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Today’s Agenda (1)

• Recap of Polymetric Views 

• Class Presentation 

• Suchitra (advocate) 

• Reza (skeptic) 
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Today’s Agenda (2)

• CCFinder, Kamiya et al. TSE 2002
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Recap of Polymetric Views  

• Polymetric view is a customizable software visualization 
tool enriched software metrics. 

• This tool targets initial understanding of a legacy system. 

• This tool can help programmers develop a high-level 
mental model. 

• It is simple, powerful, scalable, and customizable; 
however, it requires some training to parse these 
generated views. 
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Class Presentation

• Suchitra (advocate) 

• Reza (skeptic) 
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CCFinder

• CCFinder: A multilinguistic token-based code clone 
detection system for large scale source code, Kamiya et 
al. TSE 2002
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Definition of Code Clones

• There is no precise or consistent definition on what 
clones are. 

• “a code portion in source files that is identical or 
similar to another code” 

• Clone are often operationally defined by a definition 
of a clone detector. 
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When and Why do 
programmers create clones? 
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When and Why do 
programmers create clones? 

• What we have is slight different what we want. 

• When reusing code as a mental macro template

• Due to programming language limitations

• Legacy code is well-tested and often reliable.

• Management reasons

• A team does not want to create a dependency on another team’s code. 

• A team does not support other teams’ usage scenarios and 
customization 

• Automatic code generation
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Why is code cloning a problem 
during software evolution? 
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Why is code cloning a problem 
during software evolution? 

• When a fault is found in one system, it may have to be 
propagated to other counterpart systems. 

• When cloned systems require similar changes, all systems 
need to be modified consistently. 

• If you miss to update these clones consistently, missed 
updates could lead to a potential bug. 

• Redundant development efforts 

• Code plagiarism
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Research problem addressed 
by CCFinder

• How can we find clones written in popular 
programming languages in a fast & scalable way? 

• industrial strength

• million-line size system within affordable computation 
time and memory

• can use heuristics for finding helpful clones 

• robust to renaming & small edits 

• limited uses of language-dependent clone detection 
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Approach

• Language-dependent parts 

• Lexical analysis 

• Rule-based source transformation 

• Language-independent parts: 

• Suffix-tree matching algorithm for matching token 
sequences 
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Rule-based Transformations

• Remove package names

• Supplement callees

• Remove initialization lists

• Separate class definitions

• Remove accessibility keywords

• Convert to compound block 
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Other minor contributions

• Similar to duploc’s scatter-plot visualization 

• Suggestions of metrics for clones 
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Evaluation (1)

• Research questions

• RQ1: Is CCFinder scalable and can be applied to industry 
size programs?

• e.g. Two versions of OpenOffice. 10 million lines in 
total. 68 minutes

• e.g. FreeBSD, NetBSD, and OpenBSD 

• RQ2:  What is the impact of each transformation rule? 
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Evaluation (2)

• RQ3: Can CCFinder be used for investigating where and 
how similar code fragments are used among similar 
software systems such as FreeBSD, NetBSD, and Linux?

• A hypothesis: FreeBSD and NetBSD are more similar 
to each other than Linux. 

• Results: about 40% of source files in FreeBSD have 
clones with NetBSD; whereas less than 5% of source 
fules in FreeBSD or NetBSD have clones with Linux.
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Other Existing Clone 
Detection Techniques (1)

• String 

• Baker’s Dup: a lexer and a line-based string matching 
tool: it removes white spaces and comments; replaces 
identifiers; concatenates all files; hashes each line for 
comparison; and extracts a set of pairs of longest 
matches using a suffix tree algorithm 

• Token 

• CCFinder transforms tokens using a language specific 
rules and performs a token-by-token comparison
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Other Existing Clone 
Detection Techniques (2)

• AST 

• Baxter et al.’s CloneDr parses source code to build an abstract 
syntax tree, compares its subtrees by characterization metrics. 

• Jiang et al. and Koschke et al.  

• PDG

• Komondoor and Horwitz clone detector finds isomorphic PDG 
subgraphs using program slicing 

• Krinke uses a k-length patch matching to find similar PDG 
subgraphs. 

• PDG-based clone detectors are robst to reordered statements, 
code insertion and deletion, intertwined code, non-contiguous 
code. 
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Other Existing Clone 
Detection Techniques (3)

• Metric-based

• Metric-based clone detectors compare various metrics called 
fingerprinting functions. They find clones at a particular syntactic 
granularity such as a class, a function, or a method because these 
fingerprints are often defined for a particular syntactic unit. 
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My general thoughts on 
CCFinder

• CCFinder is a robust and scalable clone detector.  

• As there is no consistent definition of code clones, 
finding X% of clones in one system does not mean very 
much; however, 

• Its case studies show that CCFinder can be applied to 
industrial size programs. 

• Its case studies show that CCFinder can be used for 
checking hypotheses about the origin of a system. 
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Revisiting this course’s goal (1)

• I hope you had a fun learning about state-of-the-art 
methods and tools in software evolution research. 

• You have learned how to break down challenges in 
constructing and evolving software. 

• You have learned how to cope with software 
engineering problems systematically.

• Now you probably know that building and evolving 
large scale software systems is challenging, yet there 
are systematic solutions (tool support and techniques) 
out there. 
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Revisiting this course’s goal (2)

• I hope you gained confidence in doing research. Why? I 
believe that research skills are important for both 
practitioners and researchers. 

• I hope you gained perspectives in identifying and 
formulating research questions.

• I hope you now have learned how to identify open 
problems through a literature survey. 

• I hope you are more comfortable about reading research 
papers critically and evaluating research works. 

• I hope you learned the importance of evaluation 
component and how to evaluate research solutions.   
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Preview for Next Lecture

• We will continue with code duplication research. 

• Empirical studies of code clone genealogies, Kim et al. 
FSE 2005 
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Announcement

• The peer review form is available on the blackboard. 

• Please take your graded homework -- practical uses of 
software evolution research, part 1.  

• Your grade review period ends on  Apr 27th 11:50 PM. 


