
EE382V Spring 2009, Software Evolution, Instructor Miryung Kim

Lecture 12
Mining Software Repositories, Part 2

Hipikat, Bugcache, Mining Social Network

EE382V Spring 2009, Software Evolution, Instructor Miryung Kim

Announcement

• Project Midpoint Review is coming up in two weeks.

• You must have preliminary results. (That means you
probably need to have a working prototype.)

• This will count toward your final grade.

• Tool evaluation is due in two weeks.

EE382V Spring 2009, Software Evolution, Instructor Miryung Kim

Today’s Agenda

• Quiz

• Presentation: Amal Banerjee

• Hipikat

• Focusing on its evaluation

• FixCache

• Social Network Mining

EE382V Spring 2009, Software Evolution, Instructor Miryung Kim

Quiz on eRose

• 7-10 minutes

• It will be graded 0-3 point scale.

EE382V Spring 2009, Software Evolution, Instructor Miryung Kim

What kinds of information is available in
open source software repositories?

EE382V Spring 2009, Software Evolution, Instructor Miryung Kim

Information in Software Repositories

• Version Control Systems

• CVS, Clearcase, Subversion, etc

• Code, file, version number, delta, author, time stamp,
change log (commit msg), branch, etc

• Problem Report Databases

• Bugzilla, GNATS, JIRA, etc.

• Id, reporter, creation data, phase, component, OS, version,
priority, severity, bug assignee, bug description, when
fixed, etc.

EE382V Spring 2009, Software Evolution, Instructor Miryung Kim

Information in Software Repositories

• Regression Test

• Time stamp, # success, # failure

• Build log

• Mailing list

• Newsgroup

• Code inspection or design meeting note, etc.

EE382V Spring 2009, Software Evolution, Instructor Miryung Kim

What’s NOT in software repositories?

EE382V Spring 2009, Software Evolution, Instructor Miryung Kim

What’s NOT in software repositories?

• Refactoring information

• Semantics of software changes

• Organizational structure

• Design decisions

• Code navigation history

• Workspace setting

• Editing history/ Transformation history, etc.

EE382V Spring 2009, Software Evolution, Instructor Miryung Kim

What Can We Do with Software
Repository Data?

• Identify related changes [Zimmermann et al. 04] [Ying et al.
04]

• Find how to carry out similar tasks or figure out a starting
point [Cubranic and Murphy 04]

• Find code examples [Homes and Murphy 05]

• Infer task structure [Kersten and Murphy 05] [DeLine et al.
05]

• Find who should fix this bug [Anvik et al. 05]

• Prove or disprove conventional wisdom about development

EE382V Spring 2009, Software Evolution, Instructor Miryung Kim

Hipikat

• Motivation: Newcomers to open source projects often rely
on heterogeneous software artifact archives to gain implicit
group memory (knowledge) about software.

• Hipikat is a recommender system that suggests relevant
existing artifacts.

EE382V Spring 2009, Software Evolution, Instructor Miryung Kim

Hipikat Approach

1. Hipikat infers links between the artifacts that may have been
apparent at one time to members of the development team
but that were not recorded

2. It suggests relevant artifacts.

EE382V Spring 2009, Software Evolution, Instructor Miryung Kim

Associating Artifacts

File
revision

Change/
Bug

*

*

*

*

Person

Message

Document

1

* 1

* *

* *

*

*

posts

about

writes

works on

1

implements

documents
*

similar to*

1

writes

similar to

reply to

*

*

*

Figure 1. Artifact linkages schema

design documentation might be regenerated from source.
Missing links are easier to infer as information contained
within the project artifacts, and meta-information available
about those artifacts, can be exploited. For instance, some
links between feature requests and file revisions might be
inferred if there is a project convention to include in a
check-in comment associated with the revision a reference
to the issue-tracking system entry that describes the feature
request. Other links between entries in the issue-tracking
system and file revisions might might be inferred based on
meta-information, such as when particular project artifact’s
were created or touched; for example, it is likely that the au-
thor of a bug fix checked in source revision(s) close to the
time that the bug was closed in the issue-tracking system.

The schema is also used to direct the selection of rel-
evant artifacts in response to a query. For example, once a
developer has started working on a task, such as a request to
make a particular change to the system, the developer may
be interested in other tasks that have been completed within
the same subsystem, or with a similar description. Follow-
ing the similar to links may lead to tasks that are help-
ful. Once a similar task has been identified, following the
implements links will lead to source revisions that im-
plemented the task of interest. These revisions may help a
developer identify code that may have to be modified or un-
derstood for the task at hand. The completed similar tasks
may also have related discussions about which design op-
tions were examined, and which decisions were made that
may impact the task at hand.

