
EE382V Software Evolution: Spring 2009, Instructor Miryung Kim

Lecture 11
LSdiff evaluation / Focus group study
Mining Software Repositories, Part 1

eRose

EE382V Software Evolution: Spring 2009, Instructor Miryung KimEE382V Software Evolution: Spring 2009, Instructor Miryung Kim

Announcement

• Project Checkpoint Due on this thursday.

• I won’t grade them.

• It is not mandatory.

• You are encouraged to submit to seek my feedback.

• Available for both research project, literature survey, and
tool evaluation

EE382V Software Evolution: Spring 2009, Instructor Miryung Kim

Today’s Agenda

• LSdiff evaluation

• LSdiff focus group study

• Presentation: Tileli (advocate), Gaurav (skeptic)

• eRose

• Quiz

EE382V Software Evolution: Spring 2009, Instructor Miryung Kim

Question: What kinds of rules can LSdiff
find?

Rule Styles
High-level Change

Patterns
Example

past_* => deleted_*
dependency removal, feature

deletion, etc.
past_calls(m, “DB.exec”) ⇒
deleted_calls(m, “DB.exec”)

past_* => added_*
consistent updates to clones,

etc.
past_accesses(“Log.on”, m)⇒
added_calls(m, “Log.trace”)

current_* => added_*
dependency addition, feature

addition, etc.

current_method(m, “getHost”, t)∧
current_subtype(“Svc”, t) ⇒
added_calls(m, “Log.trace”)

deleted_* => added_*
added_* => deleted_*

related code change, API
replacement, etc.

deleted_method(m, “getHost”, t) ⇒
added_inheritedfield(“getHost”,
“Svc”,t)

Horn Clause: A(x) ∧ B(x,y) ∧ C(y) ⇒ D(x,y)

EE382V Software Evolution: Spring 2009, Instructor Miryung Kim

LSdiff Evaluation

• Quantitative Evaluation

• Qualitative Evaluation

• Focus Group Study

• Comparison with diff

• Comparison with check-in comments

• Impact of Input Parameters

EE382V Software Evolution: Spring 2009, Instructor Miryung Kim

LSdiff Evaluation: Research Questions

1. How often do individual changes form systematic change
patterns?

2. How concisely does LSdiff describe structural differences
in comparison to existing differencing approach at the
same abstraction level?

3. How much contextual information does LSdiff find from
unchanged code fragments?

EE382V Software Evolution: Spring 2009, Instructor Miryung Kim

LSdiff Evaluation: Research Questions

1. How often do individual changes form systematic change
patterns? Measure coverage, # of facts in ∆FB matched by
inferred rules

2. How concisely does LSdiff describe structural differences
in comparison to existing differencing approach at the
same abstraction level? Measure conciseness, ∆FB / (#
rules + # facts)

3. How much contextual information does LSdiff find from
unchanged code fragments? Measure the number of facts
mentioned by rules but are not contained in ∆FB

EE382V Software Evolution: Spring 2009, Instructor Miryung Kim

Comparison with ∆ FB

Table 4. Comparison with ∆FB
FBo FBn ∆FB Rule Fact Cvrg. Csc. Ad’l.

10 revision pairs in carol (carol.objectweb.org)
Min 3080 3452 15 1 3 59% 2.3 0.0
Max 10746 10610 1812 36 71 98% 27.5 19.0
Med 9615 9635 97 5 16 87% 5.8 4.0
Avg 8913 8959 426 10 20 85% 9.9 5.5

29 release pairs in dnsjava (www.dnsjava.org)
Min 3109 3159 4 0 2 0% 1.0 0.0
Max 7200 7204 1500 36 201 98% 36.1 91.0
Med 4817 5096 168 3 24 88% 4.8 0.0
Avg 5144 5287 340 8 37 73% 8.4 14.9

10 version pairs in LSdiff
Min 8315 8500 2 0 2 0% 1.0 0.0
Max 9042 9042 396 6 54 97% 28.9 12.0
Med 8732 8756 142 1 11 91% 9.8 0.0
Avg 8712 8783 172 2 17 68% 11.2 2.3

three data sets above
Med 6650 6712 132 2 17 89% 7.3 0.0
Avg 6632 6732 302 7 27 75% 9.3 9.7

