Lecture 22

Knowledge Recovery and Software Reflexion Model

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

Today’s Agenda (1)

® Recap of Chianti

® Software Reflexion Model

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

Today’s Agenda (2)

® Discussion on application of software evolution research
to development practices.

® [nformation hiding principle
® Concern graph
Delta debugging

Regression test selection

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

Recap of Chianti (1)

® Chianti is a dynamic change impact analysis tool.

Chianti analyzes differences between two versions as a
set of atomic changes.

. Chianti identifies a subset of regression tests that may

change their behavior by identifying dynamic call graphs
that include these changes. (Similar to RTYS)

. For each of those selected tests, Chianti identifies a

subset of deltas that are responsible for behavior
differences in those tests. (Similar to Isolation of fault-
inducing changes)

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

Chianti Framework
First Phase

Pn Po T ={tl, t2, ..tn}
/

Program Differencing Tool

=> |dentify Changes between _zr;ﬁhquooFl
Po and Pn T onEe

Delta oo enices Dynamic Call Graph

\

Affected Test Selection

!
el

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

Chianti Framework
Second Phase

Affected Test Selection

!
Pn Jouael

s il

Program Differencing Tool

=> |dentify Changes between _Eré)ﬁhr_\rg’TooIID
Po and Pn o

1 1
Delta Dynamic Call Graph

\

Isolating Failure-Inducing Change

D’ c Delta

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

Software Reflexion Model

® Software Reflexion Models: Bridging the Gap between
Design and Implementation, TSE 2001 (Extended Journal
Version)

® Original published in 1995.

® Software Reflexion Models: Bridging the Gap between
Source and High-Level Models. FSE 1995

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

Motivation

® What is this paper’s motivation?

® The drift between design and implementation happens
during software evolution.

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

Research Problem

® Limitation of alternative existing approaches

lgnore the existing design document and rely on
source code. => hard to understand source code
(scalability) (initial investment on creating design doc
does not pay off)

Rely on informal diagrams or design documents. =>
cannot have confidence / limited information
inaccurate

Derive high-level models from source code. =>
cluttered,

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

Research Problem

® Limitation of alternative / existing approaches

lgnore the existing design document and rely on
source code. => Source code or what reverse
engineering tools would extract is overwhelming to
programmers.

Rely on informal diagrams or design documents =>
Models are not always accurate.

Derive high-level models from source code => These
may be different from what programmers expect to
see.

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

Reflexion Model Approach

. Enable a software engineer to produce a reasonable first-
cut of a high-level model.

. Enable him to map the high-level model and source code.

. Then the reflexion model tool computes agreement and
disagreement between the high-level model and the
source code.

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

Step |.Write a

high-level
model

Step 2. Extract a model from the
program

e Use either a static analysis (source code) or a dynamic
analysis (runtime execution).

e Call graph extraction

e Run time analysis (function calls, call sequences, event
monitoring, etc.)

e e.g Field, Rigi, Shrimp, etc.

Step 3. Define mappings between
the high-level model and code.

[file=.*pager.* mapTo=Pager]

[file=vm_map.* mapTo=VirtAddressMaint]
[file=vm_fault\.c mapTo=KernelFaultHdler]
[dir=[un]fs mapTo=FileSystem]

| dir=sparc/mem. * mapTo=Memory]

[file=pmap.* mapTo=HardwareTrans]

[file=vm_pageout\.cmapTo=VMPolicy]

-
HardwareTrans [y 51

-7 - ‘ '- RN
- S0 \8 N
/ .. “ \
/ : A} \
. aa

. | KemelFaultHdler |) 2 \ 7

4\
\
Pt 2
\

I

[
oy 10 | Pager | ;21
| L
\

[
|
| -
| B
| "
[
! \ 7NN T~ o
° : \ // ! \
. v ! K [\
| 6 6 . \ / 3 | FileSystem | ; 57
|
| ~
| .
|
|
|
|
|
|
\

\ p B l
v / e I
A / s 9 | I
Compare the T
VirtAddressMaint | 61 ,' 3 :
|
models '
|
|
Convergence: interactions expected by the developer Modsl
Divergence: interactions that were not expected by the developer o ..
Absences: interactions that were expected but not found ~ ----- > Dieene

.......... = Absence

Case Studies at Microsoft

Subject Program: Microsoft Excel (over one million lines
of C source code.)

Task: a reengineering task
Four week period

The engineer found the approach valuable for
understanding the structure and planning the
reengineering effort.

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

Case Studies at Microsoft

Subject Program: B. Griswold’s program restructuring
tool (6000 lines C++ implementation)

TasK: Design conformance -- which components do not
adhere to layering principles!?

Divergences found by the reflexion model tool helped
programmers revisit the locations and update the code
to ensure the expected structure.

There’s a similar study using SPIN OS as a subject
program.

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

Discussion

® When will you use it?
® Check what you intended matches your source code
® Working desigh document => program understanding
® When not to use this - small program just read it

® What do you like about it?

® |terative design conformance checking

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

Discussion

® What are limitations of reflexion model?
® mapping is painful.
mapping is only restricted to entities

high level models only captures structural aspects. (types, temporal
semantics)

crosscutting concerns --> many high level models that model different
aspects

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

Contributions

® Lightweight -- minimal burden on a programmer side

® Approximate -- can start with a coarse model and then
refine it iteratively.

® Scalable - can run a million lines of code

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

My general thoughts on
Software Reflexion Model

Software Reflexion Model allows programmers to check
design conformance to a high-level mental model.

A very simple idea, yet very powerful, and it has
practical impact

It bridges the gap between software architecture (design)
models and implementation models

Its use as a design conformance tool is somewhat similar
to program verification.

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

Practical Implications of
Software Evolution Research

® Concern Graph
® Delta Debugging

® Regression Testing Selection

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

Preview for Next Monday

® We will continue to discuss reverse engineering and
knowledge discovery => software metrics & visualization

® Lanza et al. Polymetric Views (Mon, 4/20)

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

Announcement

Preliminary grading guidelines for projects / literature
surveys are uploaded on the blackboard.

There is no class lecture on 29th. Use it for your project
presentation / report preparation.

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

