Lecture |9

Delta Debugging
Cooperative Bug Isolation

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim




Today’s Agenda

® Presentation:
® Chris on Cooperative Bug Isolation

® Quiz on Delta Debugging

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim




Today’s Agenda

® Delta Debugging:
® Simplifying Failure Causes => Isolating Failure Causes
® Applications of Delta Debugging Algorithm

® |solating Cause and Effect Chain

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim




Quiz: Delta Debugging

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim




|solating Faj

An




Simplifying Input




Simplifying

Failure Cause

v




Isolating Input

Difference narrowed down




Isolating Input

=
Failure Cause




Isolating

Failure Cause




Configuration

Circumstance

All circumstances
&= 0D e

Configuration ¢ € C
Ci=s {511525"'57’L}




Tests

Testing function

test(c) € {vV/,X,?}

Initial configurations

test(c,) = v
test(c,) = X




Minimal Difference

Goal: Subsets ¢, and c,

(De=io icie baiaician

Difference
Au-=gcouluch

Difference is |-minimal

Vé; € A-test(c, U {8i}) # v Atest(c, \ {0;}) # X




Algorithm Sketch

® Extend ddmin such that it works on two sets
at a time — ¢, and c,,

® Compute subsets
A A e e A s s A e=a i a
® For each subset, test
® the addition ¢’ U A;

® the removal c, \ A;




Test Outcomes

test(c, \ A;)

test(c’, U A;)

otherwise increase g%anularity

e

most valuable outcomes




dd in a Nutshell

dd(c,,cy) = (c,,c,) A=c,\c, is |-minimal

dd(C‘/, Cx) = dd, (Cm Cx, 2)

dd (c,,c.,n) =

iczich) if |A] = 1

ddo(eiimA wiada?) if 3i € {1..n} - test(c, \ A;) =V
ddilei e atin ) if 3i € {1..n} - test(c, U A;) = X

dd (¢, U Aj,c,,max(n —1,2)) elseif 3i € {1..n} - test(c, U A;) = v
dd (c/,c.\ Aj,max(n —1,2)) elseif 3i € {1..n} - test(c. \ A;) = X
dd (c.,c.,min(2n,|A])) else if n < |A| (“increase granularity”)
ieiicy) otherwise




def dd(c_pass, c_fail):
hi=2
while 1:
delta = listminus(c_fail, c_pass)
deltas = split(delta, n); offset =0; j =0
while j < n:
1 = (] + offset) % n
next_c_pass = listunion(c_pass, deltas[1i])
next_c_fail = listminus(c_fail, deltas[1i])
if test(next_c_fail) == FAIL and n == 2:
c_fail = next_c_fail; n = 2; offset ; break
elif test(next_c_fail) == PASS:
c_pass = next_c_fail; n = 2; offset ; break
elif test(next_c_pass) == FAIL:
c_fail = next_c_pass; n = 2; offset ; break
elif test(next_c_fail) == FAIL:
c_fail = next_c_fail; n = max(n - 1, 2); offset
elif test(next_c_pass) == PASS:
c_pass = next_c_pass; n = max(n - 1, 2); offset
else:
Je g
IhsEr=—ak
1f n >= len(delta):
return (delta, c_pass, c_fail)
else:
n = min(len(delta), n * 2)




Applications

Code
Changes

Schedules




Isolating Input

<SELECT NAME="priority" MULTIPLE SIZE=7>
LECT NA ty" MULTIPLE SIZE=7>

LECT N
1 ECT N Isolation: 5 tests

“Failure Simplification: 48 tests
CT N

vl Bl = A

l




Code Changes

From: Brian Kahne <bkahne@ibmoto.com>
To: DDD Bug Report Address <bug-ddd@gnu.org>
Subject: Problem with DDD and GDB 4.17

When using DDD with GDB 4.16, the run command
correctly uses any prior command-line arguments, or
the value of "set args". However, when I switched to
GDB 4.17, this no longer worked: If I entered a run
command in the console window, the prior command-
line options would be lost. [...]




