
EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

Lecture 21
Regression Testing

Path Spectra

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

Today’s Agenda (1)

• Regression Test Selection

• Presentation by David (skeptic)

• Path Spectra

• Presentation by Sidd (advocate)

• Presentation by Srinivas (skeptic)

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

Today’s Agenda (2)

• Research problems in regression testing

• Regression test selection

• Regression test prioritization

• Regression test augmentation

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

Today’s Agenda (3)

• Orso et al.‘s FSE 2004 on regression test selection for
Java program

• Focus on Rothermel & Harrold 1997 Algorithm

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

What is Regression Testing?

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

What is Regression Testing?

• Regression testing is performed on modified software to
provide confidence that

• software behaves correctly and

• modifications did not adversely impact software
quality.

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

Regression Testing

• Test Case (t)

• e.g. JUnit test

• Test suite: a set of test cases, T= {t1, t2, t3, ... tn}

• Regression testing intends to identify regression fault
introduced due to changes.

• Regression test strategy?

• The most naive one is to rerun every test case in the
test suite.

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

Regression Test Selection

• P: old version

• P’: new version

• T is a test suite for P

• Assume that all tests in T ran on P. => Generate coverage
matrix C.

• Given the delta between P and P’ and the coverage
matrix C, identify a subset of T that can identify all
regression faults. (Safe RTS)

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

Regression Test Prioritization

• P: old version

• P’: new version

• T is a test suite for P

• Assume that programmers do not have enough time to select
and run test cases.

• How can we order test cases so that test cases that run early can
provide the most benefit when the time is limited?

• Given the delta between P and P’ and C, what is an ordering of
test cases in T?

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

Regression Test Augmentation

• P: old version

• P’: new version

• T is a test suite for P

• Generate a set of test cases that effectively exercise the delta
between P and P’.

• In other words, it is a test generation for evolving programs.

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

Regression Test Selection

• “Scaling Regression Testing to Large Software Systems.”

• A. Orso, N. Shi and M. J. Harrold

• FSE 2004

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

Harrold & Rothermel’s RTS

• A safe, efficient regression test selection technique

• TOSEM 1997

• RTS based on graph traversal

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

Build CFG

specifications for P and P!, respectively. P(i) refers to the output of P on
input i; P!(i) refers to the output of P! on input i; S(i) refers to the
specified output for P on input i; and S!(i) refers to the specified output for
P! on input i. Let T be a set of tests (a test suite) created to test P. A test is
a three-tuple, "identifier, input, output#, in which identifier identifies the
test; input is the input for that execution of the program; and output is the
specified output, S(input), for this input. For simplicity, the sequel refers to
a test "t, i, S(i)# by its identifier t and refers to the outputs P(i) and S(i) of
test t for input i as P(t) and S(t), respectively.

2.1 Control Flow Graphs

A control flow graph (CFG) for procedure P contains a node for each simple
or conditional statement in P; edges between nodes represent the flow of
control between statements. Figure 1 shows procedure avg and its CFG. In
the figure, statement nodes, shown as ellipses, represent simple statements.
Predicate nodes, shown as rectangles, stand for conditional statements.
Labeled edges (branches) leaving predicate nodes represent control paths
taken when the predicate evaluates to the value of the edge label. State-
ment and predicate nodes are labeled to indicate the statements in P to
which they correspond. The figure uses statement numbers as node labels;
however, the actual code of the associated statements could also serve as
labels. Case statements can be represented in CFGs as nested if-else
statements; in this case, every CFG node has either one unlabeled out edge
or two out edges labeled “T” and “F.” Declarations and nonexecutable
initialization statements can be represented collectively as a single node
labeled “D,” associated with this node in the order in which they are
encountered by the compiler. (Section 3.1.4 discusses other methods for
handling case statements, declarations, and other types of nonexecutable
initialization statements.) A unique entry node and a unique exit node
represent entry to and exit from P, respectively. The CFG for a procedure P
has size and can be constructed in time, linear in the number of simple and
conditional statements in P [Aho et al. 1986].

Fig. 1. Procedure avg and its CFG.

A Safe, Efficient Regression Test Selection Technique • 175

ACM Transactions on Software Engineering and Methodology, Vol. 6, No. 2, April 1997.

