Lecture 26

Empirical Studies of Clone Evolution
Clone Genealogies

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

Today’s Agenda (1)

® (lass Presentation
® Meiru Che
® Amal Banerjee
® Course Evaluation

® | need a volunteer to collect and deposit course
evaluation forms.

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

Today’s Agenda (2)

® Discussion on practical implications of SE research

® Discussion on “An Empirical Study of Clone Genealogies”

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

Recap of CCFinder

CCFinder is a robust and scalable clone detector.

It transforms a program to a parameterized token
sequence using language dependent transformation rules.

It then use a suffix tree algorithm to find common
contiguous subsequences.

Its case studies show that CCFinder can be applied to
industrial size programs.

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

Class Presentations

® Advocate: Meiru

® Skeptic:Amal

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

Course-Instructor Survey

Instructor’s Name: Kim, Miryung

® This survey is for the instructor, not TA.

Course Abbreviation and Number: EE382V Software
Evolution

Course Unique Number: 16730

Semester and Year: Spring 2009

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

Discussion -
Refactoring

® What is a definition of refactoring?

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

Discussion -
Information Hiding

® What did you learn from the class activity on refactoring?

® (|)What do you need to consider before
restructuring a program!?

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

Discussion -
Information Hiding

® What did you learn from the class activity on refactoring?

® (2) What do you need to consider after restructuring
a program!?

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

Discussion -
Information Hiding

® What is the Information Hiding Principle?

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

Discussion -
Information Hiding

® How can you apply the Information Hiding Principle to
your software design process!

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

Program Differencing

Which tool do you current use to compare program
versions!?

Why is program differencing important in software
evolution research!?

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

Program Differencing

® In this colurse, you have studied many different types of
program differencing tools, such as diff, AST-based diff,
Jdiff, UMLD:iff, and LogicalStructuralDiff.

® (1) Pick one of the above tools and describe its key
ideas and benefits of using it.

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

Program Differencing

® In this colurse, you have studied many different types of
program differencing tools, such as diff, AST-based diff,
Jdiff, UMLD:iff, and LogicalStructuralDiff.

® (2) How will you apply these key ideas in the absence
of the program differencing tool that can run on your
codebase!

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

Clone Genealogy

® An Empirical Study of Code Clone Genealogies, Kim et
al. ESEC/FSE 2005

® Studies of code clone evolution
® Mining software repositories research

® |ts study results challenged one of the most widely-
held conventional wisdom about clones.

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

Conventional Wisdom

Code clones indicate bad smells
of poor design. We must

aggressively refactor clones.

public void updateFrom (Classc) { public void updateFrom (ClassReadercr) {
String cType = Util.makeType(c.Name()); String cType =CTD.convertType (c.Name());
if (seenClasses.contains(cType)) { if (seenClasses.contains(cType)) {
return; return;
b by
seenClasses.add(cType); seenClasses.add(cType);

if (hierarchy !'= null) { if (hierarchy !'= null) {
) }....

Our Previous Study of Copy and Paste
Programming Practices at IBM

[Kim et al. ISESE2004]
 Even skilled programmers often create and
manage code clones with clear intent.

- Programmers cannot refactor clones because of
programming language limitations.

- Programmers keep and maintain clones until they
realize how to abstract the common part of clones.

- Programmers often apply similar changes to clones.

Research Questions

How do clones evolve over time?
e consistently changed?

e long-lived (or short-lived)?

e easily refactorable?

Previous Studies of Code Clones

e automatic clone detection

- lexical, syntactic (AST or PDG), metric, etc.

o studies of clone coverage ratio
- gcc (8.7%), JDK (29%), Linux (22.7%), etc.

e studies of clone coverage change

- changes of clone coverage in Linux [Antoniol+02], [Li+04]

These studies do not answer how individual clones changed
with respect to other clones.

Outline

clone genealogy : model and tool
Astudy procedure and results

Model of Clone Evolution

Location overlapping
relationship

Cloning relationship

Code snippet

Clone group
Version i Version i+1 Version i+2 Version i+3

Add Consistent Change Inconsistent Change

T _Evol uxi"‘ion Patternis

Clone genealogy is a set of clone groups connected
by cloning relationships over time.

consistently
changed

/ @ lineage
oy
D
copied @ @ @ lineage
pasted, @ @ @
and modified @

Clone Genealogy Extractor (CGE)

Given multiple versions of a program, V, for 1<k<n.

e find clone groups in each version using CCFinder.
« find cloning relationships among clone groups of V; and

V.., using CCFinder.
« map clones of V; and V., using diff based algorithm.
e separate each connected component of cloning

relationships (a clone genealogy).
e identify clone evolution patterns in each genealogy.

