
EE 382V Software Evolution Spring 2009, Instructor: Miryung Kim

Lecture 15
Refactoring Reconstruction

EE 382V Software Evolution Spring 2009, Instructor: Miryung Kim

Today’s Agenda

• Motivation for Refactoring Reconstruction

• Refactoring Reconstruction

• UMLDiff: some slides borrowed from Zhenchang Xing
(U. Alberta)

EE 382V Software Evolution Spring 2009, Instructor: Miryung Kim

Today’s Agenda

• Synthesis of Refactoring Reconstruction Techniques

• API Evolution Support

• Bug Cache (MSR Part II)

EE 382V Software Evolution Spring 2009, Instructor: Miryung Kim

Motivation for Reconstructing
Refactorings from Two Versions

EE 382V Software Evolution Spring 2009, Instructor: Miryung Kim

Motivation for Reconstructing
Refactorings from Two Versions

EE 382V Software Evolution Spring 2009, Instructor: Miryung Kim

Motivation for Reconstructing
Refactorings from Two Versions

1. Detecting Possible Sources of Errors

• Incomplete refactorings can be sources of errors

• e.g. BarChart.draw() and PieChart.draw() override
Chart.draw()

• e.g. Chart.draw() and PieChart.draw() were renamed
to Chart.paint() and PieChart.paint() but not
BarChart.draw().

EE 382V Software Evolution Spring 2009, Instructor: Miryung Kim

Motivation for Reconstructing
Refactorings from Two Versions

2. Capturing Intent of Changes

• Better empirical studies of code changes

• Reduce # of conflicts in version merging

EE 382V Software Evolution Spring 2009, Instructor: Miryung Kim

Motivation for Reconstructing
Refactorings from Two Versions

3. Capturing and Replaying Changes

• Automated update of client code: e.g. if a parameter
was added ton an API, then method invocations in
program code using the API is automatically adapted.

4. Longer, continuous evolution history

• eRose system: when identifying related changes,
inferred renamings can be used to combine rules of
the previous instance and rules of the new instance

EE 382V Software Evolution Spring 2009, Instructor: Miryung Kim

Motivation for Reconstructing
Refactorings from Two Versions

5. Relation to Software Metrics

• Assess what kinds of refactorings increase what kinds
of quality metrics

[Source: Identifying Refactorings from Source-Code Changes, Peter Weissgerber and Stephan Diehl ASE 2006]

EE 382V Software Evolution Spring 2009, Instructor: Miryung Kim

Design Evolution Analysis !

in support of !

Evolutionary Software Development!

Zhenchang Xing

University of Alberta

Supported by

EE 382V Software Evolution Spring 2009, Instructor: Miryung Kim

3

Why is He Unhappy?!

EE 382V Software Evolution Spring 2009, Instructor: Miryung Kim

7

?

What I Will Tell Him!

?

Queue is a List

MonitorableQueue is a Queue

SimpleQueue contains a List

MonitorableQueue contains a Queue

EE 382V Software Evolution Spring 2009, Instructor: Miryung Kim

8

The Research Questions!

•!What exactly has been changed in the

design context and how?

•!Why has it been changed in the way it has?

•!How can this information be used to

support developers and in what tasks?

EE 382V Software Evolution Spring 2009, Instructor: Miryung Kim

9

The World!

History Differencing

Analyzing History Visualization Refactoring

Detection

EE 382V Software Evolution Spring 2009, Instructor: Miryung Kim

10

The Methodology !

Extract Model

Differencing

UMLDiff

Mining

Change

Pattern
Detection

Sequential

Pattern
Analysis

Co-evolution

Pattern
Mining

Supporting

Diff-CatchUp

Design

Mentor

OO

UMLDiff

Change

Pattern
Detection

Diff-CatchUp

EE 382V Software Evolution Spring 2009, Instructor: Miryung Kim

11

Model differencing with UMLDiff!

What exactly has been changed and How?

Journal of Automated Software Engineering, 2007

The 20th ACM/IEEE International Conference on Automated Software Engineering, 2005

EE 382V Software Evolution Spring 2009, Instructor: Miryung Kim

12

Heuristics in UMLDiff!