Abstractly, a tool implementing our approach has to im-
plement three distinct functions.

1. Identification As artifacts are added to a project’s his-
tory, the implicit group memory must be formed, in-

cluding inference of missing links and artifacts.

2. Selection In response to queries, relevant artifacts
must be identified and returned.

3. Update The project’s archives must be monitored for
additions and changes that result from the develop-
ment and evolution of the system. The implicit group
memory must be updated to reflect the additions and
changes.

4. Hipikat Prototype

The Hipikat prototype is a client-server system. Hipikat
is instantiated currently for the Eclipse project, but has been
designed to be adapted easily to other open-source projects
that follow the general model described in Section 2.

The client, when commanded by the user, issues a re-
quest for suggestions to the server, and displays returned
results to the user. There are three parameters in any request
from the client for suggestions. Two of the arguments are
required: the first identifies anonymously the user,5 and the
second identifies artifact for which related items are sought.
An optional third argument is intended to further describe
the context of the query for additional tailoring of recom-
mendations, although it is not used at this time. The server
replies with a list of matches that the client then formats and
presents in human-readable format.

4.1. Hipikat Client

Since Eclipse is self-hosted, we wrote the client as a
plug-in that works within the IDE. This approach permits
the Hipikat client to integrate seamlessly into a full-featured
work environment, and to thus be used in combination with
other software engineering tools plugged into Eclipse. For
example, an Eclipse developer can use both Hipikat and
the Java search feature that comes bundled with the default
Eclipse distribution.

A developer who wants to make a query to Hipikat se-
lects an artifact in their Eclipse project workspace, such
as a class in a Java package browser, and chooses “Query
Hipikat” from a pop-up context menu. (See Figure 2 for
a full list of places in the IDE where such queries can be
made.) Identifier of the selected artifact is passed as the sec-
ond argument in the request to the Hipikat server, described
in Section 4.2.

Additionally, the Hipikat artifact database can be
searched based on search terms specified by the developer.
This functionality is accessed through a pane in the regular

5Users are represented in the query to facilitate future extensions to se-
lection mechanisms such as user-modelling and collaborative filtering. In
the interests of privacy, user ids used in queries do not personally identify
the user.

3

!"#$%%&'()*+#,+-.%+/0-.+1(-%"(2-'#(23+4#(,%"%($%+#(+5#,-62"%+7()'(%%"'()+814579:;<+
:/=:>0/0=?:;+@A=B::+C+/::;+1777+

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 25, 2009 at 14:46 from IEEE Xplore. Restrictions apply.

time proximity (6 hours)
Scanning for bug-id

??

??

??

??

cosine vector
similarity

EE382V Spring 2009, Software Evolution, Instructor Miryung Kim

Evaluation

1. Initial Qualitative Study

2. Case Study

EE382V Spring 2009, Software Evolution, Instructor Miryung Kim

Initial Qualitative Study

• What type of a user study is this?

• What is the purpose of this study?

• Participants:

• Why did they group subjects into pairs?

EE382V Spring 2009, Software Evolution, Instructor Miryung Kim

Initial Qualitative Study

• Task Design:

• Which tasks were chosen and why?

• Why did they randomize the assignment of tools to the
changes?

• Why did they randomize the order in which they asked
the pairs to make the change?

EE382V Spring 2009, Software Evolution, Instructor Miryung Kim

Initial Qualitative Study

• Analysis of the comments in the reports + Interview six
subjects

• What did they learn from this study?

• Programmers would like to understand rationale of the
tool’s suggestions.

• Automatic suggestion => query-based interface

EE382V Spring 2009, Software Evolution, Instructor Miryung Kim

Case Study

• Participant?

• Which task was chosen and why?

• They chose a completed enhancement to compare their
solution with the solution by the Eclipse team.

• It is somewhat surprising to me that there was a very
similar change to this task in Eclipse history.

EE382V Spring 2009, Software Evolution, Instructor Miryung Kim

My general thoughts on Hipikat

• Pro: Hipikat addresses a very important, practical problem
using a straightforward approach.

• Con: Hipikat needs to be instantiated for each system

• A clever evaluation: initial assessment => in-depth case study

• An integration & infrastructure implementation focused
research