(m=3, a=0.75, k=2)

Table 5. Comparison with textual delta
Textual Delta LSD

Files CLOC Hunk % Rule Fact
Version Touched

10 revision pairs in carol (carol.objectweb.org)
Med 11 626 38 7% 5 16
Avg 13 1229 57 8% 10 20

29 release pairs in dnsjava (www.dnsjava.org)
Med 9 354 40 17% 3 23
Avg 20 1159 65 28% 8 34

10 version pairs in LSdiff
Med 6 227 15 6% 1 8
Avg 6 294 19 5% 1 13

three data sets above
Med 9 344 31 8% 2 17
Avg 16 997 54 19% 7 27

(m=3, a=0.75, k=2)

subtype(“Car”, “GM”), and subtype(“Car”, “Kia”).
For this comparison, we selected source projects

carol and dnsjava, and our LSdiff itself as a subject
program because their medium code size (up to 30
KLOC) allowed us to manually analyze changes in
these programs in detail. Carol is a library that
supports different remote method invocation imple-
mentations; we selected 10 revisions with check-in
comments that indicate non-trivial changes. Dnsjava
is an implementation of domain name services in Java;
we selected 30 releases. We also selected our LSdiff’s
first 10 version pairs—revisions that are at least 8 hours
apart.

Table 4 shows the results for the three data sets with
the default parameter settings m=3, a=0.75, k=2. On
average, 75% of facts in ∆FB are covered by inferred
rules; this implies that 75% of structural differences
form higher-level systematic change patterns. Inferring
rules improves the conciseness measure by a factor of
9.3 on average. LSdiff finds an average of 9.7 additional
facts than ∆FB.

Comparison with Textual Deltas and Change
Descriptions. In practice, programmers often
use diff and read programmer-provided descriptions
such as check-in comments or change logs. It is
infeasible to directly compare LSdiff results (LSD)
with diff results (TD) and change descriptions; Diff
computes textual differences while LSdiff computes
only structural differences, and change descriptions are
often missing, hard to trace back to a program, and in
free-form. Thus, our goal is not to directly compare
them but to understand when LSDs complement TDs
and change descriptions. For this investigation, we
built a viewer that visualizes each rule with diff
outputs, similar to what is shown in Figures 1 and 3.

Table 5 shows the median and average size of TDs
and LSDs for the subject programs. CLOC represents
the number of added or deleted lines. Hunk represents
the number of blocks with consecutive line changes,
and % Touched represents the percentage of files that
includes added or deleted text, computed as (# added
files + # deleted files + 2 × # changed files) / (total
files in both versions). The more hunks there are,
generally the harder it is to inspect a TD. Overall, when
an average TD consists of 997 lines scattered across 16
files, LSdiff reports an average of 7 rules and 27 facts.

To give an idea about the quality of inferred LSdiff
rules, we present representative rules along with the
size of TD and check-in comments in Table 6.

The benefits of LSdiff appear to depend heavily on
how systematic the change is. For example, carol 128-
129, “Bug fix, port number trace problem.” consists of
164 changed lines across 10 files. LSdiff finds 1 rule and
4 facts indicating that getPort methods were added to
six different classes and they were invoked from a tracer
module TraceCarol. If a programmer examines the LSD
before reading TD, upon inspecting one corresponding
class, she can probably skip five other classes.

When several different systematic changes are
mixed with many non-systematic changes, LSdiff
rules help programmers quickly understand the
systematic changes and focus on other changes
instead. For instance, programmers can discover that
exception handling mechanism was modified to use
NamingExceptionHelper by skimming 36 rules and 30
facts instead of over 4000 lines of changes.

7 Discussions

Impact of Input Parameters. The input pa-
rameters, m (the minimum number of facts a rule
must match), a (the minimum accuracy), and k (the
maximum number of literals a rule can have in its
antecedent) define which rules should be considered

9

EE382V Software Evolution: Spring 2009, Instructor Miryung Kim

Focus Group Study

• Why would you conduct a focus group study?

• When do you you conduct one?

• What can you learn from a focus group?

EE382V Software Evolution: Spring 2009, Instructor Miryung Kim

Focus Group Study

• Why would you conduct a focus group study?

