
EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

Lecture 20
Delta Debugging

Regression Testing

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

Today’s Agenda

• Regression Testing

• Presentation by Divya (advocate)

• Presentation by David (skeptic)

• Delta Debugging:

• Understanding its problem characterization one more
time!!!

• Quiz answers

• Isolating Cause and Effect Chain

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

Delta Debugging Problem (1)

All circumstances
C = {δ1,δ2, . . . }

Configuration

c = {δ1,δ2, . . .δn}

c ⊆ C

Circumstance
δ

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

Delta Debugging Problem (2)

test(c) ∈ {✔,✘, ?}

Testing function

test(c✘) = ✘

Failure-inducing configuration

Relevant configuration
∀δi ∈ c

′
✘ · test

(

c′✘ \ {δi}
)

≠ ✘

c
′

✘ ⊆ c✘

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

Mappings to DD Framework
Circumstances (δ) Configuration (c)

Testing Function test(c)Testing Function test(c)Testing Function test(c)
Circumstances (δ) Configuration (c)

✔ ✖ ?

Simplifying Inputs
(Zeller, FSE 99)

A set of inputs
A subset of the

inputs
Running a test function on the input cRunning a test function on the input cRunning a test function on the input c

Quiz

Identifying Failure
Inducing Changes
(Zeller, FSE 99)

Changes
A subset of the

changes
Running a test function on a base

program + changes (c)
Running a test function on a base

program + changes (c)
Running a test function on a base

program + changes (c)

DDD 3.1.2 case
study

344 textual deltas
between 3.1.1 and

3.1.2

DDD 3.1.1 and
deltas up to a
particular date

Invoking DDD with the name of a
non-existing file

Invoking DDD with the name of a
non-existing file

Invoking DDD with the name of a
non-existing fileDDD 3.1.2 case

study

344 textual deltas
between 3.1.1 and

3.1.2

DDD 3.1.1 and
deltas up to a
particular date no core

dump
core dump can’t compile

DDD

GDB 4.17GDB 4.17

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

Circumstances (δ) Configuration (c)
Testing Function test(c)Testing Function test(c)Testing Function test(c)

Circumstances (δ) Configuration (c)
✔ ✖ ?

Simplifying Inputs
(Zeller, FSE 99)

A set of inputs
A subset of the

inputs
Running the test code on the input cRunning the test code on the input cRunning the test code on the input c

Quiz
A sequence of

values in an array
A subsequence of
values in an array

testSort that takes a sequencetestSort that takes a sequencetestSort that takes a sequence

Identifying Failure
Inducing Changes
(Zeller, FSE 99)

Changes
A subset of the

changes
Running the test code on a base

program + changes (c)
Running the test code on a base

program + changes (c)
Running the test code on a base

program + changes (c)

DDD 3.1.2 case
study

344 textual deltas
between 3.1.1 and

3.1.2

DDD 3.1.1 and
deltas up to a
particular date

Invoking DDD with the name of a
non-existing file

Invoking DDD with the name of a
non-existing file

Invoking DDD with the name of a
non-existing fileDDD 3.1.2 case

study

344 textual deltas
between 3.1.1 and

3.1.2

DDD 3.1.1 and
deltas up to a
particular date no core

dump
core dump can’t compile

DDD

GDB 4.17 8721 textual deltas
GDB 4.16 and a
subset of deltas

Passing arguments in DDD front-end
to GDB

Passing arguments in DDD front-end
to GDB

Passing arguments in DDD front-end
to GDB

GDB 4.17 8721 textual deltas
GDB 4.16 and a
subset of deltas Arguments

passed
Arguments
not passed

Can’t compile
GDB

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

Circumstances (δ) Configuration (c)
Testing Function test(c)Testing Function test(c)Testing Function test(c)

Circumstances (δ) Configuration (c)
✔ ✖ ?

Identifying Failure
Inducing Thread
Schedule (ISSTA

2002)

A set of context
switch events

A subset of the
events

Run a program with the scheduleRun a program with the scheduleRun a program with the schedule

Identifying Cause
Effect Chain (FSE

2002)

A set of (variable,
value) pairs

A subset of
(variable, value)

pairs

Resume the debugger with the
modified (variable, value) pairs
Resume the debugger with the
modified (variable, value) pairs
Resume the debugger with the
modified (variable, value) pairs

GCC

a set of (variable
and value) pairs at a
particular debugger

breakpoint

a subset of
(variable, value)

pairs

Running GCC on the fail.c as inputRunning GCC on the fail.c as inputRunning GCC on the fail.c as input

