
EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

Lecture 19
Delta Debugging

Cooperative Bug Isolation

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

Today’s Agenda

• Presentation:

• Chris on Cooperative Bug Isolation

• Quiz on Delta Debugging

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

Today’s Agenda

• Delta Debugging:

• Simplifying Failure Causes => Isolating Failure Causes

• Applications of Delta Debugging Algorithm

• Isolating Cause and Effect Chain

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

Quiz: Delta Debugging

Andreas Zeller

Isolating Failure Causes

6

Simplifying Input

✔
✘<SELECT NAME="priority" MULTIPLE SIZE=7>

<SELECT NAME="priority" MULTIPLE SIZE=7>

<SELECT NAME="priority" MULTIPLE SIZE=7>

✔
<SELECT NAME="priority" MULTIPLE SIZE=7> ✔

✘

✔
✘

<SELECT NAME="priority" MULTIPLE SIZE=7>

<SELECT NAME="priority" MULTIPLE SIZE=7>

<SELECT NAME="priority" MULTIPLE SIZE=7>

7

Simplifying

✔

✘
Input

✘
✘

✘
…

Failure Cause

8

Isolating Input
✘<SELECT NAME="priority" MULTIPLE SIZE=7>

<SELECT NAME="priority" MULTIPLE SIZE=7> ✔
✔<SELECT NAME="priority" MULTIPLE SIZE=7>

Difference narrowed down

9

Isolating Input

✔

✘<SELECT NAME="priority" MULTIPLE SIZE=7>

<SELECT NAME="priority" MULTIPLE SIZE=7>

✔

✔

✘

✔<SELECT NAME="priority" MULTIPLE SIZE=7>

<SELECT NAME="priority" MULTIPLE SIZE=7>

<SELECT NAME="priority" MULTIPLE SIZE=7>

<SELECT NAME="priority" MULTIPLE SIZE=7>

<SELECT NAME="priority" MULTIPLE SIZE=7> ✔
Failure Cause

10

Isolating

✔

✘
Input

✘

✔

✘
✔

…
…
Failure Cause

11

Configuration

All circumstances
C = {δ1, δ2, . . . }

Configuration

c = {δ1, δ2, . . . δn}

c ⊆ C

Circumstance
δ

12

Tests
Testing function

Initial configurations

test(c✔) = ✔

test(c✘) = ✘

test(c) ∈ {✔,✘, ?}

Minimal Difference

13

Goal: Subsets

∅ = c✔ ⊆ c
′
✔ ⊂ c

′
✘ ⊆ c✘

c
′

✘ and c
′

✔

∆ = c′✘ \ c
′
✔

Difference

Difference is 1-minimal

∀δi ∈ ∆ · test(c′✔ ∪ {δi}) %= ✔∧ test(c′✘ \ {δi}) %= ✘

• Extend ddmin such that it works on two sets
at a time – and

• Compute subsets

• For each subset, test

• the addition

• the removal

Algorithm Sketch

14

c
′

✘ c
′

✔

c
′
✘ \∆i

c
′

✔ ∪∆i

∆1 ∪∆2 ∪ · · · ∪∆n = ∆ = c
′
✘ \ c

′
✔

test(c′✘ \∆i) c
′
✘ := c′✘ \∆i c

′
✔ := c′✘ \∆i

test(c′✔ ∪∆i) c
′

✘ := c
′

✔ ∪∆i c
′

✔ := c
′

✔ ∪∆i

✘ ✔

otherwise increase granularityincrease granularity

Test Outcomes

15

most valuable outcomes

dd in a Nutshell

16



























































(c′✔, c
′
✘) if |∆| = 1

dd
′(c′✘ \∆i, c

′
✘,2) if ∃i ∈ {1..n} · test(c′✘ \∆i) = ✔

dd
′(c′✔, c

′
✔ ∪∆i,2) if ∃i ∈ {1..n} · test(c′✔ ∪∆i) = ✘

dd
′(c′✔ ∪∆i, c

′
✘,max(n− 1,2)

)

else if ∃i ∈ {1..n} · test(c′✔ ∪∆i) = ✔

dd
′(c′✔, c

′
✘ \∆i,max(n− 1,2)

)

else if ∃i ∈ {1..n} · test(c′✘ \∆i) = ✘

dd
′(c′✔, c

′
✘,min(2n, |∆|)

)

else if n < |∆| (“increase granularity”)