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

Run T = {t1, t2, ...} on P

•

Code Instrumentation. Let P be a program with CFG G. P can be
instrumented such that when the instrumented version of P is executed
with test t, it records a branch trace that consists of the branches taken
during this execution. This branch trace information can be used to
determine which edges in G were traversed when t was executed: an edge
(n1, n2) in G is traversed by test t if and only if, when P is executed with t,
the statements associated with n1 and n2 are executed sequentially at least
once during the execution. The information thus gathered is called an edge
trace for t on P. An edge trace for t on P has size linear in the number of
edges in G and can be represented by a bit vector.

Given test suite T for P, a test history for P with respect to T is
constructed by gathering edge trace information for each test in T and
representing it such that for each edge (n1, n2) in G the test history
records the tests that traverse (n1, n2). This representation requires
O(e !T !) bits, where e is the number of edges in G, and !T ! is the number of
tests in T. For CFGs of the form defined above, e is no greater than twice
the number of nodes in G; thus e is linear in the size of P. Table I reports

Table I. Test Information and Test History for Procedure avg

Test Information

Test Type Output Edges Traversed

t1 Empty File 0 (entry, D), (D, S1), (S1, S2) (S2, P3)
(P3, S9), (S9, S10), (S10, exit)

t2 !1 Error (entry, D) (D, S1), (S1, S2), (S2, P3),
(P3, P4), (P4, S5), (S5, exit)

t3 1 2 3 2 (entry, D) (D, S1), (S1, S2), (S2, P3), (P3,
P4),
(P4, S6), (S6, S7), (S7, S8), (S8, P3),
(P3, S9), (S9, S10), (S10, exit)

Test History

Edge TestsOnEdge(edge)

(entry, D) 111
(D, S1) 111
(S1, S2) 111
(S2, P3) 111
(P3, P4) 011
(P3, S9) 101
(P4, S5) 010
(P4, S6) 001
(S5, exit) 010
(S6, S7) 001
(S7, S8) 001
(S8, P3) 001
(S9, S10) 101
(S10, exit) 101

176 • Gregg Rothermel and Mary Jean Harrold

ACM Transactions on Software Engineering and Methodology, Vol. 6, No. 2, April 1997.

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

Run T = {t1, t2, ...} on P

•

Code Instrumentation. Let P be a program with CFG G. P can be
instrumented such that when the instrumented version of P is executed
with test t, it records a branch trace that consists of the branches taken
during this execution. This branch trace information can be used to
determine which edges in G were traversed when t was executed: an edge
(n1, n2) in G is traversed by test t if and only if, when P is executed with t,
the statements associated with n1 and n2 are executed sequentially at least
once during the execution. The information thus gathered is called an edge
trace for t on P. An edge trace for t on P has size linear in the number of
edges in G and can be represented by a bit vector.

Given test suite T for P, a test history for P with respect to T is
constructed by gathering edge trace information for each test in T and
representing it such that for each edge (n1, n2) in G the test history
records the tests that traverse (n1, n2). This representation requires
O(e !T !) bits, where e is the number of edges in G, and !T ! is the number of
tests in T. For CFGs of the form defined above, e is no greater than twice
the number of nodes in G; thus e is linear in the size of P. Table I reports

Table I. Test Information and Test History for Procedure avg

Test Information

Test Type Output Edges Traversed

t1 Empty File 0 (entry, D), (D, S1), (S1, S2) (S2, P3)
(P3, S9), (S9, S10), (S10, exit)

t2 !1 Error (entry, D) (D, S1), (S1, S2), (S2, P3),
(P3, P4), (P4, S5), (S5, exit)

t3 1 2 3 2 (entry, D) (D, S1), (S1, S2), (S2, P3), (P3,
P4),
(P4, S6), (S6, S7), (S7, S8), (S8, P3),
(P3, S9), (S9, S10), (S10, exit)

Test History

Edge TestsOnEdge(edge)

(entry, D) 111
(D, S1) 111
(S1, S2) 111
(S2, P3) 111
(P3, P4) 011
(P3, S9) 101
(P4, S5) 010
(P4, S6) 001
(S5, exit) 010
(S6, S7) 001
(S7, S8) 001
(S8, P3) 001
(S9, S10) 101
(S10, exit) 101

176 • Gregg Rothermel and Mary Jean Harrold

ACM Transactions on Software Engineering and Methodology, Vol. 6, No. 2, April 1997.

