
EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

Lecture 18
Delta Debugging--

Yesterday my program worked, it does not. Why?

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

This Week - Fault Localization

• Debugging is a process of finding a defect during program
execution.

• In other words, it is a process of localizing / pinpointing a defect
(isolating a defect).

• It is often called as “Fault localization” as well.

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

This Week - Fault Localization

• Two seminal papers in the area of fault localization

• Andreas Zeller, “Yesterday my program worked, today it does not.
Why?” FSE 1999

• Ben Liblit et al., “Bug isolation via remote program sampling,” PLDI
2003

• Some slides are borrowed from Dr. Andreas Zeller at University of
Saarland and Dr. Ben Liblit at the University of Wisconsin, Madison.

• If you don’t know yet, Dr. Andreas Zeller is the famous author of DDD.

This Week - Fault Localization

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

Today’s Agenda

• Presentation:

• Guarav Gutpa (Advocate)

• Tileli Amimeur (Skeptic)

• Delta Debugging: Problem Space

• Scenarios

• Problem Characterization

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

Today’s Agenda

• Delta Debugging: Solution Space

• Simplifying and Isolating failure causes

• Applications of Delta Debugging Algorithm

Highly recommend this book,
“Why Programs Fail”

• How can I reproduce
failures faithfully?

• How can I isolate
automatically what's
relevant for the
failure?

• How does the failure
come to be?

• How can I fix the
program in the best
possible way?

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

Although many programmers consider debugging as the most
painful part of software development, few books are

available for computer science students and practitioners to
learn about scientific methods in debugging.

In this book, Andreas Zeller does an excellent job introducing useful
debugging techniques and tools invented in both academia and

industry. The book is easy to read and actually very fun as well—don't
overlook all the bug stories included.

I strongly recommend this book to graduate and undergraduate
students interested in software engineering research. It will not only
help you discover a new perspective on debugging, but it will also
teach you some fundamental static and dynamic program analysis

techniques in plain language.
—MIRYUNG KIM, Graduate Student, University of Washington

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

Today’s Presenters

• Guarav (Advocate)

• Tilelli (Skeptic)

Andreas Zeller

Simplifying Problems

10

Simplifying

• Once one has reproduced a problem, one
must find out what’s relevant:

• Does the problem really depend on
10,000 lines of input?

• Does the failure really require this exact
schedule?

• Do we need this sequence of calls?

11

Why simplify?

12

Simplifying

• For every circumstance of the problem,
check whether it is relevant for the
problem to occur.

• If it is not, remove it from the problem
report or the test case in question.

13

Circumstances

• Any aspect that may influence a problem is
a circumstance:

• Aspects of the problem environment

• Individual steps of the problem history

14

Experimentation

• By experimentation, one finds out whether a
circumstance is relevant or not:

• Omit the circumstance and try to
reproduce the problem.

• The circumstance is relevant if and only if
the problem no longer occurs.

15

Mozilla Bug #24735
Ok the following operations cause mozilla to crash
consistently on my machine

-> Start mozilla
-> Go to bugzilla.mozilla.org
-> Select search for bug
-> Print to file setting the bottom and right margins to .50
 (I use the file /var/tmp/netscape.ps)
-> Once it's done printing do the exact same thing again on
 the same file (/var/tmp/netscape.ps)
-> This causes the browser to crash with a segfault

16

<td align=left valign=top>
<SELECT NAME="op_sys" MULTIPLE SIZE=7>
<OPTION VALUE="All">All<OPTION VALUE="Windows 3.1">Windows 3.1<OPTION
VALUE="Windows 95">Windows 95<OPTION VALUE="Windows 98">Windows
98<OPTION VALUE="Windows ME">Windows ME<OPTION VALUE="Windows
2000">Windows 2000<OPTION VALUE="Windows NT">Windows NT<OPTION
VALUE="Mac System 7">Mac System 7<OPTION VALUE="Mac System 7.5">Mac
System 7.5<OPTION VALUE="Mac System 7.6.1">Mac System 7.6.1<OPTION
VALUE="Mac System 8.0">Mac System 8.0<OPTION VALUE="Mac System
8.5">Mac System 8.5<OPTION VALUE="Mac System 8.6">Mac System
8.6<OPTION VALUE="Mac System 9.x">Mac System 9.x<OPTION VALUE="MacOS
X">MacOS X<OPTION VALUE="Linux">Linux<OPTION VALUE="BSDI">BSDI<OPTION
VALUE="FreeBSD">FreeBSD<OPTION VALUE="NetBSD">NetBSD<OPTION
VALUE="OpenBSD">OpenBSD<OPTION VALUE="AIX">AIX<OPTION
VALUE="BeOS">BeOS<OPTION VALUE="HP-UX">HP-UX<OPTION
VALUE="IRIX">IRIX<OPTION VALUE="Neutrino">Neutrino<OPTION
VALUE="OpenVMS">OpenVMS<OPTION VALUE="OS/2">OS/2<OPTION VALUE="OSF/
1">OSF/1<OPTION VALUE="Solaris">Solaris<OPTION
VALUE="SunOS">SunOS<OPTION VALUE="other">other</SELECT>