Version Differences

New version

by

Program fails Old version




What was Changed

$ diff -r gdb-4.16 gdb-4.17
diff -r gdb-4.16/COPYING gdb-4.17/COPYING

5C5
< 675 Mass Ave, Cambridge, MA 02139, USA

> 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
282c282
< Appendix: How to Apply These Terms to Your New Programs

> How to Apply These Terms to Your New Programs

...and so on for 178,200 lines (8,721 locations)




Challenges

Granularity — within some large change,
only a few lines may be relevant

Interference — some (later) changes rely on
other (earlier) changes

Inconsistency — some changes may have to
be combined to produce testable code

Delta debugging handles all this




General Plan

® Decompose diff into changes per location
(= 8,721 individual changes)

® Apply subset of changes, using PATCH

® Reconstruct GDB; build errors mean
unresolved test outcome

® Jest GDB and return outcome




Isolating Changes

Delta Debugging Log
100000 ¢ | | | |

' ... with dd algorithm sss=sss |
10000 - ‘ 1 5 .RlUS scope information riveier

1000 |

100 |

=
i
n
()
(o)
c
©
Tes
@)

102

I

Tests executed

® Result after 98 tests (= | hour)




The Failure Cause

diff -r gdb-4.16/gdb/infcmd.c gdb-4.17/gdb/1infcmd.c
1239c1278

< "Set arguments to give program being debugged when it 1is
started.\n

> "Set argument list to give program being debugged when
1t 1s started.\n

® Documentation becomes GDB output

® DDD expects Arguments,
but GDB outputs Argument list




Optimizations

History — group changes by creation time
Reconstruction — cache several builds
Grouping — according to scope

Failure Resolution — scan error messages
for possibly missing changes




Thread Schedules

Schedule Thread A Thread B Schedule Thread A Thread B

open(".htpasswd")

read(...)

open(".htpasswd")

Thread
Switch read(...)

modify(...)

write(...)

close(...)

v

A’s updates get |ost!




Record + Replay

recorded
schedule

record replay

> >
45
39
67 \

DEJAVU




Schedules as Input

The schedule difference causes the failure!




e We start with runs ¢ and X

e We determine the differences
A; between thread switches t;:

- L1 occurs in ¢ at “time” 254
— t1 occurs in X at “time” 278

- The difference
A1 = 1278 — 254] induces a
statement interval: the code

executed between “time”
254 and 278

— Same applies to tp, t3, etc.




Isolating Differences




Isolating Differences




Example: Raytracer

Raytracer program from Spec JVM98 suite
Injected a simple race condition
Set up automated test + random schedules

Obtained passing and failing schedule

3,842,577,240 differences, each moving a
thread switch by 1 yield point (time unit)




Isolating
Cause-EffectiGl

,




bug.c

double bug(double z[], 1nt n) {
T8 A RS Ly o

Ta—i0)

for CJ S Al R
lgi=aieaaiae].s

z[1] = z[1] * (z[0] + 1.0);

¥

return z[n];







From Defect to Failure

. The programmer creates a
defect — an error in the code. Variables

. When executed, the defect
creates an infection — an
error in the state.

. The infection propagates.

. The infection causes a failure.

This infection chain must be
traced back — and broken.




Tracing Infections

® For every infection, we must find the earlier
infection that causes it.

® Program analysis tells us possible causes




s
-
~
)
O
v
Gl
=
o
c
O
S
L S
T




Isolating Input

Difference
causes
failure




Isolating States

Difference
causes
failure




Comparing States

® What is a program state, anyway?
® How can we compare states!?

® How can we narrow down differences?




A Sample Program

$ sample 9 8 7
Qutput: ¢.8.9

$ sample 11 14
Output: 0 11

Where is the defect
which causes this failure?




int main(int argc, char *argv[])

{

int *a;

// Input array
a = (int *)malloc(Cargc - 1) * sizeof(int));
for (int 1 = 0; 1 < argc - 1; 1++)

a[i] = atoiCargv[i + 1]);

1/ :SorE dEray.
shell_sort(a, argc);

// Qutput array

printf("Output: ");

for (int 1 = 0; 1 < argc - 1; 1++)
printf("%d ", al[1]);

printf("\n");

free(a);
return 0;




A sample state

® VVe can access the entire state via the
debugger:

|. List all base variables
2. Expand all references...