GCC

a set of (variable
and value) pairs at a
particular debugger

breakpoint

a subset of
(variable, value)

pairs no crash crash

Locating Failure
Causes (ICSE

2005)

A set of debug
breakpoints that
include failure-

inducing program
states

A subset of debug
breakpoints that
include failure-

inducing program
states

Resume the debugger with the
modified (variable, value) pairs
Resume the debugger with the
modified (variable, value) pairs
Resume the debugger with the
modified (variable, value) pairs

ddmin algorithm
def ddmin(circumstances, n):
 while len(circumstances) >= 2:
 subsets = split(circumstances, n)
 some_complement_return_false = 0
 for subset in subsets:
 complement = listminus(circumstances, subset)
 if testSort(complement) == False:
 circumstances = complement
 n = max(n - 1, 2)
 some_complement_return_false = 1
 break
 if not some_complement_return_false:
 if n == len(circumstances):
 break
 n = min(n * 2, len(circumstances))
 return circumstances

ddmin algorithm

Step n circumstances complement testSort
(complement)

1 2 [0, 1, 2, 3, 5, 4, 5, 6] [5,4,5,6] false

Input: [0, 1, 2, 3, 5, 4, 5, 6]

ddmin algorithm

Step n circumstances complement testSort
(complement)

1 2 [0, 1, 2, 3, 5, 4, 5, 6] [5,4,5,6] false
2 2 [5,4,5,6] [5,6] true

Input: [0, 1, 2, 3, 5, 4, 5, 6]

ddmin algorithm

Step n circumstances complement testSort
(complement)

1 2 [0, 1, 2, 3, 5, 4, 5, 6] [5,4,5,6] false
2 2 [5,4,5,6] [5,6] true
3 2 [5,4,5,6] [5,4] false

Input: [0, 1, 2, 3, 5, 4, 5, 6]

ddmin algorithm

Step n circumstances complement testSort
(complement)

1 2 [0, 1, 2, 3, 5, 4, 5, 6] [5,4,5,6] false
2 2 [5,4,5,6] [5,6] true
3 2 [5,4,5,6] [5,4] false
4 2 [5,4] [4] true

Input: [0, 1, 2, 3, 5, 4, 5, 6]

ddmin algorithm

Step n circumstances complement testSort
(complement)

1 2 [0, 1, 2, 3, 5, 4, 5, 6] [5,4,5,6] false
2 2 [5,4,5,6] [5,6] true
3 2 [5,4,5,6] [5,4] false
4 2 [5,4] [4] true
5 2 [5,4] [5] true

Input: [0, 1, 2, 3, 5, 4, 5, 6]

ddmin algorithm

Step n circumstances complement testSort
(complement)

1 2 [3,5,7,6,8,9,13,11] [8,9,13,11] false

Input: [3, 5, 7, 6, 8, 9, 13, 11]

ddmin algorithm

Step n circumstances complement testSort
(complement)

1 2 [3,5,7,6,8,9,13,11] [8,9,13,11] false
2 2 [8,9,13,11] [13,11] false

Input: [3, 5, 7, 6, 8, 9, 13, 11]

ddmin algorithm

Step n circumstances complement testSort
(complement)

1 2 [3,5,7,6,8,9,13,11] [8,9,13,11] false
2 2 [8,9,13,11] [13,11] false
3 2 [13,11] [11] true

Input: [3, 5, 7, 6, 8, 9, 13, 11]

ddmin algorithm

Step n circumstances complement testSort
(complement)

1 2 [3,5,7,6,8,9,13,11] [8,9,13,11] false
2 2 [8,9,13,11] [13,11] false
3 2 [13,11] [11] true
4 2 [13,11] [13] true

Input: [3, 5, 7, 6, 8, 9, 13, 11]

Andreas Zeller

Isolating
Cause-Effect Chains

19

double bug(double z[], int n) {
 int i, j;

 i = 0;
 for (j = 0; j < n; j++) {
 i = i + j + 1;
 z[i] = z[i] * (z[0] + 1.0);
 }
 return z[n];
}

bug.c

20

What is the cause
of this failure?

21

✘

1. The programmer creates a
defect – an error in the code.

2. When executed, the defect
creates an infection – an
error in the state.

3. The infection propagates.

4. The infection causes a failure.

From Defect to Failure

✘

✘

✘

✘ ✘

Variables

This infection chain must be
traced back – and broken.

t

22

Tracing Infections

✘

• For every infection, we must find the earlier
infection that causes it.