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

Build Edge Coverage Matrix

Code Instrumentation. Let P be a program with CFG G. P can be
instrumented such that when the instrumented version of P is executed
with test t, it records a branch trace that consists of the branches taken
during this execution. This branch trace information can be used to
determine which edges in G were traversed when t was executed: an edge
(n1, n2) in G is traversed by test t if and only if, when P is executed with t,
the statements associated with n1 and n2 are executed sequentially at least
once during the execution. The information thus gathered is called an edge
trace for t on P. An edge trace for t on P has size linear in the number of
edges in G and can be represented by a bit vector.

Given test suite T for P, a test history for P with respect to T is
constructed by gathering edge trace information for each test in T and
representing it such that for each edge (n1, n2) in G the test history
records the tests that traverse (n1, n2). This representation requires
O(e !T !) bits, where e is the number of edges in G, and !T ! is the number of
tests in T. For CFGs of the form defined above, e is no greater than twice
the number of nodes in G; thus e is linear in the size of P. Table I reports

Table I. Test Information and Test History for Procedure avg

Test Information

Test Type Output Edges Traversed

t1 Empty File 0 (entry, D), (D, S1), (S1, S2) (S2, P3)
(P3, S9), (S9, S10), (S10, exit)

t2 !1 Error (entry, D) (D, S1), (S1, S2), (S2, P3),
(P3, P4), (P4, S5), (S5, exit)

t3 1 2 3 2 (entry, D) (D, S1), (S1, S2), (S2, P3), (P3,
P4),
(P4, S6), (S6, S7), (S7, S8), (S8, P3),
(P3, S9), (S9, S10), (S10, exit)

Test History

Edge TestsOnEdge(edge)

(entry, D) 111
(D, S1) 111
(S1, S2) 111
(S2, P3) 111
(P3, P4) 011
(P3, S9) 101
(P4, S5) 010
(P4, S6) 001
(S5, exit) 010
(S6, S7) 001
(S7, S8) 001
(S8, P3) 001
(S9, S10) 101
(S10, exit) 101

176 • Gregg Rothermel and Mary Jean Harrold

ACM Transactions on Software Engineering and Methodology, Vol. 6, No. 2, April 1997.

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

Traverse two CFGs in parallel

labels differ along some pair of identically labeled edges, tests that traverse
the edges are modification-traversing due to changes in the code associated
with those successors. In this case Compare selects those tests. If N and N!
have successors whose labels are the same along a pair of identically
labeled edges, Compare continues along the edges in G and G! by invoking
itself on those successors.

Lines 7–20 of Figure 2 describe Compare’s actions more precisely. When
Compare is called with CFG nodes N and N!, Compare first marks node N
“N!-visited” (line 8). After Compare has been called once with N and N! it
does not need to consider them again—this marking step lets Compare
avoid revisiting pairs of nodes. Next, in the for loop of lines 9–19, Compare
considers each control flow successor of N. For each successor C, Compare
locates the label L on the edge from N to C, then seeks the node C! in G!
such that (N!, C!) has label L; if (N, C) is unlabeled ! is used for the edge
label. Next, Compare considers C and C!. If C is marked “C!-visited,”
Compare has already been called with C and C!, so Compare does not take
any action with C and C!. If C is not marked “C!-visited,” Compare calls
LEquivalent with C and C!. The LEquivalent function takes a pair of nodes N
and N! and determines whether the statements S and S! associated with N
and N! are lexicographically equivalent. If LEquivalent(C, C!) is false, then
tests that traverse edge (N, C) are modification-traversing for P and P!;
Compare uses TestsOnEdge to identify these tests and adds them to T!. If
LEquivalent(C, C!) is true, Compare invokes itself on C and C! to continue
the graph traversals beyond these nodes.

We next consider several examples that illustrate how SelectTests works.
Figure 3 presents procedure avg2 and the CFG for avg2; avg2 is a modified
version of procedure avg, shown in Figure 1. In avg2, statement S7 has
erroneously been deleted, and statement S5a has been added. When called
with avg and avg2, and with test suite T (shown in Table I), SelectTests
initializes T! to ", constructs the CFGs for the two procedures, and calls
Compare with entry and entry!. Compare marks entry “entry!-visited” and
then considers the successor of entry, D. Compare finds that D! is the

Fig. 3. Procedure avg2 and its CFG.

