Lecture 21

Regression Testing
Path Spectra

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

Today’s Agenda (1)

® Regression Test Selection

® Presentation by David (skeptic)
® Path Spectra

® Presentation by Sidd (advocate)

® Presentation by Srinivas (skeptic)

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

Today’s Agenda (2)

® Research problems in regression testing
® Regression test selection
® Regression test prioritization

® Regression test augmentation

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

Today’s Agenda (3)

® Orso et al.’s FSE 2004 on regression test selection for
Java program

® Focus on Rothermel & Harrold 1997 Algorithm

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

What is Regression Testing!?

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

What is Regression Testing!?

® Regression testing is performed on modified software to
provide confidence that

® software behaves correctly and

® modifications did not adversely impact software
quality.

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

Regression Testing

Test Case (t)
® e.g.|Unit test
Test suite: a set of test cases, T= {tl, t2, t3, ... tn}

Regression testing intends to identify regression fault
introduced due to changes.

Regression test strategy!?

® The most naive one is to rerun every test case in the
test suite.

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

Regression Test Selection

P: old version
P’: new version
T is a test suite for P

Assume that all tests in T ran on P. => Generate coverage
matrix C.

Given the delta between P and P’ and the coverage
matrix C, identify a subset of T that can identify all
regression faults. (Safe RTYS)

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

Regression Test Prioritization

P: old version
P’: new version
T is a test suite for P

Assume that programmers do not have enough time to select
and run test cases.

How can we order test cases so that test cases that run early can
provide the most benefit when the time is limited!?

Given the delta between P and P’ and C, what is an ordering of
test cases in T?

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

Regression Test Augmentation

P: old version
P’: new version
T is a test suite for P

Generate a set of test cases that effectively exercise the delta
between P and P’.

In other words, it is a test generation for evolving programs.

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

Regression Test Selection

® “Scaling Regression Testing to Large Software Systems.”
® A Orso, N.Shiand M.). Harrold
e FSE 2004

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

Harrold & Rothermel’s RTS

® A safe, efficient regression test selection technique
o TOSEM 1997

® RTS based on graph traversal

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

Build CFG

Procedure avg

S81. count =

g2 fread(fileptr,n)
p3. while (not EOF) do
P4, if (n<0)

S5. return{error)

else
s56. numarray[count]} = n

s87. count++
endif
sS8. fread(fileptr,n)
endwhile
$89. avg = calcavg{numarray,count)

810. return{avg)

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

RunT = {tl,t2,..} on P

Test Information

Type Output Edges Traversed
Empty File 0

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

RunT = {tl,t2,..} on P

Test Information

Type

Output Edges Traversed

Empty File

0 (entry, D), (D, S1), (S1, S2) (52, P3)
(P3, S9), (89, S10), (510, exit)

(entry, D) (D, S1), (S1, S2), (S2, P3),
(P3, P4), (P4, S5), (S5, exit)

(entry, D) (D, S1), (S1, S2), (52, P3), (P3,
P4),
(P4, S6), (S6, S7), (57, S8), (S8, P3),
(P3, S9), (89, S10), (510, exit)

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

Build Edge Coverage Matrix

Test History

Edge TestsOnEdge(edge)

(entry, D) 111
(D, S1) 111
(S1, S2) 111
(S2, P3) 111
(P3, P4) 011
(P3, S9) 101
(P4, S5) 010
(P4, S6) 001
(S5, exit) 010
(S6, S7) 001
(S7, S8) 001
(S8, P3) 001
(S9, S10) 101
(S10, exit) 101

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

Traverse two CFGs in parallel

Procedure avg2

S1’. count = 0
S§2’. fread(fileptr,n)
. while (not EOF) do

return(error)

else
numarray[count]

fread(fileptr,n)
endwhile
S9’. avg = calcavg(numarray, count)
510’ .return(avyg)

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

Traverse two CFGs in parallel

Select all test cases
Procedure avg2 that V|S|ted (P4, PS)
and (S6, S7)
S1’. count = 0

S§2’. fread(fileptr,n)
. while (not EOF) do

return(error)

else
numarray[count]

fread(fileptr,n)
endwhile
S9’. avg = calcavg(numarray, count)
510’ .return(avyg)

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

Recap: RTS Framework

Pn Po T ={tl, t2, ..tn}
/

Program Differencing Tool

=> |dentify Changes between
Po and Pn

1 l

D e Ita (Dangerous Entities) C Ove rage M a_t rix

\/

Regression Test Selection

!
el

Profiling Tool
=> Collect Coverage of T on Po

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

Harrold et al. RTS for Java

Regression Test Selection for Java Software
OOPSLA 2001
What are main challenges for making RTS work in Java?

How did Harrold et al. address challenges for Java
software!

What are differences between this work and Harrold et
al’s RTS for procedural languages?