3. ...until a fixpoint is found




Sample States

Variable Value Variable
N 7y
argc 5
argv|0]
argv|1] "11"
argv|2] "14"
argv|3] 0x0 (NIL)

/

N8 888888

at shell sort()




Narrowing State Diffs

B =0 is applied, [ | = 0 is not applied

# a’[0]al0]a’[1]al1] a’[2] a[2] argc argv[1] argv[2] argv(3] i size Output  Test
1 /7 89

] H B B B H BN 11

] ] 11 14

]
[]
[] ]

0
0
/
] 0
/
0
0




Complex State

® Accessing the state as a table is not enough:
® References are not handled
® Aliases are not handled

® We need a richer representation




A Memory Graph

<Root>

}/a’ SiZN i argv

0x8099ae8 4 0x8099ae8 OxbffffSa4

1073834752 1074077312

0[0..3] 0[0..3] 0[0..4]

.

0[0] OM] | o121 0[3] 0[4]

Oxbffff71a

Oxbffff749

Oxbffff74c

Oxbffff74f 0x0

0[0.]

0[0.]

" /sample"

||9l|

0[0.]

ll8ll

0[0.]

|l7"




Unfolding Memory

® Any variable: make new node

® Structures: unfold all members

® Arrays: unfold all elements

® Pointers: unfold object being pointed to

® Does p point to something? And how many?




Comparing States

<Root>

a’ | size a i arge argv

1073834752 ‘ 1074077312 0x80992e8 ‘ 4 0x80992ae8 Oxbffff5a4
j ()[0..3]‘%0..3] 0[0.4]

0121 0131 010l ot | oz

‘ 1961 ‘ Oxbffff71a 0xbffff749‘ 0xbffff74c Oxbffff74f ‘ ‘ 0x0 ‘

010.] 0[0.] 0[0.] 0[0.]

‘”./sample”’ ‘ 9" ‘ ‘ "g" ’ ‘ g ’ failing run

passing run . //\\\

0x8049880 0x8049880 Oxbffff7a4

\ @3)/) 1@3) l(()[O]@zt)
,A)] \0[1\]\0[2] '/,/ \Ns]

11 14 0 Oxbffff8e7 0xbffff90e Oxbffffo11

l()[()n] l()[o--] l()[O--]

"sample” nn 4"




Comparing States

® Basic idea: compute common subgraph

® Any node that is not part of the common
subgraph becomes a difference

® Applying a difference means to create or
delete nodes — and adjust references

® All this is done within GDB




Applying Diffs

015 creates a variable, 0,9 deletes another




Results: GCC
Transitions

Location

Cause transition to variable

s
0
1
2
3
4
5
6
bk

(Start)
toplev.c:4755
toplev.c:2909
c-lex.c:187
c-lex.c:1213
c-lex.c:1213
c-typeck.c:3615
c-lex.c:1213

c-decl.c:1213

combine.c:4271

argv[ 3]

name

dump_base_name
finput—_I0_buf _base
nextchar

yyssal[4l]

yyssal[42]
last_insn—fld[1].rtxXx
—fld[1].rtx—£f1d[3].rtx
—fld[1l].rtx.code
sequence_result[2]
—f1d[0].rtvec
—elem[0].rtx—>fld[1l].rtx
—fld[1l].rtx—=fld[1l].rtx
—fld[1l].rtx—fld[1l].rtx
—fld[1l].rtx—>fld[1l].rtx
—fld[3].rtx—fld[1l].rtx.code
x—>f1ld[0].rtx—>£f1d[0].rtx




Concepts

* To isolate failure causes automatically, use
® an gutomated test case
® a means to narrow down the difference
® 3 strategy for proceeding.

* One possible strategy is Delta Debugging.




Concepts (2)

% Delta Debugging can isolate failure causes
® in the (general) input
® in the version history
® in thread schedules
® |n program states

% Every such cause implies a fix — but not
necessarily a correction.




Announcement

Dear students,
| updated the lecture schedule. Most notable changes are

- | removed (R) signs from several papers making them as optional.

Reps' et al.'s profiling paper for 4/8,

Lanza et al.'s paper on metrics and visualization for 4/20,

Boshernitsan's paper on source transformation for 4/29

If you are signed up for these papers, you are still scheduled to present. However, |
won't discuss these papers in depth during my lecture.

- | switched the order between Lanza et al.'s and Murphy et al.'s paper.

- For next monday, | will talk about using delta-debugging for isolating cause-effect
chain. It's likely that we will have more discussion on regression testing on next
wednesday instead. If you are signed up for presenting Orso et al's paper, you are still
on for monday.

Thanks!
Miryung