• to explore how customers will respond to a new idea

• testing new concepts, products, and messages

• What can you learn from a focus group?

• exploratory qualitative research: “thermometer” that allows you
to test the “temperature” of consumers’ reactions to your
research topics

• no statistical sampling of the target population

• less formal than a survey

• in-depth understanding of the target’s perspectives or opinions

EE382V Software Evolution: Spring 2009, Instructor Miryung Kim

When to Use and When to Avoid

• When the concept or idea you wish to evaluate is new and when the best
evaluation comes from letting the target customer view the concept directly.

• e.g. new advertising campaign

• When not to do this

• testing consumer reactions when there was no budget to accommodate
changes

• when you ask “how many...?” and “how much...?” questions or need
graphs, tables, etc.

• testing personally sensitive issues: medical conditions, politics, sex, etc.

EE382V Software Evolution: Spring 2009, Instructor Miryung Kim

How to conduct a focus group study

• research objectives

• recruiting profile

• screener questionnaire

• invitation to participate & co-op fee

• discussion guide

• moderator

• audio or video taping

• transcript ==> quotes

Focus Group Study

• Screener questionnaire

• Participants: five professional software engineers

• industry experience ranging from 6 to over 30 years

• use diff and diff-based version control system daily

• review code changes daily except one who did weekly

• One hour structured discussion

• I worked as a moderator. We also had a note-taker
transcribe the discussion. Discussion was audio-taped
and transcribed.

http://www.cs.washington.edu/homes/miryung/LSDiff/carol429-430.htm

Focus Group Hands-On Trial

Overview

http://www.cs.washington.edu/homes/miryung/LSDiff/carol429-430.htm

Focus Group Hands-On Trial

Show related changes

“You can’t infer the intent of a programmer,
but this is pretty close.”

“This ‘except’ thing is great!”

Focus-Group Participants’
Comments

*

“This is cool. I’d use it if we had one.”

“This is a definitely winner tool.”

“This looks great for big architectural changes, but I
wonder what it would give you if you had lots of random

changes.”

“This will look for relationships that do not exist.”

Focus-Group Participants’
Comments

*

“This wouldn’t be used if you were just working with one
file.”

Recap

• Many differencing techniques individually compare
code elements at particular granularities using
similarity measures.

• Hard to comprehend as a long list of matches

• Difficult to identify exceptions that violate
systematic patterns

• LSdiff uses rule-based change representations to
explicitly capture systematic changes and
automatically infers these rules.

Presentation on eRose

• Tileli

• Guarav

eROSE
Related Changes

(ICSE 2004, TSE 2005)

Tom Zimmermann • Saarland University
Peter Weißgerber • University of Trier

Stephan Diehl • University of Trier
 Andreas Zeller • Saarland University

Developers who changed this function
also changed...

eROSE: Guiding Developers

Purchase
History

Customers who
bought this item also

bought...

Version
Archive

Developers who
changed this function

also changed...

eROSE suggests further locations.

eROSE prevents incomplete changes.

Processing CVS data

1. Comparing files
2. Building transactions

A()

C()

E()

D()

B()

A()

B()

E()

F()

D()

Comparing Files

Building Transactions

CVS

150,000

createGeneralPage()
createTextComparePage()
fKeys[]
initDefaults()
buildnotes_compare.html
PatchMessages.properties
plugin.properties

2003-02-19 (aweinand): fixed #13332

same author + message + time

Mining Associations

User changes fKeys[] and initDefaults()

Mining Associations

fKeys[]
initDefaults()
...
plugin.properties

#104223

fKeys[]
initDefaults()
...
plugin.properties

#756
fKeys[]
initDefaults()
...
plugin.properties

#6721
fKeys[]
initDefaults()
...
plugin.properties

#21078

fKeys[]
initDefaults()
...
plugin.properties

#42432
fKeys[]
initDefaults()
...
plugin.properties

#51345
fKeys[]
initDefaults()
...
plugin.properties

#59998
fKeys[]
initDefaults()
...
plugin.properties

#71003

fKeys[]
initDefaults()
...