A Safe, Efficient Regression Test Selection Technique • 181

ACM Transactions on Software Engineering and Methodology, Vol. 6, No. 2, April 1997.

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

Traverse two CFGs in parallel

labels differ along some pair of identically labeled edges, tests that traverse
the edges are modification-traversing due to changes in the code associated
with those successors. In this case Compare selects those tests. If N and N!
have successors whose labels are the same along a pair of identically
labeled edges, Compare continues along the edges in G and G! by invoking
itself on those successors.

Lines 7–20 of Figure 2 describe Compare’s actions more precisely. When
Compare is called with CFG nodes N and N!, Compare first marks node N
“N!-visited” (line 8). After Compare has been called once with N and N! it
does not need to consider them again—this marking step lets Compare
avoid revisiting pairs of nodes. Next, in the for loop of lines 9–19, Compare
considers each control flow successor of N. For each successor C, Compare
locates the label L on the edge from N to C, then seeks the node C! in G!
such that (N!, C!) has label L; if (N, C) is unlabeled ! is used for the edge
label. Next, Compare considers C and C!. If C is marked “C!-visited,”
Compare has already been called with C and C!, so Compare does not take
any action with C and C!. If C is not marked “C!-visited,” Compare calls
LEquivalent with C and C!. The LEquivalent function takes a pair of nodes N
and N! and determines whether the statements S and S! associated with N
and N! are lexicographically equivalent. If LEquivalent(C, C!) is false, then
tests that traverse edge (N, C) are modification-traversing for P and P!;
Compare uses TestsOnEdge to identify these tests and adds them to T!. If
LEquivalent(C, C!) is true, Compare invokes itself on C and C! to continue
the graph traversals beyond these nodes.

We next consider several examples that illustrate how SelectTests works.
Figure 3 presents procedure avg2 and the CFG for avg2; avg2 is a modified
version of procedure avg, shown in Figure 1. In avg2, statement S7 has
erroneously been deleted, and statement S5a has been added. When called
with avg and avg2, and with test suite T (shown in Table I), SelectTests
initializes T! to ", constructs the CFGs for the two procedures, and calls
Compare with entry and entry!. Compare marks entry “entry!-visited” and
then considers the successor of entry, D. Compare finds that D! is the

Fig. 3. Procedure avg2 and its CFG.

A Safe, Efficient Regression Test Selection Technique • 181

ACM Transactions on Software Engineering and Methodology, Vol. 6, No. 2, April 1997.

Select all test cases
that visited (P4, P5)

and (S6, S7)

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

Recap: RTS Framework

PoPn

Program Differencing Tool
=> Identify Changes between

Po and Pn

T ={t1, t2, ..tn}

Profiling Tool
=> Collect Coverage of T on Po

Regression Test Selection

Coverage Matrix Delta

T’ ⊂ T

(Dangerous Entities)

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

Harrold et al. RTS for Java

• Regression Test Selection for Java Software

• OOPSLA 2001

• What are main challenges for making RTS work in Java?

• How did Harrold et al. address challenges for Java
software?

• What are differences between this work and Harrold et
al.’s RTS for procedural languages?

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

Main Challenges for making
RTS work in Java

• Java language features: in particular, (1) polymorphism, (2)
dynamic binding, and (3) exception handling

• Why is polymorphism & dynamic binding difficult to
handle in RTS?

•

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

Main Challenges for making
RTS work in Java

• Java language features: in particular, (1) polymorphism, (2)
dynamic binding, and (3) exception handling

• Why is polymorphism & dynamic binding difficult to
handle in RTS?

• The target of method calls depends on the dynamic
type of a receiver object.

6 void bar(A p) {

7 A.foo();

8 p.m();

9 }

4 public void m(){...};

1 class B extends A {

2 };

3 class C extends B {

5 };

6 void bar(A p) {

7 A.foo();

8 p.m();

9 }

4 public void m(){...};

1 class B extends A {

2 };

3 class C extends B {

5 };

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

A few other enhancements

• Eternal libraries and components

• Why is it important to model interaction between the
main code and its libraries?