•! Additions and removals are easy

•! Renamings are difficult

–!Lexical similarity of names and comments:

!!LCS, Adjacent pair

–!Structural similarity of relations

•! Moves are even harder

–!The context from and to which elements are moved

!!Relationships: inheritance, containment, usage

!!Lexical and structural similarity of source and target contexts

–!The number of potential moves

•! What if a set of elements are all renamed and/or
moved?

–!Multiple rounds of renaming/move recognition

EE 382V Software Evolution Spring 2009, Instructor: Miryung Kim

13

UMLDiff Process!

•! Input: Modelbefore and Modelafter

•! UMLDiff is a heuristic differencing algorithm
1.! Mapping model elements

!! Lexical and structural similarity

2.! Mapping relationships
!! The same relation type and the model elements they relate are

mapped

3.! Recognizing extract/inline operations (not limited to class
internals)
!! Usage dependency changes

4.! Compare attributes of mapped model elements

•! Output: A set of elementary design change facts
–! Additions, removals, matches, renamings, moves of model

elements

–! Extract and inline operations

–! Changes to relationships (inheritance, association, usage)

–! Changes to attributes (visibility, deprecation-status, …)

EE 382V Software Evolution Spring 2009, Instructor: Miryung Kim

Evaluation

• How did they create the ground truth?

• Use a very low threshold 1% and manually inspect all
of them

• Changes identified by UMLDiff and the ones UMLDiff
missed, which were manually added through their
manual inspection using JDEvAn tool

• Precision

• Recall

EE 382V Software Evolution Spring 2009, Instructor: Miryung Kim

Precision vs. Recall
What a tool finds What it should find

False negativesFalse positives
Correct predictions

precision = % of returned entities are relevant
recall = what % of relevant entities are

returned

EE 382V Software Evolution Spring 2009, Instructor: Miryung Kim

16

How good is UMLDiff ?!

Evaluation

HtmlUnit JFreeChart Eclipse JDT

Type Unit testing

framework for
web apps

Java library for

drawing charts

IDE and

Plugin-based

framework

Major releases 11 (~4 years) 31 (~5 years) 6 (~3 years)

Average #Class ~200 ~450 ~4000

Renamings* (Precision)

[Threshold 0.3] (Recall)

97.2%

98.5%

95.2%

96.4%

93.8%

96.6%

Moves* (Precision)

[Threshold 0.4] (Recall)

99.5%

99.9%

91.1%

97.1%

84.8%

90.3%

*Results with heuristics: Name, Comment, Structure, Src/

TrgContext, #PotentialMoves, TransitiveUsage, Round=3

EE 382V Software Evolution Spring 2009, Instructor: Miryung Kim

34

JDEvAn in Eclipse!

EE 382V Software Evolution Spring 2009, Instructor: Miryung Kim

36

JDEvAn Viewer in Eclipse!

EE 382V Software Evolution Spring 2009, Instructor: Miryung Kim

Synthesis of Refactoring Reconstruction
Techniques

Method Program Element
Characteristics

Versions

Origin Analysis 2005 name similarity, code
metrics, calls

two complete versions
selected manually

UMLDiff 2005 name similarity, code
relationships

two complete versions
selected manually

M. Kim et al. 2007 name similarity two complete versions
selected manually

S. Kim et al. 2005 name similarity, code metrics, calls,
textual similarity

two complete versions
selected manually

Dig et al. 2006 syntactical similarity, code
relationships

two complete versions
selected manually

Weissgerber et al. 2006 structural and code
clone differences

all change sets between
two versions

SemDiff 2008 structural and outgoing
call differences

all change sets between
any versions

[Source: Recommending Adaptive Changes from Framework Evolution, Barthelemy Dagenais and Martin Robillard, ICSE 2008]

EE 382V Software Evolution Spring 2009, Instructor: Miryung Kim

24

API-Evolution Support with !

Diff-CatchUp"

How can this information be used to support
developers and in what tasks?

IEEE Transactions on Software Engineering, 2007

EE 382V Software Evolution Spring 2009, Instructor: Miryung Kim

25

Diff-CatchUp Approach!

•! Automatically recover the evolution of
framework APIs
–!UMLDiff and change-pattern queries

•! Suggest ways to migrate client applications

–!Refactored API

!!Present the refactorings that the API is involved in
and its renaming/move counterparts in new version
if any

–!Removed (deprecated, visibility-restricted, no-
longer-inherited, and class-made-abstract) API
!!Locate “voluntary” migration examples

!!Recommend replacing APIs

EE 382V Software Evolution Spring 2009, Instructor: Miryung Kim

26

•! RenameMethod(maxSize(), highWaterMark())

•! ChangeParamType(offerMany(…), Collection,

Object[])

Migrate to Refactored API!

