
EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

Lecture 24
Software Visualization and Metrics

Polymetric Views

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

Today’s Agenda (1)

• Discussion on Practical Applications of Software Evolution
Research

• Concern Graph

• Delta Debugging

• Regression Test Selection

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

Today’s Agenda (2)

• Class presentations

• Meiru (skeptic)

• Polymetric Views, Lanza et al. TSE 2003

• Some slides are borrowed from Dr. Michele Lanza at
the University of Lugano, Switzerland

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

Recap of
Software Reflexion Model (1)

• Software Reflexion Model allows programmers to
iteratively refine their high-level mental model and
compare it to source implementation

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

Recap of Software Reflexion
Model (2)

1. Enable a software engineer to produce a reasonable first-
cut of a high-level model.

2. Extract a low-level model using a static analysis or a
dynamic analysis

3. Enable the engineer to map the high-level model and
source code.

4. Then the reflexion model tool computes agreement and
disagreement between the high-level model and the
source code.

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

Discussion - Concern Graph

• What are key ideas of FEAT?

•

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

Discussion - Concern Graph

• How can you use or adopt the key ideas of Concern
Graph when you do not have the FEAT tool?s

•

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

Discussion - Delta Debugging

• What are key ideas of Delta Debugging?

•

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

Discussion - Delta Debugging

• How can you use the key ideas of Delta Debugging when
you need to identify code that is responsible for faulty
behavior? (Imagine that you do not have DD tool that
can run on your codebase.)

•

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

Discussion - Regression Testing

• What are key ideas of Orso et al.’s regression test
selection?

•

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

Discussion - Delta Debugging

• How can you use the key ideas of RTS when you need to
run regression tests with the RTS tool?

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

Information Visualization

• Human eyes and brain interpret visual information in
order to “react to the world.”

7

Software Visualization

“Software Visualization is the use of the crafts of typography,
graphic design, animation, and cinematography with
modern human-computer interaction and computer
graphics technology to facilitate both the human
understanding and effective use of computer software.”

 Price, Baecker and Small, “Introduction to Software Visualization”

8

Conceptual Problem

"Software is intangible, having no physical shape or
size. Software visualization tools use graphical
techniques to make software visible by displaying
programs, program artifacts and program
behavior.”

 [Thomas Ball]

29

Lightweight Approaches

Already existing approaches and tools exist:
 hyperbolic views, fish-eye views, spring layouts, …
 Rigi, ShrimpView, Creole, Gsee, …
 Some of them are even copyrighted and/or commercial tools!

 Why are they not widely used?

 The reengineering context does not permit heavy-weight approaches
 Let’s do it lightweight then…

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

Polymetric Views

• Polymetric Views - A lightweight Visual Approach to
Reverse Engineering, Michaele Lanza and Stephane
Ducasse, TSE 2003

• Lightweight software visualization enriched
software metrics

• Some slides are borrowed from Dr. Lanza.

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

Motivation

• Large software systems are difficult to understand.

• When can you use this system for doing what?

• Why this particular approach of combining
visualization and metrics?

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

When to use this system?

• Reengineering a legacy code

• It is not age that turns a piece of software into a
legacy system, but the rate at which it has developed
and adapted.

• => Programmers do not know the problem area of
this system or where to get started.

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

For doing What?

• Assess the overall quality of the system and gain an overview of
the system in terms of size, complexity, and structure

• Locate and understand the most important classes

• Identify exceptional classes in terms of size and / or
complexity

• e.g., a god class: a class that has grown over the years ending
up with too many responsibilities

• e.g., a long method that should be split up into smaller,
more reusable methods

30

Object-Oriented Reverse Engineering

 Goal: take a (large legacy) software system and “understand” it, i.e.,
construct a mental model of the system

 Problem: the software system in question is
 Unknown, very large, and complex
 Domain- and language-specific
 Seldom documented or commented
 “In bad shape”

?