• Program analysis tells us possible causes

23

Tracing Infections

✘

Isolating Input

24

Input

✔

Input

✘

Difference
causes
failure

25

✘

Isolating States

✘

Variables

t

✘

Variables

✔

Difference
causes
failure

Comparing States

26

• What is a program state, anyway?

• How can we compare states?

• How can we narrow down differences?

27

A Sample Program

sample 9 8 7$
Output: 7 8 9

sample 11 14$
Output: 0 11

Where is the defect
which causes this failure?

28

int main(int argc, char *argv[])
{
 int *a;

 // Input array
 a = (int *)malloc((argc - 1) * sizeof(int));
 for (int i = 0; i < argc - 1; i++)
 a[i] = atoi(argv[i + 1]);

 // Sort array
 shell_sort(a, argc);

 // Output array
 printf("Output: ");
 for (int i = 0; i < argc - 1; i++)
 printf("%d ", a[i]);
 printf("\n");

 free(a);
 return 0;
}

A sample state

• We can access the entire state via the
debugger:

1. List all base variables

2. Expand all references…

3. …until a fixpoint is found

29

Sample States

30

13/28

!

"

#

$

%

&

'

Sample States

At the beginning of shell_sort , we obtain these states:

Variable Value
in r! in r"

argc 4 5
argv[0] "./sample" "./sample"
argv[1] "9" "11"
argv[2] "8" "14"
argv[3] "7" 0x0 (NIL)
i′ 1073834752 1073834752
j 1074077312 1074077312
h 1961 1961
size 4 3

Variable Value
in r! in r"

i 3 2
a[0] 9 11
a[1] 8 14
a[2] 7 0
a[3] 1961 1961
a′[0] 9 11
a′[1] 8 14
a′[2] 7 0
a′[3] 1961 1961

This state difference is both effect (of the input) as well as
cause (for the failure).

at shell_sort()

Narrowing State Diffs

31

16/28

!

"

#

$

%

&

'

Narrowing Down State

Delta Debugging narrows down failure-inducing state changes:

! = δ is applied, " = δ is not applied

a′[0] a[0] a′[1] a[1] a′[2] a[2] argc argv[1] argv[2] argv[3] i size Output Test
1 " " " " " " " " " " " " 7 8 9 !

2 ! ! ! ! ! ! ! ! ! ! ! ! 0 11 "

3 ! ! ! ! ! ! " " " " " " 0 11 14 "

4 ! ! ! " " " " " " " " " 7 11 14
5 " " " ! ! ! " " " " " " 0 9 14 "

6 " " " ! " " " " " " " " 7 9 14
7 " " " " ! ! " " " " " " 0 8 9 "

8 " " " " ! " " " " " " " 0 8 9 "

Result !

Conclusion: a′[2] being 0 (instead of 7) causes the failure.

Complex State

32

• Accessing the state as a table is not enough:

• References are not handled

• Aliases are not handled

• We need a richer representation

A Memory Graph

33

<Root>

0x8099ae8

a

3

i

4

argc

0xbffff5a4

argv

1073834752

i’

1074077312

j

1961

h

0x8099ae8

a’

4

size

[...]

()[0..3]

[...]

()[0..4]()[0..3]

9

()[0]

8

()[1]

7

()[2]

1961

()[3]

0xbffff71a

()[0]

0xbffff749

()[1]

0xbffff74c

()[2]

0xbffff74f

()[3]

0x0

()[4]

"./sample"

()[0..]

"9"

()[0..]

"8"

()[0..]

"7"

()[0..]

<Root>

0x8099ae8

a

3

i

4

argc

0xbffff5a4

argv

1073834752

i’

1074077312

j

1961

h

0x8099ae8

a’

4

size

[...]

()[0..3]

[...]

()[0..4]()[0..3]

9

()[0]

8

()[1]

7

()[2]

1961

()[3]

0xbffff71a

()[0]

0xbffff749

()[1]

0xbffff74c

()[2]

0xbffff74f

()[3]

0x0

()[4]

"./sample"

()[0..]

"9"

()[0..]

"8"

()[0..]

"7"

()[0..]

Unfolding Memory

• Any variable: make new node

• Structures: unfold all members

• Arrays: unfold all elements

• Pointers: unfold object being pointed to

• Does p point to something? And how many?

34

<Root>

0

i

10

j

0

h

0x8049880

a

3

size

0x8049880

a

2

i

3

argc

0xbffff7a4

argv

[...]

(()[0] @ 3) (()[0] @ 3)

[...]

(()[0] @ 4)

11

()[0]

14

()[1]

0

()[2]

0xbffff8e7

()[0]

0xbffff90e

()[1]

0xbffff911

()[2]

0x0

()[3]

"sample"

()[0..]