(c′✔, c
′
✘) otherwise

dd(c✔, c✘) = dd
′(c✔, c✘,2)

dd
′(c′✔, c

′

✘, n) =

dd(c✔, c✘) = (c
′

✔, c
′

✘) ∆ = c′✘ \ c
′
✔ is 1-minimal

17

 def dd(c_pass, c_fail):
 n = 2
 while 1:
 delta = listminus(c_fail, c_pass)
 deltas = split(delta, n); offset = 0; j = 0
 while j < n:
 i = (j + offset) % n
 next_c_pass = listunion(c_pass, deltas[i])
 next_c_fail = listminus(c_fail, deltas[i])
 if test(next_c_fail) == FAIL and n == 2:
 c_fail = next_c_fail; n = 2; offset = 0; break
 elif test(next_c_fail) == PASS:
 c_pass = next_c_fail; n = 2; offset = 0; break
 elif test(next_c_pass) == FAIL:
 c_fail = next_c_pass; n = 2; offset = 0; break
 elif test(next_c_fail) == FAIL:
 c_fail = next_c_fail; n = max(n - 1, 2); offset = i; break
 elif test(next_c_pass) == PASS:
 c_pass = next_c_pass; n = max(n - 1, 2); offset = i; break
 else:
 j = j + 1
 if j >= n:
 if n >= len(delta):
 return (delta, c_pass, c_fail)
 else:
 n = min(len(delta), n * 2)

18

Applications

Input Code
Changes

Schedules

19

Isolating Input

✔

✘<SELECT NAME="priority" MULTIPLE SIZE=7>

<SELECT NAME="priority" MULTIPLE SIZE=7>

✔

✔

✘

✔<SELECT NAME="priority" MULTIPLE SIZE=7>

<SELECT NAME="priority" MULTIPLE SIZE=7>

<SELECT NAME="priority" MULTIPLE SIZE=7>

<SELECT NAME="priority" MULTIPLE SIZE=7>

<SELECT NAME="priority" MULTIPLE SIZE=7> ✔
Failure Cause

Isolation: 5 tests
Simplification: 48 tests

20

Code Changes
From: Brian Kahne <bkahne@ibmoto.com>
To: DDD Bug Report Address <bug-ddd@gnu.org>
Subject: Problem with DDD and GDB 4.17

When using DDD with GDB 4.16, the run command
correctly uses any prior command-line arguments, or
the value of "set args". However, when I switched to
GDB 4.17, this no longer worked: If I entered a run
command in the console window, the prior command-
line options would be lost. [...]

21

Wie finden wir
die alternative Welt?

Version Differences

Old version

Program works
New version

Program fails

Causes

22

What was Changed
$ diff -r gdb-4.16 gdb-4.17
diff -r gdb-4.16/COPYING gdb-4.17/COPYING
5c5
< 675 Mass Ave, Cambridge, MA 02139, USA

> 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
282c282
< Appendix: How to Apply These Terms to Your New Programs

> How to Apply These Terms to Your New Programs

…and so on for 178,200 lines (8,721 locations)

Challenges

23

• Granularity – within some large change,
only a few lines may be relevant

• Interference – some (later) changes rely on
other (earlier) changes

• Inconsistency – some changes may have to
be combined to produce testable code

Delta debugging handles all this

General Plan

• Decompose diff into changes per location
(= 8,721 individual changes)

• Apply subset of changes, using PATCH

• Reconstruct GDB; build errors mean
unresolved test outcome

• Test GDB and return outcome

24

25

Isolating Changes

1

10

100

1000

10000

100000

0 50 100 150 200 250 300

Ch
an

ge
s

le
ft

Tests executed

Delta Debugging Log

GDB with ddmin algorithm
... with dd algorithm

... plus scope information

• Result after 98 tests (= 1 hour)

26

The Failure Cause
diff -r gdb-4.16/gdb/infcmd.c gdb-4.17/gdb/infcmd.c
1239c1278
< "Set arguments to give program being debugged when it is
started.\n

> "Set argument list to give program being debugged when
it is started.\n

• Documentation becomes GDB output

• DDD expects Arguments,
but GDB outputs Argument list

27

• History – group changes by creation time

• Reconstruction – cache several builds

• Grouping – according to scope

• Failure Resolution – scan error messages
for possibly missing changes

Optimizations

28

Thread Schedules 32/45

!