#87264
fKeys[]
initDefaults()
...
plugin.properties

#91220
fKeys[]
initDefaults()
...
plugin.properties

#101823

EROSE
finds past
transactions

EROSE
finds past
transactions

fKeys[]
initDefaults()
...
plugin.properties

#104223

Mining Associations

fKeys[]
initDefaults()
...
plugin.properties

#756
fKeys[]
initDefaults()
...
plugin.properties

#6721
fKeys[]
initDefaults()
...
plugin.properties

#21078

fKeys[]
initDefaults()
...
plugin.properties

#42432
fKeys[]
initDefaults()
...
plugin.properties

#51345
fKeys[]
initDefaults()
...
plugin.properties

#59998
fKeys[]
initDefaults()
...
plugin.properties

#71003

fKeys[]
initDefaults()
...

#87264
fKeys[]
initDefaults()
...
plugin.properties

#91220
fKeys[]
initDefaults()
...
plugin.properties

#101823

{fKeys[], initDefaults()} ⇒ {plugin.properties}
Support 10, Confidence 10/11 = 0.909

Evaluation: Research
Questions

• Given a single change, can ROSE point
programmers to entities that should
typically be changed, too?

• Does ROSE find the missing change?

• Suppose a transaction is finished, how often
does ROSE erroneously suggest that a
change is missing?

Evaluation Questions:

• What are differences between course-grained vs. fine-grained
suggestions?

• How well does ROSE perform if it is applied to changes
without add and delete?

• What are the actual benefit of “add_to” and “del_from”
items?

• How much of the version history does ROSE need?

• Would focusing on recent changes improve the quality of
recommendations?

PostgreSQL

Evaluation

jEdit KOffice

GIMPRecall: EROSE predicts 33% of all changed
entities.

Likelyhood: In 70% of all transactions,
EROSE’s topmost three suggestions contain
a changed entity.

EROSE learns quickly (within 30 days).

Evaluation Measure
consist of the transaction with one removed
item e—that is, T ! feg.

. In the “closure” scenario, there is one query per
transaction, whose situation each consist of the
full transaction T .

2. For each query q ¼ ðQ;EÞ, we take all transactions Ti

that have been completed before timeðT Þ as a training
set and mine a set of rules R from these transactions
with respect to Q. This means R contains only
constrained rules Q) fxg (see Section 5.3).

3. We assume that the user does not work through
endless lists of suggestions. Thus, we consider only
the top 10 single-consequent rules R10 % R ranked by
confidence. In our evaluation, we apply R10 to get
the result of the query Aq ¼ applyR10

ðQÞ. So, the size
of Aq is always less or equal than 10.

4. The result Aq of a query q ¼ ðQ;EÞ consists of two
parts:

. Aq \ E are the items that matched the expected
outcome and, therefore, are considered correct.

. Aq ! E are unexpected recommendations which
are wrong.

7.2 Precision, Recall, Likelihood, and Feedback

For the assessment of a result Aq for a query q ¼ ðQ;EÞ, we
use two measures from information retrieval [25]: The
precision Pq describes which fraction of the returned items

was actually expected. The recall Rq indicates the percentage
of expected items that were returned.

Pq ¼
jAq \Ej
jAqj

; Rq ¼
jAq \ Ej

jEj
: ð6Þ

In case no items are returned (Aq is empty), we define the
precision as Pq ¼ 1 and, in case no items are expected, we
define the recall as Rq ¼ 1.

Our goal is to achieve high precision and high recall values
(near 1)—that is, to recommend all (recall of 1) and only
expected items (precision of 1). Keep in mind that, if the
expected outcome has more than 10 items, the recall can
never be 1 because even though all answers may be correct,
we only consider the top 10 results.

For each query q, we get a precision-recall pair ðPq;RqÞ.
To get an overall measure for all evaluated queries Z which
are generated from all the transactions in the evaluation
period, we summarize these pairs into a single pair using
the macroevaluation averaging technique from information
retrieval. Macroevaluation simply takes the mean value of
the precision-recall pairs for the queries Z:

Pall
M ¼ 1

Zj j
X

q2Z
Pq ; Rall

M ¼ 1

Zj j
X

q2Z
Rq : ð7Þ

This approach uses the precision and recall which have
been computed for each query. As macroevaluation
determines the predictive strength for queries, it is some-
times referred to as a user-oriented approach.

