
EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

Lecture 22
Path Spectra

Change Impact Analysis

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

Today’s Agenda (1)

• Recap of RTS

• Brief Discussion on Program Profiling

• Class activity on statement, branch and path coverage

• Presentation

• Reza (advocate)

• Xin (skeptic)

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

Today’s Agenda (2)

• Chianti change impact analysis framework

• First phase: affected test identification

• Second phase: isolation of failure-inducing deltas

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

Recap of RTS (1)

• Software evolution may introduce regression faults.

• Regression testing intends to check preservation of
desirable program behavior and to prevent undesirable
program behavior (regression faults) through testing.

• Given a test suite T, two program versions, RTS selects a
subset of T that have a potential to reveal regression
faults.

• RTS needs three building blocks: (1) program differencing
tool, (2) coverage gathering tool, and (3) test selection
algorithm.

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

Recap of RTS (2)

• Regression testing is an exciting research area with
practical impact on software evolution.

• Test Selection

• Test Prioritization

• Test Minimization

• Test Generation & Augmentation

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

Path Spectra [Reps et. al.1997]

• The use of program profiling for software maintenance
with applications to the Y2K problem

• ESEC/FSE 1997

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

What is Program Profiling?

• Recording behavior of a program during execution

• What can you record about a program’s execution behavior?

• covered methods/ exercised methods

• sequence / ordering of exercised methods (program elements)

• running time

• branch coverage, path coverage

• memory usages - heap object allocation, etc

• number of threads / thread schedule

•

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

Program Profiling

• Memory usage; e.g., heap size over time. # of times a garbage
collector was called.

• The depth of a stack, etc.

• Coverage

• Function coverage: Has each function been executed?

• Statement coverage: Has each statement been executed?

• Branch coverage: Has each control structure evaluated both
true and false?

• Path coverage: Has every possible route been executed?

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

Class Activity:
Branch and Path Coverage

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

S1: condition 1

begin

S3: condition 2

S5: condition 3

b1

S2: x++;
b2

b3

S4: x--;
b4

b5

S6: x=x; b6

s7return x;

input covered
statements

covered
branches

covered
paths

(cond1=true,
cond2=true,
cond3=true)

s1, s2, s3, s4,
s5, s6, s7 b1, b3, b5 [b1, b3, b5]

coverage % 100% 50% 12.5%

(cond1=false,
cond2=false,
cond3=false)

s1,s3, s5,s7 b2, b4, b6 [b2,b4,b6]

coverage % 100% 100% 25%

(cond1=false,
cond2=true,
cond3=true)

s1,s3,s4,s5,s6,
s7 b2, b3, b5 [b2,b3,b5]

coverage % 100% 100% 37.5%

UT EID:
Name:

Fill out the following code coverage table by
running the returnInput with the following

input

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

Motivation of Reps et al.

• Y2K problem

• Would my program have erroneous behavior when
run on input year = 2001?

• => Would my program exercise a different path during
program execution in comparison to input year=
{1900, 1901, 1902, 1999}?

• => How can we concisely represent path profiles for a
set of inputs (in order to do this profile comparison)?

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

Research Problem addressed
by Reps et al.

• Given two different sets of inputs for the same program,
how can we reason about path-profile differences
(divergences?

• What is an appropriate representation for reasoning
about program path profiles for a set of inputs?

• What is an efficient numbering scheme for loop-free
paths?

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

Class Presentations on Chianti

• Reza

• Xin

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

Change Impact Analysis

• Given the differences between Po and Pn, identify code in
Po that are potentially affected by the differences.

• e.g. find all methods that are called after the changed
method.

• e.g. find all methods that are called after a changed
method p and are on the call stack after p returns.

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

Chianti

• A change impact analysis tool

• Ren et al.

• OOPSLA 2004

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

Motivation

• To allow programmers to experiment with different edits
(e.g. if the edits lead to failure, then use alternative edits.)

• To reduce the amount of time and efforts for running
regression tests (similar to RTS)

• To reduce the amount of time spent in debugging (similar
to fault localization & delta debugging)

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

Change Impact Analysis
Problem Framework

• Input

• Po (old version)

• Pn (new version)

• Delta between Po and Pn

• A test suite T for Po

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

Two Research Questions in
Chianti

• First phase: Which test cases do I have to rerun on Pn to
identify potential regression faults? (Very similar to RTS
problem)

• Second phase: For those tests that were selected &
failed, which subset of the delta between Po and Pn led
to behavior differences?

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

Recap: RTS Framework

PoPn

Program Differencing Tool
=> Identify Changes between

Po and Pn

T ={t1, t2, ..tn}

Profiling Tool
=> Collect Coverage of T on Po

Regression Test Selection

Coverage Matrix Delta

T’ ⊂ T

(Dangerous Entities)

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

Chianti Framework
First Phase

PoPn

Program Differencing Tool
=> Identify Changes between

Po and Pn

T ={t1, t2, ..tn}

Profiling Tool
=> Run T on Po

Affected Test Selection

Dynamic Call GraphDelta

T’ ⊂ T

(Dangerous Entities)

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

Chianti Framework
Second Phase

Affected Test Selection

T’ ⊂ TPn

Program Differencing Tool
=> Identify Changes between

Po and Pn

Profiling Tool
=> Run T’ on Pn

Dynamic Call GraphDelta

Isolating Failure-Inducing Change

D’ ⊂ Delta

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

How to select affected tests
 T’ ⊂ T ?

• Identify a test if its dynamic call graph on the old version
contains a node that corresponds to a change method
(CM) or deleted method (DM)

• Or if the call graph contains an edge that corresponds to
a lookup change (LC)

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

How to isolate changes
 Delta’ ⊂ Delta ?

• All atomic changes for added methods (AM) and changed
methods (CM) that correspond to a node in the dynamic
call graph of the new program version, Pn

• Atomic changes in the lookup change (LC) that
correspond to an edge in the dynamic of the new
program version.

• Their transitively prerequisite atomic changes.

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

Recap

• We learned how statement coverage, branch coverage
and path coverage are different from one another.

• Chianti combines the regression test selection problem
and fault localization problem.

• Chianti models a program delta as a set of
interdependent atomic changes.

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

Preview for
This Wed & Next Mon

• We will move on to a new topic, reverse engineering and
knowledge discovery => software metrics & visualization

• Murphy et al. Software Reflexion Model (Wed, 4/15)

• Lanza et al. Polymetric Views (Mon, 4/20)

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

Announcement

• Preliminary grading guidelines for projects / literature
surveys are uploaded on the blackboard.

• I am thinking about having a quiz on Chianti or Software
Reflexion Model paper. If we have one, it will be this
wednesday or next monday.

• There is no class lecture on Apr 29th. Use it for your
project presentation & report preparation.