"11"

()[0..]

"14"

()[0..]

Comparing States

35

<Root>

0x8099ae8

a

3

i

4

argc

0xbffff5a4

argv

1073834752

i’

1074077312

j

1961

h

0x8099ae8

a’

4

size

[...]

()[0..3]

[...]

()[0..4]()[0..3]

9

()[0]

8

()[1]

7

()[2]

1961

()[3]

0xbffff71a

()[0]

0xbffff749

()[1]

0xbffff74c

()[2]

0xbffff74f

()[3]

0x0

()[4]

"./sample"

()[0..]

"9"

()[0..]

"8"

()[0..]

"7"

()[0..]

passing run

failing run

Comparing States

36

• Basic idea: compute common subgraph

• Any node that is not part of the common
subgraph becomes a difference

• Applying a difference means to create or
delete nodes – and adjust references

• All this is done within GDB

Applying Diffs

37

21/28

!

"

#

$

%

&

'

Structural Differences

Igor can compute structural graph differences:
δ15 creates a variable, δ20 deletes another

r!

r" ()->next ()->nextlist

14 18 22

()->next

15

()->next ()->nextlist

14 18 22

()->next

20

δ15−−→
()->next ()->nextlist

14 18 22

()->next

15

()->next ()->nextlist

14 18 22

15

()->next

()->next

20

δ20

" δ20

"

()->next ()->nextlist

14 18 22

()->next

15

()->nextlist

14 18 22

()->next

20

δ15−−→
()->next ()->nextlist

14 18 22

()->next

15

()->next

list

14 18 22

15

()->next

()->next

20

38

Concepts

To isolate failure causes automatically, use

• an automated test case

• a means to narrow down the difference

• a strategy for proceeding.

One possible strategy is Delta Debugging.

39

Concepts (2)
Delta Debugging can isolate failure causes

• in the (general) input

• in the version history

• in thread schedules

• in program states

Every such cause implies a fix – but not
necessarily a correction.

Andreas Zeller

Locating Failure Causes

41

Sane stateInfected state

Finding Causes

The difference
causes the failure

42

Sane stateInfected state

Search in Space

Mixed state

✔✘

Test ?

argc = 3

43

Passing runFailing run

Search in Time

t

argc = 3

argc = 3

a[2] = 0

Transition from argc to a[2]

Transitions

A cause transition occurs when a new variable
begins to be a failure cause:

• argc no longer causes the failure…

• …but a[2] does!

Can be narrowed down by binary search

44

45

Why Transitions?

• Each failure cause in the program state is
caused by some statement

• These statements are executed
at cause transitions

• Cause transitions thus are
statements that cause the failure!

Potential Fixes

• Each cause transition implies a fix to make
the failure no longer occur – just prohibit
the transition

• A cause transition is more than a potential
fix – it may be “the” defect itself

46

47

Sane stateInfected state

Searching GCC State

Mixed state

✔✘

Test ?

<PLUS node>

48

Passing runFailing run

Search in Time

t

<PLUS node>

<PLUS node>

49

Passing runFailing run

Search in Time

t

<PLUS node>

<PLUS node>

link→fld[0].rtx→fld[0].rtx == link

Passing runFailing run

t

<PLUS node>

<Tree cycle>

Transition from PLUS to cycle

<PLUS node>

Search in Time

50

All GCC Transitions

51

Location Cause transition to variable

0 〈Start〉 argv[3]
1 toplev.c:4755 name
2 toplev.c:2909 dump base name
3 c-lex.c:187 finput→ IO buf base
4 c-lex.c:1213 nextchar
5 c-lex.c:1213 yyssa[41]
6 c-typeck.c:3615 yyssa[42]
7 c-lex.c:1213 last insn→fld[1].rtx

→fld[1].rtx→fld[3].rtx
→fld[1].rtx.code

8 c-decl.c:1213 sequence result[2]
→fld[0].rtvec
→elem[0].rtx→fld[1].rtx
→fld[1].rtx→fld[1].rtx
→fld[1].rtx→fld[1].rtx
→fld[1].rtx→fld[1].rtx
→fld[3].rtx→fld[1].rtx.code

9 combine.c:4271 x→fld[0].rtx→fld[0].rtx

Table 3: Cause transitions in GCC

hold an additional node (fld[1].rtx.code is PLUS) in
the failing run (Transitions 7–8). Thus, the + in the input has
caused a PLUS node, created at Transition 8.

4. In Transition 9, the failure cause moves from the additional

PLUS node to a cycle in the abstract syntax tree. We have

x→fld[0].rtx→fld[0].rtx = x

meaning that the node at *x is its own grandchild! This cy-
cle ultimately causes an endless recursion and thus the GCC

crash.