31

Object-Oriented Reverse Engineering (II)

 Constructing a mental model requires information about the system:

 Top-down approaches

 Bottom-up approaches

 Mixed Approaches

 There is no “silver bullet” methodology
 Every reverse engineering situation is unique
 Need for flexibility, customizability, scalability, and simplicity

35

A simple Solution - The Polymetric View

A lightweight combination of two approaches:
Software visualization (reduction of complexity, intuitive)
Software metrics (scalability, assessment)

 Interactivity (iterative process, silver bullet impossible)
Does not replace other techniques, it complements them:

 “Opportunistic code reading”

36

The Polymetric View - Principles

 Visualize software:
 entities as rectangles
 relationships as edges

 Enrich these visualizations:
 Map up to 5 software

metrics on a 2D figure
 Map other kinds of

semantic information on
nominal colors

width metric

height
metric

2 position metrics

Entities

Relationships

color metric

37

The Polymetric View - Example

Nodes = Classes
Edges = Inheritance Relationships

Width = Number of Attributes
Height = Number of Methods
Color = Number of Lines of Code

System Complexity View

38

The Polymetric View - Example (II)

• Get an impression (build a first raw mental model)
of the system, know the size, structure, and
complexity of the system in terms of classes and
inheritance hierarchies
• Locate important (domain model) hierarchies, see
if there are any deep, nested hierarchies
• Locate large classes (standalone, within
inheritance hierarchy), locate stateful classes and
classes with behaviour

• Count the classes, look at the displayed nodes,
count the hierarchies
• Search for node hierarchies, look at the size and
shape of hierarchies, examine the structure of
hierarchies
• Search big nodes, note their position, look for tall
nodes, look for wide nodes, look for dark nodes,
compare their size and shape, “read” their name =>
opportunistic code reading

System Complexity View

Reverse engineering goals View-supported tasks

Nodes = Classes
Edges = Inheritance
 Relationships

Width = # attributes
Height = # methods
Color = # lines of code

41

Coarse-grained Polymetric Views - Example

Method Efficiency Correlation View

Nodes: Methods
Edges: -
Size: Number of method parameters
Position X: Number of lines of code
Position Y: Number of statements

LOC

NOS

Goals:
• Detect overly long methods
• Detect “dead” code
• Detect badly formatted methods
• Get an impression of the system in terms of coding
style
• Know the size of the system in # methods

42

Inheritance Classification View

Boxes: Classes
Edges: Inheritance
Width: Number of Methods Added
Height: Number of Methods Overridden
Color: Number of Method Extended

43

Data Storage Class Detection View

Boxes: Classes
Width: Number of Methods
Height: Lines of Code
Color: Lines of Code

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

Evaluation: Industrial Case
Study

• 1.2 Million lines in C++

• “The---often initially skeptical---developers were
surprised that we had not only gained an overview over
such large systems, but had also uncovered many design
falws in such a short time.”

• “Even though they were aware of at least half of the
problems we found, many developers saw the complete
software system for the first time.”

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

My general thoughts on
Polymetric Views

• Pros:

• Views are customizable

• Simple approach yet powerful

• Cons:

• Visual language must be learned

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

Recap

• Polymetric view is a customizable software visualization
tool enriched software metrics.

• This tool targets initial understanding of a legacy system.

• This tool can help programmers develop a high-level
mental model.

• It is simple, powerful, scalable, and customizable, but it
requires some training to parse these generated views.

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

Preview for This Wednesday

• We will move onto research on code duplication.

• Automatic clone detection: CCFinder, Kamiya et al.
TSE 2002

• Empirical studies of clones: Clone genealogies, Kim et
al. FSE 2005

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

Announcement (1)

• Your final report draft is due tomorrow, 9 PM.

• Your grade review period ends on Apr 27th 11:50 PM.

• If your grade is missing or incorrect, please talk to TA.

• After 11:50 PM on Apr 28th, everything will be
finalized except ones that require grading.

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

Announcement (2)

• You must come to class this wednesday to receive
your assignments for peer reviews.

• Your assignment (discussion on practical uses of
software evolution research, part 2) is handed out today
and will be due on Monday, April 27th.