"

#

$

%

&

'

Application: Thread Schedules

The behavior of a multi-threaded program can depend on the
thread schedule:

open(".htpasswd")

read(...)

modify(...)

write(...)

close(...)

open(".htpasswd")

read(...)

modify(...)

write(...)

close(...)

Schedule Thread A Thread B

!

Thread

Switch

open(".htpasswd")

open(".htpasswd")

read(...)

modify(...)

read(...)

write(...)

close(...)

modify(...)

write(...)

close(...)

Thread A Thread BSchedule

"

32/45

!

"

#

$

%

&

'

Application: Thread Schedules

The behavior of a multi-threaded program can depend on the
thread schedule:

open(".htpasswd")

read(...)

modify(...)

write(...)

close(...)

open(".htpasswd")

read(...)

modify(...)

write(...)

close(...)

Schedule Thread A Thread B

!

Thread

Switch

open(".htpasswd")

open(".htpasswd")

read(...)

modify(...)

read(...)

write(...)

close(...)

modify(...)

write(...)

close(...)

Thread A Thread BSchedule

"

A’s updates get lost!

Record + Replay

29

33/45

!

"

#

$

%

&

'

Recording and Replaying Runs

DEJAVU captures and replays program runs deterministically:

DEJAVU

recorded

schedule

record replay
x = 45
y = 39
z = 67

x = 45
y = 39
z = 67

x = 45
y = 39
z = 67

x = 45
y = 39
z = 67

Allows simple reproduction of schedules and induced failures

Schedules as Input

30

34/45

!

"

#

$

%

&

'

Differences between Schedules

Using DEJAVU, we can consider the schedule as an input which
determines whether the program passes or fails.

replay replay

! "

34/45

!

"

#

$

%

&

'

Differences between Schedules

Using DEJAVU, we can consider the schedule as an input which
determines whether the program passes or fails.

replay replay

! "

The schedule difference causes the failure!

Finding Differences

31

35/45

!

"

#

$

%

&

'

Finding Differences

!"

t1

t2

t3

• We start with runs ! and "

• We determine the differences
∆i between thread switches ti:

– t1 occurs in ! at “time” 254

– t1 occurs in " at “time” 278

– The difference
∆1 = |278− 254| induces a
statement interval: the code
executed between “time”
254 and 278

– Same applies to t2, t3, etc.

Our goal: Narrow down the difference such that only a small
relevant difference remains, pinpointing the root cause

Isolating Differences

32

36/45

!

"

#

$

%

&

'

Isolating Relevant Differences

We use Delta Debugging to isolate the relevant differences

Delta Debugging applies subsets of differences to !:

!" ?

• The entire difference
∆1 is applied

• Half of the difference
∆2 is applied

• ∆3 is not applied at all

DEJAVU executes the debuggee under this generated schedule;
an automated test checks if the failure occurs

36/45

!

"

#

$

%

&

'

Isolating Relevant Differences

We use Delta Debugging to isolate the relevant differences

Delta Debugging applies subsets of differences to !:

!" ?

• The entire difference
∆1 is applied

• Half of the difference
∆2 is applied

• ∆3 is not applied at all

DEJAVU executes the debuggee under this generated schedule;
an automated test checks if the failure occurs

36/45

!

"

#

$

%

&

'

Isolating Relevant Differences

We use Delta Debugging to isolate the relevant differences

Delta Debugging applies subsets of differences to !:

!" ?

• The entire difference
∆1 is applied

• Half of the difference
∆2 is applied

• ∆3 is not applied at all

DEJAVU executes the debuggee under this generated schedule;
an automated test checks if the failure occurs

Isolating Differences

33

37/45

!

"

#

$

%

&

'

The Isolation Process

Delta Debugging systematically narrows down the difference

!" ?

" !

Dejavu replays
the generated
schedule

Test outcome

Example: Raytracer

34

• Raytracer program from Spec JVM98 suite

• Injected a simple race condition

• Set up automated test + random schedules

• Obtained passing and failing schedule

• 3,842,577,240 differences, each moving a
thread switch by ±1 yield point (time unit)

Andreas Zeller

Isolating
Cause-Effect Chains

36

double bug(double z[], int n) {
 int i, j;

 i = 0;
 for (j = 0; j < n; j++) {
 i = i + j + 1;
 z[i] = z[i] * (z[0] + 1.0);
 }
 return z[n];
}

bug.c

37

What is the cause
of this failure?

