
EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

Lecture 25
Clone Detection

CCFinder

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

Today’s Agenda (1)

• Recap of Polymetric Views

• Class Presentation

• Suchitra (advocate)

• Reza (skeptic)

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

Today’s Agenda (2)

• CCFinder, Kamiya et al. TSE 2002

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

Recap of Polymetric Views

• Polymetric view is a customizable software visualization
tool enriched software metrics.

• This tool targets initial understanding of a legacy system.

• This tool can help programmers develop a high-level
mental model.

• It is simple, powerful, scalable, and customizable;
however, it requires some training to parse these
generated views.

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

Class Presentation

• Suchitra (advocate)

• Reza (skeptic)

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

CCFinder

• CCFinder: A multilinguistic token-based code clone
detection system for large scale source code, Kamiya et
al. TSE 2002

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

Definition of Code Clones

• There is no precise or consistent definition on what
clones are.

• “a code portion in source files that is identical or
similar to another code”

• Clone are often operationally defined by a definition
of a clone detector.

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

When and Why do
programmers create clones?

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

When and Why do
programmers create clones?

• What we have is slight different what we want.

• When reusing code as a mental macro template

• Due to programming language limitations

• Legacy code is well-tested and often reliable.

• Management reasons

• A team does not want to create a dependency on another team’s code.

• A team does not support other teams’ usage scenarios and
customization

• Automatic code generation

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

Why is code cloning a problem
during software evolution?

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

Why is code cloning a problem
during software evolution?

• When a fault is found in one system, it may have to be
propagated to other counterpart systems.

• When cloned systems require similar changes, all systems
need to be modified consistently.

• If you miss to update these clones consistently, missed
updates could lead to a potential bug.

• Redundant development efforts

• Code plagiarism

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

Research problem addressed
by CCFinder

• How can we find clones written in popular
programming languages in a fast & scalable way?

• industrial strength

• million-line size system within affordable computation
time and memory

• can use heuristics for finding helpful clones

• robust to renaming & small edits

• limited uses of language-dependent clone detection

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

Approach

• Language-dependent parts

• Lexical analysis

• Rule-based source transformation

• Language-independent parts:

• Suffix-tree matching algorithm for matching token
sequences

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

Rule-based Transformations

• Remove package names

• Supplement callees

• Remove initialization lists

• Separate class definitions

• Remove accessibility keywords

• Convert to compound block

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

Parameter Replacement
!"#$% &%"'()#$ *)(+ '"" (+% (&'$,-#&.'()#$ &/"%,), !#.0'&%1
(# ' !"#$% &%"'()#$ *)(+ ' ,/2,%(#- (+% (&'$,-#&.'()#$ &/"%,3

!"# $%&'()* +,' -./01/&(23 40,2% 5/('*
/26 40,2% 40/**%*

4#& 5/'$()('()6% %6'"/'()#$7 ,%"%!()#$7 '$1 -)"(%&)$8 #-
!"#$%,7 *% 1%-)$% ,%6%&'" .%(&)!, -#& !"#$% !"',,%,3 9+%,%
.%(&)!, %$'2"% /, (# '$,*%& 5/%,()#$,7 ,/!+ ', :*+)!+ !"#$%
!"',, *)"" 2&)$8 (+% "'&8%,(&%1/!()#$ #- !#1% 2; &%*&)()$8
)(+ ' ,+'&%1 &#/()$%<= #& :+)!+ !"#$% !#1% 0#&()#$),
*)1%"; #& -&%5/%$("; /,%1)$ (+% ,;,(%.<=

!"#"$ %&'()*+ %,- ./01 %,- .20

!"#>$?), (+% "%$8(+ #- ' !#1% 0#&()#$ #- $3 !"#>%? -#& !"#$%
!"',, %), (+% .'@)./. !"#>$? -#& %'!+ $)$ %3 9+% "%$8(+
!'$ 2% .%',/&%1 2; (+% $/.2%& #- (#A%$,7 #& (+% ,)B%
.%',/&%, ,/!+ ', CDE >(+% $/.2%& #- ")$%,7)$!"/1)$8 $/""
'$1 !#..%$(")$%,?7 #& FCDE >(+% $/.2%& #- ")$%,7 %@!%0(
$/"" #& !#..%$(")$%,?3 G$ #/& '00&#'!+7 (+% $/.2%& #-
(#A%$, #- %'!+ !#1% 0#&()#$ #- ' !"#$% !"',,),)1%$()!'"
*+%$)(), .%',/&%1 #$ ' (&'$,-#&.%1 (#A%$,%5/%$!%H

!"#$%" &' "()* ++,$-.&/* " #0('$($-10$2'$+ '3!&-45"2&. +3.& +(3-& .&'&+'$3- 2%2'&# ,3/ ("/1& 2+"(& 230/+& +3.& 678

,9:) ;) '<= >?@= ABC=D EADAF=C=D D=EGA>=F=HC)

,9:) 7) #ACD9I J<?K9H: C<= J>ACC=D EG?C C?L=H4MN4C?L=H)

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 22, 2009 at 09:02 from IEEE Xplore. Restrictions apply.

