programmers need to un-
derstand code changes? (2) What are difficulties of
using program differencing tools such as diff? and (3)
How can LSdiff complement existing uses of program
differencing tools?

With the help of a liaison at the company, we identi-
fied a target group consisting of software development
engineers (including those in testing), technical man-
agers, and architects. A screening questionnaire asked
the target group about their programming and software
industry experience, their familiarity with Java, how
frequently they use diff and diff-based version control
systems, and the size of code bases that they regularly
work with. All sixteen participants responded to the
questionnaire and five out of them attended the focus
group: each had primary development responsibilities;
each had industrial experience ranging from 6 to over
30 years; each used related tools at least weekly; and
each reviewed code changes daily except one who did
only weekly.

For one hour, the first author worked as the moder-
ator and led the focus group through an introduction,
a discussion on current practices for using diff, an
overview, demonstration and brief evaluation of LSdiff,
a hands-on trial of reviewing a sample LSdiff output,
followed by an in-depth evaluation of LSdiff.

The hands-on trial used the output that LSdiff
generated on carol project revision 430.4 We chose

4http://users.ece.utexas.edu/˜miryung/LSDiff/carol429-
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Recap

• Many differencing techniques individually compare 
code elements at particular granularities using 
similarity measures. 

• Hard to comprehend as a long list of matches 

• Difficult to identify exceptions that violate 
systematic patterns

• LSdiff uses rule-based change representations to 
explicitly capture systematic changes and 
automatically infers these rules. 
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Preview for This Wednesday

• Thomas Zimmermann, Peter Weißgerber, Stephan Diehl, 
and Andreas Zeller. "Mining version histories to guide 
software changes", IEEE Transactions on Software 
Engineering, 31(6):429–445, 2005.

• Association rule mining

• How can we recover transactions from CVS history?

• What are the objectives of their evaluation? Are they 
sufficiently validating their claims? 
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Announcement 

• Project Checkpoint Due on this thursday. 

• I won’t grade them. 

• It is not mandatory.

• You are encouraged to submit to seek my feedback. 

• Available for both research project, literature survey, and 
tool evaluation 


