
EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

Lecture 26
Empirical Studies of Clone Evolution

Clone Genealogies

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

Today’s Agenda (1)

• Class Presentation

• Meiru Che

• Amal Banerjee

• Course Evaluation

• I need a volunteer to collect and deposit course
evaluation forms.

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

Today’s Agenda (2)

• Discussion on practical implications of SE research

• Discussion on “An Empirical Study of Clone Genealogies”

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

Recap of CCFinder

• CCFinder is a robust and scalable clone detector.

• It transforms a program to a parameterized token
sequence using language dependent transformation rules.

• It then use a suffix tree algorithm to find common
contiguous subsequences.

• Its case studies show that CCFinder can be applied to
industrial size programs.

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

Class Presentations

• Advocate: Meiru

• Skeptic: Amal

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

Course-Instructor Survey

• Instructor’s Name: Kim, Miryung

• This survey is for the instructor, not TA.

• Course Abbreviation and Number: EE382V Software
Evolution

• Course Unique Number: 16730

• Semester and Year: Spring 2009

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

Discussion -
Refactoring

• What is a definition of refactoring?

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

Discussion -
Information Hiding

• What did you learn from the class activity on refactoring?

• (1) What do you need to consider before
restructuring a program?

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

Discussion -
Information Hiding

• What did you learn from the class activity on refactoring?

• (2) What do you need to consider after restructuring
a program?

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

Discussion -
Information Hiding

• What is the Information Hiding Principle?

•

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

Discussion -
Information Hiding

• How can you apply the Information Hiding Principle to
your software design process?

•

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

Program Differencing

• Which tool do you current use to compare program
versions?

• Why is program differencing important in software
evolution research?

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

Program Differencing

• In this colurse, you have studied many different types of
program differencing tools, such as diff, AST-based diff,
Jdiff, UMLDiff, and LogicalStructuralDiff.

• (1) Pick one of the above tools and describe its key
ideas and benefits of using it.

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

Program Differencing

• In this colurse, you have studied many different types of
program differencing tools, such as diff, AST-based diff,
Jdiff, UMLDiff, and LogicalStructuralDiff.

• (2) How will you apply these key ideas in the absence
of the program differencing tool that can run on your
codebase?

EE 382V Spring 2009 Software Evolution - Instructor Miryung Kim

Clone Genealogy

• An Empirical Study of Code Clone Genealogies, Kim et
al. ESEC/FSE 2005

• Studies of code clone evolution

• Mining software repositories research

• Its study results challenged one of the most widely-
held conventional wisdom about clones.

Conventional Wisdom

 public void updateFrom (Class c) {
 String cType = Util.makeType(c.Name());
 if (seenClasses.contains(cType)) {
 return;
 }
 seenClasses.add(cType);
 if (hierarchy != null) {
 ….
 }
 …

 public void updateFrom (ClassReader cr) {
 String cType =CTD.convertType (c.Name());
 if (seenClasses.contains(cType)) {
 return;
 }
 seenClasses.add(cType);
 if (hierarchy != null) {
 ….
 }
 …

Code clones indicate bad smells
of poor design. We must

aggressively refactor clones.

Our Previous Study of Copy and Paste
Programming Practices at IBM

• Even skilled programmers often create and
manage code clones with clear intent.
– Programmers cannot refactor clones because of

programming language limitations.

– Programmers keep and maintain clones until they
realize how to abstract the common part of clones.

– Programmers often apply similar changes to clones.

[Kim et al. ISESE2004]

Research Questions

How do clones evolve over time?
• consistently changed?
• long-lived (or short-lived)?
• easily refactorable?

Previous Studies of Code Clones

• automatic clone detection
– lexical, syntactic (AST or PDG), metric, etc.

• studies of clone coverage ratio
– gcc (8.7%), JDK (29%), Linux (22.7%), etc.

• studies of clone coverage change
– changes of clone coverage in Linux [Antoniol+02], [Li+04]

These studies do not answer how individual clones changed
with respect to other clones.

motivation
clone genealogy : model and tool
study procedure and results

Outline

Model of Clone Evolution

Version i Version i+1 Version i+2 Version i+3
Clone group

Code snippet

Location overlapping
relationship

Cloning relationship

Consistent ChangeAdd Inconsistent Change

Evolution Patterns

A

B

A

B
C

D

A

B
C

D D

A

B

A

B

C

D

B

A

C

D

B

A

B

D

A

F

G

E

F

E
F

E

Clone genealogy is a set of clone groups connected
by cloning relationships over time.

copied,
pasted,
and modified

consistently
changed

lineage

lineage

Clone Genealogy Extractor (CGE)

Given multiple versions of a program, Vk for 1≤k≤n.

• find clone groups in each version using CCFinder.
• find cloning relationships among clone groups of Vi and

Vi+1 using CCFinder.
• map clones of Vi and Vi+1 using diff based algorithm.

• separate each connected component of cloning
relationships (a clone genealogy).

• identify clone evolution patterns in each genealogy.

motivation
clone genealogy : model and tool
study procedure and results

Outline

Two Java Subject Programs

Program carol dnsjava
LOC 7878 ~ 23731 5756 ~ 21188

Duration 2 years 2 months 5 years 8 months
versions 37 224

versions: a set of check-in snapshots that increased or decreased the total lines
of code clones