</td>
<td align=left valign=top>
<SELECT NAME="priority" MULTIPLE SIZE=7>
<OPTION VALUE="--">--<OPTION VALUE="P1">P1<OPTION VALUE="P2">P2<OPTION
VALUE="P3">P3<OPTION VALUE="P4">P4<OPTION VALUE="P5">P5</SELECT>

bugzilla.mozilla.org

What’s relevant in here?

17

Why simplify?

• Ease of communication. A simplified test
case is easier to communicate.

• Easier debugging. Smaller test cases result
in smaller states and shorter executions.

• Identify duplicates. Simplified test cases
subsume several duplicates.

18

The Gecko BugAThon

• Download the Web page to your machine.

• Using a text editor, start removing HTML
from the page. Every few minutes, make
sure it still reproduces the bug.

• Code not required to reproduce the bug
can be safely removed.

• When you’ve cut away as much as you can,
you’re done.

19

Rewards
5 bugs - invitation to the Gecko launch party
10 bugs - the invitation, plus an attractive Gecko
stuffed animal
12 bugs - the invitation, plus an attractive Gecko
stuffed animal autographed by Rick Gessner, the
Father of Gecko
15 bugs - the invitation, plus a Gecko T-shirt
20 bugs - the invitation, plus a Gecko T-shirt signed by
the whole raptor team

20

• Proceed by binary search. Throw away half
the input and see if the output is still wrong.

• If not, go back to the previous state and
discard the other half of the input.

Binary Search

HTML input

✘✔✘✘✘✔

21

Simplified Input

• Simplified from 896 lines to one single line

• Required 12 tests only

<SELECT NAME="priority" MULTIPLE SIZE=7>

22

Benefits

• Ease of communication. All one needs is
“Printing <SELECT> crashes”.

• Easier debugging. We can directly focus on
the piece of code that prints <SELECT>.

• Identify duplicates. Check other test cases
whether they’re <SELECT>-related, too.

23

Why automate?

• Manual simplification is tedious.

• Manual simplification is boring.

• We have machines for tedious and boring
tasks.

24

Basic Idea

• We set up an automated test that checks
whether the failure occurs or not
(= Mozilla crashes when printing or not)

• We implement a strategy that realizes the
binary search.

25

Automated Test
1. Launch Mozilla

2. Replay (previously recorded) steps from
problem report

3. Wait to see whether

• Mozilla crashes (= the test fails)

• Mozilla still runs (= the test passes)

4. If neither happens, the test is unresolved

26

Binary Search

✔
✘<SELECT NAME="priority" MULTIPLE SIZE=7>

<SELECT NAME="priority" MULTIPLE SIZE=7>

<SELECT NAME="priority" MULTIPLE SIZE=7>

✔
What do we do if both halves pass?

<SELECT NAME="priority" MULTIPLE SIZE=7> ✔
✘

✔
✘

<SELECT NAME="priority" MULTIPLE SIZE=7>

<SELECT NAME="priority" MULTIPLE SIZE=7>

<SELECT NAME="priority" MULTIPLE SIZE=7>

27

Configuration

All circumstances
C = {δ1,δ2, . . . }

Configuration

c = {δ1,δ2, . . .δn}

c ⊆ C

Circumstance
δ

28

Tests

test(c) ∈ {✔,✘, ?}

Testing function

test(c✘) = ✘

Failure-inducing configuration

Relevant configuration
∀δi ∈ c

′
✘ · test

(

c′✘ \ {δi}
)

≠ ✘

c
′

✘ ⊆ c✘

29

Binary Strategy

If removing first half fails…

test(c✘ \ c1) = ✘ =⇒ c✘
′ = c✘ \ c1

If removing second half fails…
test(c✘ \ c2) = ✘ =⇒ c✘

′ = c✘ \ c2

Otherwise, increase granularity:
c✘ = c1 ∪ c2 ∪ c3 ∪ c4

c✘ = c1 ∪ c2 ∪ c3 ∪ c4 ∪ c5 ∪ c6 ∪ c7 ∪ c8

c✘ = c1 ∪ c2

Split input

30

General Strategy
Split input into n parts (initially 2)

c✘ = c1 ∪ c2 ∪ · · ·∪ cn

If some removal fails…

∃i ∈ {1, . . . , n} · test(c✘ \ ci) = ✘ =⇒
c✘
′ = c✘ \ ci

n′ = max(n− 1,2)