If ROSE does not return any recommendations for a
query q (that is, Aq ¼ ;), the precision is 1. Taking such
queries into account distorts the average precision. Thus,
unless otherwise noted, we consider only the queries Z&

where Aq is not empty:6

Z& ¼ fq j q ¼ ðQ;EÞ 2 Z; applyR1
ðQÞ 6¼ ;g; ð8Þ

PM ¼ 1

Z&j j
X

q2Z&

Pq ; RM ¼ 1

Z&j j
X

q2Z&

Rq : ð9Þ

436 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 31, NO. 6, JUNE 2005

TABLE 1
History of Analyzed Projects (Txn = Coarse-Grained Transaction, “'” = Standard Deviation)

TABLE 2
Evaluation Periods (Txn = Coarse-Grained Transaction)

6. Z& is independent from k because applyRk
ðQÞ is nonempty if and only

if applyR1
ðQÞ is nonempty (as applyR1

ðQÞ (applyR2
ðQÞ (. . . holds).

Precision:
a fraction of the returned items that were

expected

Recall:
a fraction of expected items that were

returned

Where Aq is a set of items recommended by querying with q.
E is a set of items in the evaluation data (ground truth)

Precision vs. Recall

. a fragment in fs contains nonstructural information
about fr.

A recommendation is neutral when

. a method in fs, other than the one that was changed in
fs, has a direct fine-grained reference to a method,
field, or class in fr, or

. a class that was changed in fs has a weak coarse-
grained relationship—it indirectly inherits from, or
is in the same package or directory that has more
than 20 files—with a class that was changed in fr.

If fs and fr have more than one relationship, the
interestingness value of the recommendation is deter-
mined by the interestingness value of the most obvious
relationship.

4.2 Validation Settings

Fig. 1 presents some metrics about the Eclipse and Mozilla
developments and outlines the portions of the development
history we considered in our analysis. In both systems, the
training data comprised changes to over 20,000 files and
over 100,000 versions to those source files.

Table 2 shows the number of transactions involving
different cardinalities of files as well as the total number of
transactions. For the period of time that corresponds to the
training data, both Eclipse and Mozilla have a similar
number of transactions. In both systems, transactions of two
items have the highest counts and the number of transac-
tions decreases as the cardinality of the transaction
increases.

Table 3 describes the parameters we used in the data
mining algorithm. The first column lists the support
threshold. The second column indicates whether the data
mining algorithm was applied to Eclipse and Mozilla. The

third column presents the number of files that were

generated from the patterns extracted using the algorithm

with the specified parameter applied to either Eclipse or

Mozilla.
For the frequent pattern algorithm, the value of the

support threshold min_support was varied so that a reason-

ably large number of files (over 200) were involved in

patterns and the support was not too low (not below 5).

Comparing the patterns generated for Eclipse and Mozilla

using the frequent pattern algorithm with the same

parameter setting (min_support equals 20 and 15), Mozilla

has more than five times more files involved in the change

patterns than Eclipse. We were careful to choose thresholds

that were neither too restrictive nor too relaxed. An overly

restrictive threshold results in too few patterns. This

situation affects the recall value as the recommendations

do not cover the changes needed for a modification task. An

overly relaxed threshold affects the precision since too

many patterns result in a number of recommendations, only

a few of which are correct.

YING ET AL.: PREDICTING SOURCE CODE CHANGES BY MINING CHANGE HISTORY 579

Fig. 1. Statistics on the Eclipse and Mozilla CVS repositories.

TABLE 2
Transaction Statistics of Eclipse and Mozilla

TABLE 3
Statistics from Patterns Formed in the
Training Data of Eclipse and Mozilla

Fig. 2. Recall versus precision plot showing the frequent pattern

algorithm applied to the two target systems, Eclipse and Mozilla.

Evaluation Measure

Feedback: |Z*|/|Z|
the percentage of queries where eRose makes at least one

recommendation

Likelihood:
a probability that at least one of the top k
recommendations for a query is correct

Where Aq is a set of items recommended by querying with q.
E is a set of items in the evaluation data (ground truth)

consist of the transaction with one removed
item e—that is, T ! feg.

. In the “closure” scenario, there is one query per
transaction, whose situation each consist of the
full transaction T .