Code Graph
Postscript Report
ReleaseStat LineageStat

s T 2U0~T2Z4 L4548 GoodFact..
[y 9:1.2.0~1.2.4 L:4 S4 Good Nott...
@ CJ1.30
D 33:0.9~1.3.0 L:21 C1 520 Good Fact...
[} 52:1.2.4~1.3.0 L:1 51 Good Fact...
- =] 1:3:1
[2:1.1~1.31 L113C2 511 Good Notft...
[} 45:0.1~1.3.1 L:33 A1 532 Good Notft...
@ 1132
[} 12:0.8.2~1.3.2 L:21 C1 S20 Good Notf...
[} 42:0.1~1.3.2 L:34 A3 R2 C212 S77 Good Fact...
[} 5:1.3.0~1.2.2 L:2 S2 Good Nottt...
@ E1.33
[} 20:1.3.3~1.3.3 L0 Bad Notftr
[y 3:0.9.1~1.3.3 L:23 523 Good Nofft...
[} 33:1.2.3~1.3.2 L0 Good Notft...
[} 48:0.1~1.3.3 L:35 C4 531 Good Fact...
[} 6:1.3.3~1.2.3 L:0 Good Notf...
G140
Cy1.41
142
@ Cd1.43
[} 10:1.4.0~1.4.3 L:3 53 Good Nott...
By1s50
@ J1.51
[} 13:1.4.0~1.5.1 L:5 S5 Good Nott...
@ 152
[} 40:1.4.0~1.5.2 L'6 C1 55 Good Notft..
[} 48:1.2.0~1.5.2 L:110 C1 S8 Good Nottt...
[} 57:1.5.0~1.5.2 L:2 52 Good Nott...
[} 6:1.4.0~1.52 L:6 A3 R2 C1 12 S4 Good Notft...
Cy164
By1s2

0

Layout

& Group View

bogual B 1.8
(5

bogual 6 1_28
#2

(0Tl Tin2,02.88%)
{o0.R Y01 RX0202.100%) D_OLDD_RMV

v152<6 vl52 28
&
N

T96

(n0.,00,100%)n1.,01,100%)
(0020,100%¥0101,100%)D_CHE

T94

Ls0
(n0.00.100%)n1.01,100%§02.J)
{00 N0 807 Kol n1 837 o2 RIART

(n0,01,100%¥n1J)
{o0.R Yo 1n0,100% K02 RIART

T94

(n0Jinl 00,100%)n2.01,100%:)
{011,100 Y0102, 100%)4C

I Close || Compare || Write Note || Toggle Refactor || Toggle Good || Trace Forward || Trace Backward |

11526

@ [1.4.0:9Good Notftr
©- [1.4.1:9Good Notftr
©-[]1.4.2:9G00d Notftr
©- [1.4.3:9Good Notftr
©- [71.5.0:5Go0d Notftr
@[3 1.5.1:5G00d Notftr
®- [1.5.2:28Good Notftr
©-] 1.5.2:6Go0d Notftr

16:1.4.0~1.5.2 L:6 A3 R2 C1 12 S4 Good Notftr Control Logic

1.5.0.DSRecord | 1.5 -

this.key = key;

}

Record

rrFromWire{Name name, inttype, int dclass, long ttl, int length,
DataBytelnputStream in)

throws |OException

KEYRecord rec = new KEYRecord{name, dclass, tl);
if {in == null)
return rec;
rec.flags = in.readShort();
rec.proto = in.readByte();
rec.alg = in.readByte(;
if {length = 4) {
rec.key = new hyte[length - 4];
in.readirec.key),

}

return rec;
i
Record

rdataFromString{Name name, int dclass, long tl, Tokenizer st, Name origin)
throws I0Exception

Outline

vImotivation
viclone genealogy : model and tool
dstudy procedure and results

Two Java Subject Programs

Program carol dnsjava
LOC /878 ~ 23731 5756 ~ 21188
Duration 2 years 2 months | 5 years 8 months

versions 37 224

versions: a set of check-in snapshots that increased or decreased the total lines
of code clones