Otherwise, increase granularity

c✘
′
= c✘ n

′
= 2n

31

ddmin in a Nutshell

ddmin(c✘) = ddmin
′(c′✘,2)

c′✘ = ddmin(c✘) is a relevant configuration

c′✘ if |c′✘| = 1

ddmin
′(c′✘ \ ci,max(n− 1,2)

)

else if ∃i ∈ {1..n} · test(c′✘ \ ci) = ✘

(“some removal fails”)

ddmin
′(c′✘,min(2n,

∣

∣c′✘
∣

∣)
)

else if n <
∣

∣c′✘
∣

∣ (“increase granularity”)

c′✘ otherwise

ddmin
′(c′✘, n) =with

c
′

✘ = c1 ∪ c2 ∪ · · ·∪ cn

∀ci, cj · ci ∩ cj =∅∧ |ci| ≈| cj|

where

32

 def _ddmin(circumstances, n):
 while len(circumstances) >= 2:
 subsets = split(circumstances, n)

 some_complement_is_failing = 0
 for subset in subsets:
 complement = listminus(circumstances, subset)
 if test(complement) == FAIL:
 circumstances = complement
 n = max(n - 1, 2)
 some_complement_is_failing = 1
 break

 if not some_complement_is_failing:
 if n == len(circumstances):
 break
 n = min(n * 2, len(circumstances))

 return circumstances

33

1

Input: <SELECT NAME="priority" MULTIPLE SIZE=7> 〈40 characters〉 ✘
<SELECT NAME="priority" MULTIPLE SIZE=7> 〈0 characters〉 ✔