2. For each query q ¼ ðQ;EÞ, we take all transactions Ti

that have been completed before timeðT Þ as a training
set and mine a set of rules R from these transactions
with respect to Q. This means R contains only
constrained rules Q) fxg (see Section 5.3).

3. We assume that the user does not work through
endless lists of suggestions. Thus, we consider only
the top 10 single-consequent rules R10 % R ranked by
confidence. In our evaluation, we apply R10 to get
the result of the query Aq ¼ applyR10

ðQÞ. So, the size
of Aq is always less or equal than 10.

4. The result Aq of a query q ¼ ðQ;EÞ consists of two
parts:

. Aq \ E are the items that matched the expected
outcome and, therefore, are considered correct.

. Aq ! E are unexpected recommendations which
are wrong.

7.2 Precision, Recall, Likelihood, and Feedback

For the assessment of a result Aq for a query q ¼ ðQ;EÞ, we
use two measures from information retrieval [25]: The
precision Pq describes which fraction of the returned items

was actually expected. The recall Rq indicates the percentage
of expected items that were returned.

Pq ¼
jAq \Ej
jAqj

; Rq ¼
jAq \ Ej

jEj
: ð6Þ

In case no items are returned (Aq is empty), we define the
precision as Pq ¼ 1 and, in case no items are expected, we
define the recall as Rq ¼ 1.

Our goal is to achieve high precision and high recall values
(near 1)—that is, to recommend all (recall of 1) and only
expected items (precision of 1). Keep in mind that, if the
expected outcome has more than 10 items, the recall can
never be 1 because even though all answers may be correct,
we only consider the top 10 results.

For each query q, we get a precision-recall pair ðPq;RqÞ.
To get an overall measure for all evaluated queries Z which
are generated from all the transactions in the evaluation
period, we summarize these pairs into a single pair using
the macroevaluation averaging technique from information
retrieval. Macroevaluation simply takes the mean value of
the precision-recall pairs for the queries Z:

Pall
M ¼ 1

Zj j
X

q2Z
Pq ; Rall

M ¼ 1

Zj j
X

q2Z
Rq : ð7Þ

This approach uses the precision and recall which have
been computed for each query. As macroevaluation
determines the predictive strength for queries, it is some-
times referred to as a user-oriented approach.

If ROSE does not return any recommendations for a
query q (that is, Aq ¼ ;), the precision is 1. Taking such
queries into account distorts the average precision. Thus,
unless otherwise noted, we consider only the queries Z&

where Aq is not empty:6

Z& ¼ fq j q ¼ ðQ;EÞ 2 Z; applyR1
ðQÞ 6¼ ;g; ð8Þ

PM ¼ 1

Z&j j
X

q2Z&

Pq ; RM ¼ 1

Z&j j
X

q2Z&

Rq : ð9Þ

436 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 31, NO. 6, JUNE 2005

TABLE 1
History of Analyzed Projects (Txn = Coarse-Grained Transaction, “'” = Standard Deviation)

TABLE 2
Evaluation Periods (Txn = Coarse-Grained Transaction)

6. Z& is independent from k because applyRk
ðQÞ is nonempty if and only

if applyR1
ðQÞ is nonempty (as applyR1

ðQÞ (applyR2
ðQÞ (. . . holds).

Additionally, we measure the percentage of queries
where ROSE makes at least one recommendation. We refer
to this percentage as the feedback Fb ¼ Z"j j= Zj j.

To assess the actual usefulness for the programmer, we
also check the likelihoodwhether an expected location would
be included in ROSE’s top three navigation suggestions
(assuming that a programmer won’t have too much trouble
judging the first three suggestions). Formally, Lk is the
likelihood that at least one of the top k recommendations
made by ROSE for a query q ¼ ðQ;EÞ is correct:

Lk ¼
fq j q ¼ ðQ;EÞ 2 Z; applyRk

ðQÞ \ E 6¼ ;g
!! !!

fq j q ¼ ðQ;EÞ 2 Z; applyRk
ðQÞ 6¼ ;g

!! !! : ð10Þ

If some change in A results in either B1, B2, or B3 being
changed, ROSE always suggests B1, B2, and B3, the
precision is only 33 percent. Still, the recommendations
are useful for the programmer, thus, L3 ¼ 100 percent
would hold.