!"#$"%& '()*+ &,-& .! /-0-11"1 &' &," $-.% 2.-#'%-1 '(&,"
$-&0.34 5," 6'2" /'0&.'%! (0'$ 1.%" 7 &' 8 -%2 (0'$ 1.%" 77
&' 78 $-9" - 61'%" /-.04 5," 6'2" /'0&.'%! (0'$ 1.%" : &' 7;
-%2 (0'$ 7< &' =7 $-9" -%'&,"0 61'%" /-.04 >?@/'0&.'%! '(
&,'!" 61'%"! 6-% -1!' @" 61'%" /-.0!A ,'B"C"0D B" -0" '%1E
.%&"0"!&"2 .% &,'!" '(&," $-3.$?$ 1"%#&, -%2 &," &''1 2'"!
%'& 0"/'0& &,".0 !?@/'0&.'%!4

F"0"D - 61'%"G0"1-&.'% .! 2"(.%"2 B.&, &," &0-%!('0$-&.'%
0?1"! -%2 &," /-0-$"&"0G0"/1-6"$"%& 2"!60.@"2 -@'C"4
H&,"0 61'%" 0"1-&.'%! 6-% @" 2"(.%"2 B.&, 2.(("0"%&
&0-%!('0$-&.'% 0?1"! '0 @E %"#1"6&.%# &," /-0-$"&"0
0"/1-6"$"%&4 I% &," 6-!" !&?2."! 2"!60.@"2 .% >"6&.'% JD -

!"# $%%% &'()*(+&$,)* ,) *,-&.('% %)/$)%%'$)/0 1,23 4#0),3 50 6728 4994

&(:2% 4
&;<=>?@;A<BC@= 'DEF> ?@; 6<G<

-CH3 43 *<AIEF J@KF3 -CH3 L3 &MF B;<=>?@;AFK J@KF NO BMF B;<=>?@;A<BC@= ;DEF>3

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 22, 2009 at 09:02 from IEEE Xplore. Restrictions apply.

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

Other minor contributions

• Similar to duploc’s scatter-plot visualization

• Suggestions of metrics for clones

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

Evaluation (1)

• Research questions

• RQ1: Is CCFinder scalable and can be applied to industry
size programs?

• e.g. Two versions of OpenOffice. 10 million lines in
total. 68 minutes

• e.g. FreeBSD, NetBSD, and OpenBSD

• RQ2: What is the impact of each transformation rule?

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

Evaluation (2)

• RQ3: Can CCFinder be used for investigating where and
how similar code fragments are used among similar
software systems such as FreeBSD, NetBSD, and Linux?

• A hypothesis: FreeBSD and NetBSD are more similar
to each other than Linux.

• Results: about 40% of source files in FreeBSD have
clones with NetBSD; whereas less than 5% of source
fules in FreeBSD or NetBSD have clones with Linux.

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

Other Existing Clone
Detection Techniques (1)

• String

• Baker’s Dup: a lexer and a line-based string matching
tool: it removes white spaces and comments; replaces
identifiers; concatenates all files; hashes each line for
comparison; and extracts a set of pairs of longest
matches using a suffix tree algorithm

• Token

• CCFinder transforms tokens using a language specific
rules and performs a token-by-token comparison

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

Other Existing Clone
Detection Techniques (2)

• AST

• Baxter et al.’s CloneDr parses source code to build an abstract
syntax tree, compares its subtrees by characterization metrics.

• Jiang et al. and Koschke et al.

• PDG

• Komondoor and Horwitz clone detector finds isomorphic PDG
subgraphs using program slicing

• Krinke uses a k-length patch matching to find similar PDG
subgraphs.

• PDG-based clone detectors are robst to reordered statements,
code insertion and deletion, intertwined code, non-contiguous
code.

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

Other Existing Clone
Detection Techniques (3)

• Metric-based

• Metric-based clone detectors compare various metrics called
fingerprinting functions. They find clones at a particular syntactic
granularity such as a class, a function, or a method because these
fingerprints are often defined for a particular syntactic unit.

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

My general thoughts on
CCFinder

• CCFinder is a robust and scalable clone detector.

• As there is no consistent definition of code clones,
finding X% of clones in one system does not mean very
much; however,

• Its case studies show that CCFinder can be applied to
industrial size programs.

• Its case studies show that CCFinder can be used for
checking hypotheses about the origin of a system.

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

Revisiting this course’s goal (1)

• I hope you had a fun learning about state-of-the-art
methods and tools in software evolution research.

• You have learned how to break down challenges in
constructing and evolving software.

• You have learned how to cope with software
engineering problems systematically.

• Now you probably know that building and evolving
large scale software systems is challenging, yet there
are systematic solutions (tool support and techniques)
out there.

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

Revisiting this course’s goal (2)

• I hope you gained confidence in doing research. Why? I
believe that research skills are important for both
practitioners and researchers.

• I hope you gained perspectives in identifying and
formulating research questions.

• I hope you now have learned how to identify open
problems through a literature survey.

• I hope you are more comfortable about reading research
papers critically and evaluating research works.

• I hope you learned the importance of evaluation
component and how to evaluate research solutions.

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

Preview for Next Lecture

• We will continue with code duplication research.

• Empirical studies of code clone genealogies, Kim et al.
FSE 2005

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

Announcement

• The peer review form is available on the blackboard.

• Please take your graded homework -- practical uses of
software evolution research, part 1.

• Your grade review period ends on Apr 27th 11:50 PM.