1 <SELECT NAME="priority" MULTIPLE SIZE=7> 〈20〉 ✔

2 <SELECT NAME="priority" MULTIPLE SIZE=7> 〈20〉 ✔

3 <SELECT NAME="priority" MULTIPLE SIZE=7> 〈30〉 ✔

4 <SELECT NAME="priority" MULTIPLE SIZE=7> 〈30〉 ✘

5 <SELECT NAME="priority" MULTIPLE SIZE=7> 〈20〉 ✔

6 <SELECT NAME="priority" MULTIPLE SIZE=7> 〈20〉 ✘

7 <SELECT NAME="priority" MULTIPLE SIZE=7> 〈10〉 ✔

8 <SELECT NAME="priority" MULTIPLE SIZE=7> 〈10〉 ✔

9 <SELECT NAME="priority" MULTIPLE SIZE=7> 〈15〉 ✔

10 <SELECT NAME="priority" MULTIPLE SIZE=7> 〈15〉 ✔

11 <SELECT NAME="priority" MULTIPLE SIZE=7> 〈15〉 ✘

12 <SELECT NAME="priority" MULTIPLE SIZE=7> 〈10〉 ✔

13 <SELECT NAME="priority" MULTIPLE SIZE=7> 〈10〉 ✔

14 <SELECT NAME="priority" MULTIPLE SIZE=7> 〈10〉 ✔

15 <SELECT NAME="priority" MULTIPLE SIZE=7> 〈12〉 ✔

16 <SELECT NAME="priority" MULTIPLE SIZE=7> 〈13〉 ✔

17 <SELECT NAME="priority" MULTIPLE SIZE=7> 〈12〉 ✔

18 <SELECT NAME="priority" MULTIPLE SIZE=7> 〈13〉 ✘

19 <SELECT NAME="priority" MULTIPLE SIZE=7> 〈10〉 ✔

20 <SELECT NAME="priority" MULTIPLE SIZE=7> 〈10〉 ✔

21 <SELECT NAME="priority" MULTIPLE SIZE=7> 〈11〉 ✔

22 <SELECT NAME="priority" MULTIPLE SIZE=7> 〈10〉 ✘

23 <SELECT NAME="priority" MULTIPLE SIZE=7> 〈7〉 ✔

24 <SELECT NAME="priority" MULTIPLE SIZE=7> 〈8〉 ✔

25 <SELECT NAME="priority" MULTIPLE SIZE=7> 〈7〉 ✔

26 <SELECT NAME="priority" MULTIPLE SIZE=7> 〈8〉 ✔

27 <SELECT NAME="priority" MULTIPLE SIZE=7> 〈9〉 ✔

28 <SELECT NAME="priority" MULTIPLE SIZE=7> 〈9〉 ✔

29 <SELECT NAME="priority" MULTIPLE SIZE=7> 〈9〉 ✔

30 <SELECT NAME="priority" MULTIPLE SIZE=7> 〈9〉 ✔

31 <SELECT NAME="priority" MULTIPLE SIZE=7> 〈8〉 ✔

32 <SELECT NAME="priority" MULTIPLE SIZE=7> 〈9〉 ✔

33 <SELECT NAME="priority" MULTIPLE SIZE=7> 〈8〉 ✘

34 <SELECT NAME="priority" MULTIPLE SIZE=7> 〈7〉 ✔

35 <SELECT NAME="priority" MULTIPLE SIZE=7> 〈7〉 ✔

36 <SELECT NAME="priority" MULTIPLE SIZE=7> 〈7〉 ✔

37 <SELECT NAME="priority" MULTIPLE SIZE=7> 〈7〉 ✔

38 <SELECT NAME="priority" MULTIPLE SIZE=7> 〈7〉 ✔

39 <SELECT NAME="priority" MULTIPLE SIZE=7> 〈6〉 ✔

40 <SELECT NAME="priority" MULTIPLE SIZE=7> 〈7〉 ✔

41 <SELECT NAME="priority" MULTIPLE SIZE=7> 〈7〉 ✔

42 <SELECT NAME="priority" MULTIPLE SIZE=7> 〈7〉 ✔

43 <SELECT NAME="priority" MULTIPLE SIZE=7> 〈7〉 ✔

44 <SELECT NAME="priority" MULTIPLE SIZE=7> 〈7〉 ✔

45 <SELECT NAME="priority" MULTIPLE SIZE=7> 〈7〉 ✔

46 <SELECT NAME="priority" MULTIPLE SIZE=7> 〈7〉 ✔

47 <SELECT NAME="priority" MULTIPLE SIZE=7> 〈7〉 ✔

48 <SELECT NAME="priority" MULTIPLE SIZE=7> 〈7〉 ✔

Result: <SELECT>

ddmin at Work

34

Complexity

• The maximal number of ddmin tests is

(

|c✘|
2 + 7|c✘|

)

2

35

Worst Case Details

= 2|c✘| + |c✘| +
|c✘|

2
+
|c✘|

4
+ · · · = 4|c✘|

First phase: every test is unresolved

Second phase: testing last set always fails

t = 2+ 4+ 8+ · · · + 2|c✘|

t′ = (|c✘|− 1)+ (|c✘|− 2)+ · · · + 1

= 1+ 2+ 3+ · · · + (|c✘|− 1)

=
|c✘|(|c✘|− 1)

2
=
|c✘|

2 − |c✘|

2

36

Binary Search

If

• there is only one failure-inducing
circumstance, and

• all configurations that include this
circumstance fail,

the number of tests is t ≤ log2(|c✘|)

37

Optimization

• Caching

• Stop Early

• Syntactic Simplification

• Isolate Differences, not Circumstances

38

Caching

• Basic idea: store the results of earlier test()

• Saves 8 out of 48 tests in <SELECT>
example

39

Stop Early

One may stop simplification when

• a certain granularity has been reached

• no progress has been made

• a certain amount of time has elapsed

40

Syntactic Simplification

0

SELECT

NAME

"priority"

1

1.1

MULTIPLE

2

SIZE

3

7

3.1

<SELECT NAME="priority" MULTIPLE SIZE=7>

41

Differences

<SELECT NAME="priority" MULTIPLE SIZE=7>

<SELECT NAME="priority" MULTIPLE SIZE=7>

The extra “<” is failure-inducing!

42

More Circumstances

Program

Data

User Interaction

Communication

Randomness Operating System

Schedules

Physics

Debugging Tools

43

More Automation

• Failure-Inducing Input

• Failure-Inducing Code Changes

• Failure-Inducing Schedules

• Failure-Inducing Program States

44

Concepts

The aim of simplification is to create a
simple test case from a problem report.

Simplified test cases…

• are easier to communicate

• facilitate debugging

• identify duplicate problem reports

45

Concepts (2)

To simplify a test case, remove all irrelevant
circumstances.

A circumstance is irrelevant if the problem
occurs regardless of whether the
circumstance is present or not.

46

Concepts (3)

To automate simplification, set up

• an automated test

• a strategy to determine the relevant
circumstances

One such strategy is the ddmin delta
debugging algorithm

47

Preview for Next
Lecture

• Applications of Delta Debugging Algorithms

• Cooperative Bug Isolation by B. Liblit

• We may have a quiz on the delta debugging
algorithm.

• Updated quiz solutions are posted.