•

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

A few other enhancements

• Eternal libraries and components

• Why is it important to model interaction between the
main code and its libraries?

• External library code can invoke internal methods if
the internal methods override external methods.

class B extends A {

 public void foo() {...};

}

class C extends B {

 public void bar() {...};

};

class B extends A {

 public void foo() {...};
 public void bar() {...};

}

class C extends B {

};

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

Orso et. al.’s Scalable RTS

• Scalable Regression Test Selection for Java

• FSE 2004

• What are main limitations for Harrold et al.‘s OOPLSA
2001 techniques?

• How did they address these limitations?

•

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

Orso et. al.’s Scalable RTS

• Scalable Regression Test Selection for Java, FSE 2004

• What are main limitations for Harrold et al.‘s OOPLSA 2001
techniques?

• low-level analysis for all classes while the scope of classes that
are affected by modification can be partitioned using a class
hierarchy analysis

• How did they address these limitations?

• For each type with modification, identify its superclasses and
subclasses as well as classes that have direct dependence on
them through explicit references.

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

Evaluation of Orso et. al.’s RTS

• What are main research questions raised by Orso et al.?

• RQ1: Cost comparison with edge-level selection (that
does not use partitioning analysis)

• RQ2: Cost comparison with high-level selection
(without CFG edge level analysis)

• RQ3: Cost comparison (test selection + running
selected tests) vs. re-running all tests

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

Path Spectra [Reps et. al.1997]

• The use of program profiling for software maintenance
with applications to the Y2K problem

• ESEC/FSE 1997

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

What is Program Profiling?

• Recording behavior of a program during execution

• What can you measure about a program?

•

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

Program Profiling

• Memory usage; e.g., heap size over time. # of times a garbage
collector was called.

• The depth of a stack, etc.

• Coverage

• Function coverage: Has each function been executed?

• Statement coverage: Has each statement been executed?

• Branch coverage: Has each control structure evaluated both
true and false?

• Path coverage: Has every possible route been executed?

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

Motivation of Reps et al.

• Y2K problem

• Would my program have erroneous behavior when
run on input year = 2001?

• => Would my program exercise a different path during
program execution in comparison to input year=
{1900, 1901, 1902, 1999}?

• => How can we concisely represent path profiles for a
set of inputs (in order to do this profile comparison)?

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

Research Problem addressed
by Reps et al.

• Given two different sets of inputs for the same program,
how can we reason about path-profile differences
(divergences?

• What is an appropriate representation for reasoning
about program path profiles for a set of inputs?

• What is an efficient numbering scheme for loop-free
paths?

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

Recap (1)

• Software evolution may introduce regression faults.

• Regression testing intends to check preservation of
desirable program behavior and to prevent undesirable
program behavior (regression faults) through testing.

• Given a test suite T, two program versions, RTS selects a
subset of T that have a potential to reveal regression
faults.

• RTS needs three building tools: (1) program differencing
tool, (2) coverage gathering tool, and (3) test selection
algorithm.

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

Recap (2)

• Regression testing is an exciting research area with
practical impact on software evolution.

• Test Selection

• Test Prioritization

• Test Minimization

• Test Generation & Augmentation

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

Future Direction:
Behavior Differencing

• I am *personally* excited about this problem.

• Given a test suite T, and two program versions Po and Pn

• What is an appropriate representation of behavioral differences caused
by source code change between Po and Pn?

• How can we effectively identify behavioral differences with respect to
such representation?

• Can we use similarities (systematicness) among individual differences to
concisely represent the differences? If so, can inconsistencies be used for
identifying potential bugs introduced by code modifications?

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

Preview for Next Week

• Change Impact Analysis by Ren et al. OOPSLA 2004

• We will move on to a new topic, reverse engineering and
knowledge discovery => software metrics & visualization

• Murphy et al. Software Reflexion Model (Wed, 4/15)

• Lanza et al. Polymetric Views (Mon, 4/20)

• Literature Survey and Project Final Report Draft is due
on Apr 21 Tuesday. Less than 2 weeks from now.

• I will publish grading guidelines for the literature survey &
project final report.