38

✘

1. The programmer creates a
defect – an error in the code.

2. When executed, the defect
creates an infection – an
error in the state.

3. The infection propagates.

4. The infection causes a failure.

From Defect to Failure

✘

✘

✘

✘ ✘

Variables

This infection chain must be
traced back – and broken.

t

39

Tracing Infections

✘

• For every infection, we must find the earlier
infection that causes it.

• Program analysis tells us possible causes

40

Tracing Infections

✘

Isolating Input

41

Input

✔

Input

✘

Difference
causes
failure

42

✘

Isolating States

✘

Variables

t

✘

Variables

✔

Difference
causes
failure

Comparing States

43

• What is a program state, anyway?

• How can we compare states?

• How can we narrow down differences?

44

A Sample Program

sample 9 8 7$
Output: 7 8 9

sample 11 14$
Output: 0 11

Where is the defect
which causes this failure?

45

int main(int argc, char *argv[])
{
 int *a;

 // Input array
 a = (int *)malloc((argc - 1) * sizeof(int));
 for (int i = 0; i < argc - 1; i++)
 a[i] = atoi(argv[i + 1]);

 // Sort array
 shell_sort(a, argc);

 // Output array
 printf("Output: ");
 for (int i = 0; i < argc - 1; i++)
 printf("%d ", a[i]);
 printf("\n");

 free(a);
 return 0;
}

A sample state

• We can access the entire state via the
debugger:

1. List all base variables

2. Expand all references…

3. …until a fixpoint is found

46

Sample States

47

13/28

!

"

#

$

%

&

'

Sample States

At the beginning of shell_sort , we obtain these states:

Variable Value
in r! in r"

argc 4 5
argv[0] "./sample" "./sample"
argv[1] "9" "11"
argv[2] "8" "14"
argv[3] "7" 0x0 (NIL)
i′ 1073834752 1073834752
j 1074077312 1074077312
h 1961 1961
size 4 3

Variable Value
in r! in r"

i 3 2
a[0] 9 11
a[1] 8 14
a[2] 7 0
a[3] 1961 1961
a′[0] 9 11
a′[1] 8 14
a′[2] 7 0
a′[3] 1961 1961

This state difference is both effect (of the input) as well as
cause (for the failure).

at shell_sort()

Narrowing State Diffs

48

16/28

!

"

#

$

%

&

'

Narrowing Down State

Delta Debugging narrows down failure-inducing state changes:

! = δ is applied, " = δ is not applied

a′[0] a[0] a′[1] a[1] a′[2] a[2] argc argv[1] argv[2] argv[3] i size Output Test
1 " " " " " " " " " " " " 7 8 9 !

2 ! ! ! ! ! ! ! ! ! ! ! ! 0 11 "

3 ! ! ! ! ! ! " " " " " " 0 11 14 "

4 ! ! ! " " " " " " " " " 7 11 14
5 " " " ! ! ! " " " " " " 0 9 14 "

6 " " " ! " " " " " " " " 7 9 14
7 " " " " ! ! " " " " " " 0 8 9 "

8 " " " " ! " " " " " " " 0 8 9 "

Result !

Conclusion: a′[2] being 0 (instead of 7) causes the failure.

Complex State

49

• Accessing the state as a table is not enough:

• References are not handled

• Aliases are not handled

• We need a richer representation

A Memory Graph

50

<Root>

0x8099ae8

a

3

i

4

argc

0xbffff5a4

argv

1073834752

i’

1074077312

j

1961

h

0x8099ae8

a’

4

size

[...]

()[0..3]

[...]

()[0..4]()[0..3]

9

()[0]

8

()[1]

7

()[2]

1961

()[3]

0xbffff71a

()[0]

0xbffff749

()[1]

0xbffff74c

()[2]

0xbffff74f

()[3]

0x0

()[4]

"./sample"

()[0..]

"9"

()[0..]

"8"

()[0..]

"7"

()[0..]

<Root>

0x8099ae8

a

3

i

4

argc

0xbffff5a4

argv

1073834752

i’

1074077312

j

1961

h

0x8099ae8

a’

4

size

[...]

()[0..3]

[...]

()[0..4]()[0..3]

9

()[0]

8

()[1]

7

()[2]

1961

()[3]

0xbffff71a

()[0]

0xbffff749

()[1]

0xbffff74c

()[2]

0xbffff74f

()[3]

0x0

()[4]

"./sample"

()[0..]