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

Main Challenges for making
RTS work in Java

® Java language features: in particular, (1) polymorphism, (2)
dynamic binding, and (3) exception handling

® Why is polymorphism & dynamic binding difficult to
handle in RTS?

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

Main Challenges for making
RTS work in Java

® Java language features: in particular, (1) polymorphism, (2)
dynamic binding, and (3) exception handling

® Why is polymorphism & dynamic binding difficult to
handle in RTS?

® The target of method calls depends on the dynamic
type of a receiver object.

1 class B extends A { 1 class B extends A {
2} 2}

3 class C extends B { 3 class C extends B {
4 public void m(){...}; 4 public void m(){...};
5} 5}

6 void bar(A p) { 6 void bar(A p) {

7 A.foo(); 7 A.foo();

8 p.m(); 8 p.m();

9% 9}

A few other enhancements

® Eternal libraries and components

® Why is it important to model interaction between the
main code and its libraries!?

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

A few other enhancements

® Eternal libraries and components

® Why is it important to model interaction between the
main code and its libraries!?

® External library code can invoke internal methods if
the internal methods override external methods.

class B extends A { class B extends A {
ic voi . _public void foo() {...;;
}pubhc void foo() {...3; . public void bar() {...};

class C extends B { }1 c B (
public void bar() {...}; ;C- ass Cextends B {
s e :

Orso et. al’s Scalable RTS

Scalable Regression Test Selection for Java

FSE 2004

What are main limitations for Harrold et al.‘'s OOPLSA
2001 techniques!?

How did they address these limitations!?

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

Orso et. al’s Scalable RTS

® Scalable Regression Test Selection for Java, FSE 2004

® What are main limitations for Harrold et al.‘'s OOPLSA 2001
techniques!?

® |ow-level analysis for all classes while the scope of classes that
are affected by modification can be partitioned using a class
hierarchy analysis

® How did they address these limitations?

® For each type with modification, identify its superclasses and
subclasses as well as classes that have direct dependence on
them through explicit references.

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

Evaluation of Orso et. al’s RTS

® What are main research questions raised by Orso et al.?

® RQI:Cost comparison with edge-level selection (that
does not use partitioning analysis)

® RQ2: Cost comparison with high-level selection
(without CFG edge level analysis)

® RQ3: Cost comparison (test selection + running
selected tests) vs. re-running all tests

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

Path Spectra [Reps et. al.1997]

® The use of program profiling for software maintenance
with applications to the Y2K problem

e ESEC/FSE 1997

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

What is Program Profiling?

® Recording behavior of a program during execution

® What can you measure about a program!?

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

Program Profiling

Memory usage; e.g., heap size over time. # of times a garbage
collector was called.

The depth of a stack, etc.

Coverage

® Function coverage: Has each function been executed?

® Statement coverage: Has each statement been executed?

Branch coverage: Has each control structure evaluated both
true and false!?

Path coverage: Has every possible route been executed!?

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

Motivation of Reps et al.

® Y2K problem

® Would my program have erroneous behavior when
run on input year = 2001?

=>Would my program exercise a different path during

program execution in comparison to input year=
{1900, 1901, 1902, I999}7

=> How can we concisely represent path profiles for a
set of inputs (in order to do this profile comparison)!?

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

Research Problem addressed
by Reps et al.

Given two different sets of inputs for the same program,
how can we reason about path-profile differences
(divergences?

What is an appropriate representation for reasoning
about program path profiles for a set of inputs!?

What is an efficient numbering scheme for loop-free
paths!?

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

Recap (1)

Software evolution may introduce regression faults.

Regression testing intends to check preservation of
desirable program behavior and to prevent undesirable
program behavior (regression faults) through testing.

Given a test suite T, two program versions, RTS selects a
subset of T that have a potential to reveal regression
faults.

RTS needs three building tools: (1) program differencing
tool, (2) coverage gathering tool, and (3) test selection
algorithm.

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

Recap (2)

® Regression testing is an exciting research area with
practical impact on software evolution.

® Test Selection
® Test Prioritization
Test Minimization

Test Generation & Augmentation

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

Future Direction:
Behavior Differencing

® | am *personally* excited about this problem.

® Given a test suite T, and two program versions Po and Pn

® What is an appropriate representation of behavioral differences caused
by source code change between Po and Pn?

How can we effectively identify behavioral differences with respect to
such representation?

Can we use similarities (systematicness) among individual differences to
concisely represent the differences? If so, can inconsistencies be used for
identifying potential bugs introduced by code modifications?

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

Preview for Next Week

Change Impact Analysis by Ren et al. OOPSLA 2004

We will move on to a new topic, reverse engineering and
knowledge discovery => software metrics & visualization

® Murphy et al. Software Reflexion Model (Wed, 4/15)
® Lanza et al. Polymetric Views (Mon, 4/20)

Literature Survey and Project Final Report Draft is due
on Apr 21| Tuesday. Less than 2 weeks from now.

| will publish grading guidelines for the literature survey &
project final report.

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