In our earlier work [15], we had also identified the cycle as the ulti-

mate failure cause, and assumed that an experienced GCC program-

mer would be able to distinguish infections from non-infections.

Therefore, an experienced programmer would have immediately

focused on the GCC cycle.

Under the assumption that cause transitions indicate defects, though,

a less experienced programmer could start his investigation at the

listed cause transitions. At combine.c:4271, the location of the last

transition, we find a single statement

return x;

This line is not likely to be a defect. Let us take a look at the

direct origin of x, in combine.c:4013–4019, listed in Figure ?? on
page ??.

This place is where the infection originates: The call to the func-

tion apply distributive law() is wrong. This function

transforms code using the rule

(MULT (PLUS a b) c) ⇒ (PLUS (MULT a c1)(MULT b c2))

Unfortunately, in the apply distributive law() call in Fig-
ure ??, c1 and c2 share a common grandchild (the macro XEXP(x, 1)
translates into x→fld[1].rtx), which leads to the cycle in the
abstract syntax tree. To fix the problem, one should call the func-

tion with a copy of the grandchild—and this is how the error was

fixed in GCC 2.95.3.

At this point, one may wonder why cause transitions did not sin-

gle out the call to apply distributive law() as a cause
transition. The answer is simple: This piece of code is executed

only during the failing run. Therefore, we have no state to compare

case MULT:
/* If we have (mult (plus A B) C), apply the distributive

law and then the inverse distributive law to see if
things simplify. This occurs mostly in addresses,
often when unrolling loops. */

if (GET_CODE (XEXP (x, 0)) == PLUS)
{
x = apply_distributive_law
(gen_binary (PLUS, mode,

gen_binary (MULT, mode,
XEXP (XEXP (x, 0), 0),

XEXP (x, 1)),
gen_binary (MULT, mode,

XEXP (XEXP (x, 0), 1),
XEXP (x, 1))));

if (GET_CODE (x) != MULT)
return x;

}
break;

Figure 6: The GCC defect

against, and therefore, we cannot narrow down the cause transition

any further. Line 4271, however, has been executed in both runs,

and thus we are able to isolate the failure-inducing state at this lo-

cation.

Overall, to locate the defect, the programmer had to follow just

one backwards dependency from the last isolated cause transition.

In numbers, this translates into just 2 lines out of 338,000 lines

of GCC code. Even if we assume the programmer examines all

9 transitions and all direct dependencies, the effort to locate the

GCC defect is minimal.

6. COMPLEXITY AND OTHER ISSUES
Finding causes and cause transitions by automated experimentation

can require a large number of test runs:

Searching in space. In the best case, Delta Debugging needs 2s log k

test runs to isolate s failure-inducing variables from k state

differences. The (pathological) worst case is k2 + 3k; In

practice, though, Delta Debugging is much more logarithmic

than linear.

Searching in time. This is a simple binary search over n program

steps, repeated for each cause transition. For m cause transi-

tions, we thus need m log n runs of Delta Debugging.2

Since applications can have a large number of fine-grained cause

transitions, a practical implementation would simply limit the num-

ber of cause transitions to be sought, or just run as long as the avail-

able execution time permits.

Other practical issues we faced in our implementation, in partic-

ular for the GCC case study, included:

Accessing state. We currently instrument the GNU debugger (GDB)

to access the state, which is painfully slow: The entire GCC

2Unfortunately, a pure binary search does not always suffice. In a
cause-effect chain, all reported causes must cause all later causes as
well as the failure. This can lead to tricky situations: Assume we
have isolated a cause c1 and a later cause c2, and these two form a
cause-effect chain, meaning that c1 causes c2 as well as the failure.
Now, cts isolates a new cause c between c1 and c2; again, c causes
all later causes (c2) as well as the failure. But does c1 cause c, too?
In case c1 has no effect on c, we have to re-isolate c1 such that the
new c1 causes c as well as c2.

52

Close to the Defect

Predicted
location

✘

53

Concepts (3)

Cause transition statements can be identified
using a binary search.

Cause transition statements are potential places
where a programmers fix code to prevent a
failure.

Preview for This
Wednesday

• Understanding Regression Testing Selection,
Prioritization, Augmentation, and Minimization.

• Path Spectra (The use of program profiling for
software maintenance with applications to Y2K
problem)

• Sidd (advocate)

• Srinivas (skeptic)

54

Announcement

• Everyone who came to class and claimed
your quiz or past class activities will receive
one class participation point today.

55