7.3 Precision versus Feedback

A major application for ROSE is the “navigation” scenario:
The user changes some entity and ROSE automatically
recommends possible future changes in a view (Fig. 3). We
evaluated the predictive power of ROSE in this situation.

For each transaction T with Tj j % 2 and each item e 2 T , we
considered the situation Q ¼ feg and checked whether
ROSE would predict E ¼ T & feg. For each transaction, we
thus tested Tj j situations, each with one element. Table 3
(column Navigation) breaks down the evaluated transac-
tions and queries.

Fig. 6 plots the precision against the feedback with the
results for the ECLIPSE project. For each combination of
minimum support count and minimum confidence, the
resulting precision-feedback pair ðPM; FbÞ is plotted. For
the plot, we prefer the feedback Fb over the recall RM

(which would consider only the set of queries Z" for which
ROSE made suggestions) to take into account that ROSE
gets more cautious for higher thresholds. Additionally,
values for subsequent confidence thresholds having the
same support count are connected with lines. As a result,
we get three precision-feedback curves, one for each investi-
gated support count. The connecting lines between mea-
sured values are for the sake of clarity and not for
interpolation.

In Fig. 6, ROSE achieves for a support count of 1 and a
confidence of 0.1 a feedback of 0.64 and a precision of 0.30:

. The feedback Fb of 0.64 means that, on average, ROSE
made, in two out of three queries, at least one
suggestion.

. The recall RM of 0.34 (see Table 4, column Navigation)
states that ROSE’s suggestions on average included
34 percent of all changes that were actually carried
out in the given transaction.

. The precision PM of 0.30 means that if ROSE made
recommendations, on average, 30 percent of them
were correct—almost every third suggested change
was actually carried out (and, thus, predicted
correctly by ROSE). The programmer has to check
about three suggestions in order to find a correct
one.

Fig. 6 also shows that increasing the support count
threshold also increases the precision, but decreases the
feedback as ROSE gets more cautious. However, using
the highest possible thresholds does not always yield the
best precision and feedback values: If we increase for a

ZIMMERMANN ET AL.: MINING VERSION HISTORIES TO GUIDE SOFTWARE CHANGES 437

Fig. 6. Varying support count and confidence.

TABLE 3
Evaluation for Fine Granularity (Txn = Transaction, “'” = Standard Deviation)

7. We could not use all transactions from Table 2 for fine granularity because some transactions have been empty. For instance, a line that is
inserted between two functions is a coarse-grained change for the surrounding file, but not a fine-grained change for the functions.

Quiz

• You cannot discuss your solution with your
classmates

• It will be graded (scale of 0-3)

EE382V Software Evolution: Spring 2009, Instructor Miryung KimEE382V Software Evolution: Spring 2009, Instructor Miryung Kim

My general thoughts on eRose & Recap

• eRose uses association rule mining to identify
related code elements from a version history data.

• The approach & idea is very novel, though the
results are not very impressive.

• One of the first practical system that recovers
institutional knowledge from history data

• Trade offs between precision vs. recall is thoroughly
investigated.

EE382V Software Evolution: Spring 2009, Instructor Miryung KimEE382V Software Evolution: Spring 2009, Instructor Miryung Kim

Announcement

• Project Checkpoint Due on this thursday.

• I won’t grade them.

• It is not mandatory.

• You are encouraged to submit to seek my feedback.

• Available for both research project, literature survey, and
tool evaluation

EE382V Software Evolution: Spring 2009, Instructor Miryung KimEE382V Software Evolution: Spring 2009, Instructor Miryung Kim

Preview for Next Monday

• Davor Cubranic and Gail C. Murphy. "Hipikat: recommending pertinent
software development artifacts". In ICSE ’03: Proceedings of the 25th
International Conference on Software Engineering, pages 408–418,
Washington, DC, USA, 2003. IEEE Computer Society.

• Focus on how they integrated heterogeneous software artifact
repositories

• Look at their user study design: what else would you have done to
evaluate this system?

• If time permits, briefly go over BugCache (S.Kim et al. ICSE 2007) &
Social Structure Mining (C. Bird et al. FSE 2008) papers.