"9"

()[0..]

"8"

()[0..]

"7"

()[0..]

Unfolding Memory

• Any variable: make new node

• Structures: unfold all members

• Arrays: unfold all elements

• Pointers: unfold object being pointed to

• Does p point to something? And how many?

51

<Root>

0

i

10

j

0

h

0x8049880

a

3

size

0x8049880

a

2

i

3

argc

0xbffff7a4

argv

[...]

(()[0] @ 3) (()[0] @ 3)

[...]

(()[0] @ 4)

11

()[0]

14

()[1]

0

()[2]

0xbffff8e7

()[0]

0xbffff90e

()[1]

0xbffff911

()[2]

0x0

()[3]

"sample"

()[0..]

"11"

()[0..]

"14"

()[0..]

Comparing States

52

<Root>

0x8099ae8

a

3

i

4

argc

0xbffff5a4

argv

1073834752

i’

1074077312

j

1961

h

0x8099ae8

a’

4

size

[...]

()[0..3]

[...]

()[0..4]()[0..3]

9

()[0]

8

()[1]

7

()[2]

1961

()[3]

0xbffff71a

()[0]

0xbffff749

()[1]

0xbffff74c

()[2]

0xbffff74f

()[3]

0x0

()[4]

"./sample"

()[0..]

"9"

()[0..]

"8"

()[0..]

"7"

()[0..]

passing run

failing run

Comparing States

53

• Basic idea: compute common subgraph

• Any node that is not part of the common
subgraph becomes a difference

• Applying a difference means to create or
delete nodes – and adjust references

• All this is done within GDB

Applying Diffs

54

21/28

!

"

#

$

%

&

'

Structural Differences

Igor can compute structural graph differences:
δ15 creates a variable, δ20 deletes another

r!

r" ()->next ()->nextlist

14 18 22

()->next

15

()->next ()->nextlist

14 18 22

()->next

20

δ15−−→
()->next ()->nextlist

14 18 22

()->next

15

()->next ()->nextlist

14 18 22

15

()->next

()->next

20

δ20

" δ20

"

()->next ()->nextlist

14 18 22

()->next

15

()->nextlist

14 18 22

()->next

20

δ15−−→
()->next ()->nextlist

14 18 22

()->next

15

()->next

list

14 18 22

15

()->next

()->next

20

Results: GCC
Transitions

55

Location Cause transition to variable

0 〈Start〉 argv[3]
1 toplev.c:4755 name
2 toplev.c:2909 dump base name
3 c-lex.c:187 finput→ IO buf base
4 c-lex.c:1213 nextchar
5 c-lex.c:1213 yyssa[41]
6 c-typeck.c:3615 yyssa[42]
7 c-lex.c:1213 last insn→fld[1].rtx

→fld[1].rtx→fld[3].rtx
→fld[1].rtx.code

8 c-decl.c:1213 sequence result[2]
→fld[0].rtvec
→elem[0].rtx→fld[1].rtx
→fld[1].rtx→fld[1].rtx
→fld[1].rtx→fld[1].rtx
→fld[1].rtx→fld[1].rtx
→fld[3].rtx→fld[1].rtx.code

9 combine.c:4271 x→fld[0].rtx→fld[0].rtx

Table 3: Cause transitions in GCC

hold an additional node (fld[1].rtx.code is PLUS) in
the failing run (Transitions 7–8). Thus, the + in the input has
caused a PLUS node, created at Transition 8.

4. In Transition 9, the failure cause moves from the additional

PLUS node to a cycle in the abstract syntax tree. We have

x→fld[0].rtx→fld[0].rtx = x

meaning that the node at *x is its own grandchild! This cy-
cle ultimately causes an endless recursion and thus the GCC

crash.

In our earlier work [15], we had also identified the cycle as the ulti-

mate failure cause, and assumed that an experienced GCC program-

mer would be able to distinguish infections from non-infections.

Therefore, an experienced programmer would have immediately

focused on the GCC cycle.

Under the assumption that cause transitions indicate defects, though,

a less experienced programmer could start his investigation at the

listed cause transitions. At combine.c:4271, the location of the last

transition, we find a single statement

return x;

This line is not likely to be a defect. Let us take a look at the

direct origin of x, in combine.c:4013–4019, listed in Figure ?? on
page ??.