Prob #1: The method maxSize() is undefined for the type

 MonitorableQueue
Reason: The method name changed

Solution: Update the method call with new name

Prob #2: The method offerMany(Object[]) in the type

 MonitorableQueue is not applicable for the
 argument (Collection)

Reason: Parameter type changed
Solution: Obtain Object[] from Collection

 (e.g. Collection.toArray())

EE 382V Software Evolution Spring 2009, Instructor: Miryung Kim

27

•! RenameClass(Queue, SimpleQueue)

•! ExtractInterface(SimpleQueue, Queue)

•! AddAbstraction(FastQueue, Queue)

•! AddAbstraction(MonitorableQueue, Queue)

Migrate to Refactored API!

Prob #3: Cannot instantiate the type Queue
Reason: The Queue represents a newly introduced interface in
 the new version.

 The original class Queue is renamed as SimpleQueue.
Solution: Create SimpleQueue object, or

 See if the interface Queue’s other implementation

 classes can be used as well.

EE 382V Software Evolution Spring 2009, Instructor: Miryung Kim

28

Migrate to Refactored API!

•! ReplaceInheritanceWithDelegation(MonitorableQueue,

SimpleQueue, internalQueue, Queue)

•! ReplaceInheritanceWithDelegetion(SimpleQueue,

ArrayList, elementData, List)

•! ExtractInterface(SimpleQueue, Queue)

•! AddAbstraction(MonitorableQueue, Queue)

Prob #4: Type mismatch: cannot convert MonitorableQueue

 to List
Reason: MonitorableQueue is no longer SimpleQueue, which

 is no longer List
Solution: Stop using MonitorableQueue as List object

 May use it as a Queue object

EE 382V Software Evolution Spring 2009, Instructor: Miryung Kim

30

•! ReplaceInheritanceWithDelegation(

SimpleQueue, ArrayList, elementData, List)

Migrate to “Removed” API!

Prob #6: The method listIterator() is undefined for the type

 Queue
Reason: The original Queue class used to be a List; it inherits

 listIterator() from its superclass ArrayList, but
 no longer doing so.

This is essentially a “removed” API.

How am I going to replace it?

EE 382V Software Evolution Spring 2009, Instructor: Miryung Kim

35

Diff-CatchUp in Eclipse!

EE 382V Software Evolution Spring 2009, Instructor: Miryung Kim

32

How Good is Diff-CatchUp?!
Type of problem #broken API #success

proposal
%

JFreechart

ImportNotFound 17 17 100

UndefinedType+ImportNotFound+UndefinedName 254 247 97.2

InvalidClassInstantiation 1 1 100

UndefinedMethod/Constructor 180 151 83.9

ParameterMismatch 54 54 98.1

UndefinedField+UndefinedName 33 29 87.9

UsingDeprecatedType 3 3 100

UsingDeprecatedMethod/Constructor 35 34 97.1

Total 577 535 92.7

HTMLUnit

UndefinedType 1 1 100

UndefinedMethod/Constructor 11 9 81.8

ParameterMismatch 3 3 100

UsingDeprecatedType 1 0 0

UsingDeprecatedMethod/Constructor 10 7 70

Total 26 20 76.9

Evaluation

EE 382V Software Evolution Spring 2009, Instructor: Miryung Kim

My thought on Refactoring
Reconstruction Research

• Promising ways to allow programmers to understand
code changes at a high level

• Still long ways to go to automatically reconstruct design
intent from source code

• It can be applied to mining software repository research.

• This is a challenging problem:

• heuristics-based, often requiring many similarity
thresholds

• hard to evaluate this type of work in general.

EE 382V Software Evolution Spring 2009, Instructor: Miryung Kim

Preview for Monday after Spring Break

• First of all--- have a fun & productive spring break!

• Crosscutting Concerns

• Why some code changes are crosscutting?

• Read Visitor Pattern from Design Patterns book--- We
may have a quiz on crosscutting concerns (using the
visitor pattern code example) on Monday.

