Lecture 22

Path Spectra
Change Impact Analysis

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

Today’s Agenda (1)

Recap of RTS

Brief Discussion on Program Profiling

Class activity on statement, branch and path coverage
Presentation

® Reza (advocate)

® Xin (skeptic)

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

Today’s Agenda (2)

® Chianti change impact analysis framework
® First phase: affected test identification

® Second phase:isolation of failure-inducing deltas

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

Recap of RTS (I)

Software evolution may introduce regression faults.

Regression testing intends to check preservation of
desirable program behavior and to prevent undesirable
program behavior (regression faults) through testing.

Given a test suite T, two program versions, RTS selects a
subset of T that have a potential to reveal regression
faults.

RTS needs three building blocks: (1) program differencing
tool, (2) coverage gathering tool, and (3) test selection
algorithm.

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

Recap of RTS (2)

® Regression testing is an exciting research area with
practical impact on software evolution.

® Test Selection
® Test Prioritization
Test Minimization

Test Generation & Augmentation

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

Path Spectra [Reps et. al.1997]

® The use of program profiling for software maintenance
with applications to the Y2K problem

e ESEC/FSE 1997

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

What is Program Profiling?

® Recording behavior of a program during execution
® What can you record about a program’s execution behavior?
® covered methods/ exercised methods
sequence / ordering of exercised methods (program elements)
running time
branch coverage, path coverage
memory usages - heap object allocation, etc

number of threads / thread schedule

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

Program Profiling

Memory usage; e.g., heap size over time. # of times a garbage
collector was called.

The depth of a stack, etc.

Coverage

® Function coverage: Has each function been executed?

® Statement coverage: Has each statement been executed?

Branch coverage: Has each control structure evaluated both
true and false!?

Path coverage: Has every possible route been executed!?

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

Class Activity:
Branch and Path Coverage

111 rights reserv i 11: adu] naterials are made

available under th .erms of the Eclipse ense v1.0 which

ibution, and is

package com.codign.sample.pathexample;
public class PathExample {

public int returnInput(int x, boolean conditionl,
boolean conditionZ,
boolean condition3)
if (conditionl) {
x++:|
}
if (condition2) {
X==7
¥
if (condition3) {
X=X
}

return x;

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

|

S|: condition |

bll

S2: x++;

\ S3: condition 2
% l

S4: x--;
l S5: condition 3

b5

S6: x=x;

Y

s/return Xx;

Fill out the following code coverage table by
running the returninput with the following
input

input

covered
statements

covered
branches

covered
paths

(cond|=true,
cond2=true,
cond3=true)

sl,s2,s3,s4,
s5, s6,s7

bl, b3, b5

[bl, b3, b5]

coverage %

100%

(cond | =false,
cond2=false,
cond3=false)

sl,s3,s5,s7

b2, b4, bé

[b2,b4,b6]

coverage %

100%

(condl=false,
cond2=true,
cond3=true)

sl,s3,s4,s5,s6,
s/

b2, b3, b5

[b2,b3,b5]

coverage %

100%

100%

37.5%

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

Motivation of Reps et al.

® Y2K problem

® Would my program have erroneous behavior when
run on input year = 2001?

=>Would my program exercise a different path during

program execution in comparison to input year=
{1900, 1901, 1902, I999}7

=> How can we concisely represent path profiles for a
set of inputs (in order to do this profile comparison)!?

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

Research Problem addressed
by Reps et al.

Given two different sets of inputs for the same program,
how can we reason about path-profile differences
(divergences?

What is an appropriate representation for reasoning
about program path profiles for a set of inputs!?

What is an efficient numbering scheme for loop-free
paths!?

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

Class Presentations on Chianti

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

Change Impact Analysis

® Given the differences between Po and Pn, identify code in
Po that are potentially affected by the differences.

e.g. find all methods that are called after the changed
method.

e.g. find all methods that are called after a changed
method p and are on the call stack after p returns.

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

Chianti

® A change impact analysis tool
® Renetal

e OOPSLA 2004

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

Motivation

To allow programmers to experiment with different edits
(e.g. if the edits lead to failure, then use alternative edits.)

To reduce the amount of time and efforts for running
regression tests (similar to RTYS)

To reduce the amount of time spent in debugging (similar
to fault localization & delta debugging)

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

Change Impact Analysis
Problem Framework

® Input
Po (old version)
Pn (new version)
Delta between Po and Pn

A test suite T for Po

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

Two Research Questions in
Chianti

® First phase:Which test cases do | have to rerun on Pn to
identify potential regression faults? (Very similar to RTS

problem)

Second phase: For those tests that were selected &
failed, which subset of the delta between Po and Pn led

to behavior differences?

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

Recap: RTS Framework

Pn Po T ={tl, t2, ..tn}
/

Program Differencing Tool

=> |dentify Changes between
Po and Pn

1 l

D e Ita (Dangerous Entities) C Ove rage M a_t rix

\/

Regression Test Selection

!
el

Profiling Tool
=> Collect Coverage of T on Po

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

Chianti Framework
First Phase

Pn Po T ={tl, t2, ..tn}
/

Program Differencing Tool

=> |dentify Changes between _zr;ﬁhquooFl
Po and Pn T onEe

Delta oo enices Dynamic Call Graph

\

Affected Test Selection

!
el

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

Chianti Framework
Second Phase

Affected Test Selection

!
Pn Jouael

s il

Program Differencing Tool

=> |dentify Changes between _Eré)ﬁhr_\rg’TooIID
Po and Pn o

1 1
Delta Dynamic Call Graph

\

Isolating Failure-Inducing Change

D’ c Delta

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

How to select affected tests
T cT?

® Identify a test if its dynamic call graph on the old version
contains a node that corresponds to a change method
(CM) or deleted method (DM)

® Or if the call graph contains an edge that corresponds to
a lookup change (LC)

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

How to isolate changes
Delta’ ¢ Delta ?

® All atomic changes for added methods (AM) and changed
methods (CM) that correspond to a node in the dynamic
call graph of the new program version, Pn

® Atomic changes in the lookup change (LC) that
correspond to an edge in the dynamic of the new
program version.

® Their transitively prerequisite atomic changes.

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

Recap

We learned how statement coverage, branch coverage
and path coverage are different from one another.

Chianti combines the regression test selection problem
and fault localization problem.

Chianti models a program delta as a set of
interdependent atomic changes.

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

Preview for
This VWed & Next Mon

® We will move on to a new topic, reverse engineering and
knowledge discovery => software metrics & visualization

® Murphy et al. Software Reflexion Model (Wed, 4/15)

® Lanza et al. Polymetric Views (Mon, 4/20)

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

Announcement

® Preliminary grading guidelines for projects / literature
surveys are uploaded on the blackboard.

| am thinking about having a quiz on Chianti or Software
Reflexion Model paper. If we have one, it will be this
wednesday or next monday.

There is no class lecture on Apr 29th. Use it for your
project presentation & report preparation.

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