This place is where the infection originates: The call to the func-

tion apply distributive law() is wrong. This function

transforms code using the rule

(MULT (PLUS a b) c) ⇒ (PLUS (MULT a c1)(MULT b c2))

Unfortunately, in the apply distributive law() call in Fig-
ure ??, c1 and c2 share a common grandchild (the macro XEXP(x, 1)
translates into x→fld[1].rtx), which leads to the cycle in the
abstract syntax tree. To fix the problem, one should call the func-

tion with a copy of the grandchild—and this is how the error was

fixed in GCC 2.95.3.

At this point, one may wonder why cause transitions did not sin-

gle out the call to apply distributive law() as a cause
transition. The answer is simple: This piece of code is executed

only during the failing run. Therefore, we have no state to compare

case MULT:
/* If we have (mult (plus A B) C), apply the distributive

law and then the inverse distributive law to see if
things simplify. This occurs mostly in addresses,
often when unrolling loops. */

if (GET_CODE (XEXP (x, 0)) == PLUS)
{
x = apply_distributive_law
(gen_binary (PLUS, mode,

gen_binary (MULT, mode,
XEXP (XEXP (x, 0), 0),

XEXP (x, 1)),
gen_binary (MULT, mode,

XEXP (XEXP (x, 0), 1),
XEXP (x, 1))));

if (GET_CODE (x) != MULT)
return x;

}
break;

Figure 6: The GCC defect

against, and therefore, we cannot narrow down the cause transition

any further. Line 4271, however, has been executed in both runs,

and thus we are able to isolate the failure-inducing state at this lo-

cation.

Overall, to locate the defect, the programmer had to follow just

one backwards dependency from the last isolated cause transition.

In numbers, this translates into just 2 lines out of 338,000 lines

of GCC code. Even if we assume the programmer examines all

9 transitions and all direct dependencies, the effort to locate the

GCC defect is minimal.

6. COMPLEXITY AND OTHER ISSUES
Finding causes and cause transitions by automated experimentation

can require a large number of test runs:

Searching in space. In the best case, Delta Debugging needs 2s log k

test runs to isolate s failure-inducing variables from k state

differences. The (pathological) worst case is k2 + 3k; In

practice, though, Delta Debugging is much more logarithmic

than linear.

Searching in time. This is a simple binary search over n program

steps, repeated for each cause transition. For m cause transi-

tions, we thus need m log n runs of Delta Debugging.2

Since applications can have a large number of fine-grained cause

transitions, a practical implementation would simply limit the num-

ber of cause transitions to be sought, or just run as long as the avail-

able execution time permits.

Other practical issues we faced in our implementation, in partic-

ular for the GCC case study, included:

Accessing state. We currently instrument the GNU debugger (GDB)

to access the state, which is painfully slow: The entire GCC

2Unfortunately, a pure binary search does not always suffice. In a
cause-effect chain, all reported causes must cause all later causes as
well as the failure. This can lead to tricky situations: Assume we
have isolated a cause c1 and a later cause c2, and these two form a
cause-effect chain, meaning that c1 causes c2 as well as the failure.
Now, cts isolates a new cause c between c1 and c2; again, c causes
all later causes (c2) as well as the failure. But does c1 cause c, too?
In case c1 has no effect on c, we have to re-isolate c1 such that the
new c1 causes c as well as c2.

56

Concepts

To isolate failure causes automatically, use

• an automated test case

• a means to narrow down the difference

• a strategy for proceeding.

One possible strategy is Delta Debugging.

57

Concepts (2)
Delta Debugging can isolate failure causes

• in the (general) input

• in the version history

• in thread schedules

• in program states

Every such cause implies a fix – but not
necessarily a correction.

Announcement

58

Dear students,

I updated the lecture schedule. Most notable changes are

- I removed (R) signs from several papers making them as optional.

 Reps' et al.'s profiling paper for 4/8,

 Lanza et al.'s paper on metrics and visualization for 4/20,

 Boshernitsan's paper on source transformation for 4/29

 If you are signed up for these papers, you are still scheduled to present. However, I
won't discuss these papers in depth during my lecture.

- I switched the order between Lanza et al.'s and Murphy et al.'s paper.

- For next monday, I will talk about using delta-debugging for isolating cause-effect
chain. It's likely that we will have more discussion on regression testing on next
wednesday instead. If you are signed up for presenting Orso et al's paper, you are still
on for monday.

Thanks!
Miryung

