Lecture 26

Empirical Studies of Clone Evolution
Clone Genealogies
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Today’s Agenda (1)

® (lass Presentation
® Meiru Che
® Amal Banerjee
® Course Evaluation

® | need a volunteer to collect and deposit course
evaluation forms.
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Today’s Agenda (2)

® Discussion on practical implications of SE research

® Discussion on “An Empirical Study of Clone Genealogies”
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Recap of CCFinder

CCFinder is a robust and scalable clone detector.

It transforms a program to a parameterized token
sequence using language dependent transformation rules.

It then use a suffix tree algorithm to find common
contiguous subsequences.

Its case studies show that CCFinder can be applied to
industrial size programs.
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Class Presentations

® Advocate: Meiru

® Skeptic:Amal
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Course-Instructor Survey

Instructor’s Name: Kim, Miryung

® This survey is for the instructor, not TA.

Course Abbreviation and Number: EE382V Software
Evolution

Course Unique Number: 16730

Semester and Year: Spring 2009
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Discussion -
Refactoring

® What is a definition of refactoring?
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Discussion -
Information Hiding

® What did you learn from the class activity on refactoring?

® (|)What do you need to consider before
restructuring a program!?
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Discussion -
Information Hiding

® What did you learn from the class activity on refactoring?

® (2) What do you need to consider after restructuring
a program!?
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Discussion -
Information Hiding

® What is the Information Hiding Principle?
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Discussion -
Information Hiding

® How can you apply the Information Hiding Principle to
your software design process!
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Program Differencing

Which tool do you current use to compare program
versions!?

Why is program differencing important in software
evolution research!?
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Program Differencing

® In this colurse, you have studied many different types of
program differencing tools, such as diff, AST-based diff,
Jdiff, UMLD:iff, and LogicalStructuralDiff.

® (1) Pick one of the above tools and describe its key
ideas and benefits of using it.
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Program Differencing

® In this colurse, you have studied many different types of
program differencing tools, such as diff, AST-based diff,
Jdiff, UMLD:iff, and LogicalStructuralDiff.

® (2) How will you apply these key ideas in the absence
of the program differencing tool that can run on your
codebase!
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Clone Genealogy

® An Empirical Study of Code Clone Genealogies, Kim et
al. ESEC/FSE 2005

® Studies of code clone evolution
® Mining software repositories research

® |ts study results challenged one of the most widely-
held conventional wisdom about clones.
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Conventional Wisdom

Code clones indicate bad smells
of poor design. We must

aggressively refactor clones.

public void updateFrom (Classc) { public void updateFrom (ClassReadercr) {
String cType = Util.makeType(c.Name()); String cType =CTD.convertType (c.Name());
if (seenClasses.contains(cType)) { if (seenClasses.contains(cType)) {
return; return;
b by
seenClasses.add(cType); seenClasses.add(cType);

if (hierarchy !'= null) { if (hierarchy !'= null) {
) }....




Our Previous Study of Copy and Paste
Programming Practices at IBM

[Kim et al. ISESE2004]
 Even skilled programmers often create and
manage code clones with clear intent.

- Programmers cannot refactor clones because of
programming language limitations.

- Programmers keep and maintain clones until they
realize how to abstract the common part of clones.

- Programmers often apply similar changes to clones.




Research Questions

How do clones evolve over time?
e consistently changed?

e long-lived (or short-lived)?

e easily refactorable?




Previous Studies of Code Clones

e automatic clone detection

- lexical, syntactic (AST or PDG), metric, etc.

o studies of clone coverage ratio
- gcc (8.7%), JDK (29%), Linux (22.7%), etc.

e studies of clone coverage change

- changes of clone coverage in Linux [Antoniol+02], [Li+04]

These studies do not answer how individual clones changed
with respect to other clones.




Outline

clone genealogy : model and tool
Astudy procedure and results




Model of Clone Evolution

Location overlapping
relationship

Cloning relationship

Code snippet
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Clone genealogy is a set of clone groups connected
by cloning relationships over time.

consistently
changed

/ @ lineage
oy
D
copied @ @ @ lineage
pasted, @ @ @
and modified @




Clone Genealogy Extractor (CGE)

Given multiple versions of a program, V, for 1<k<n.

e find clone groups in each version using CCFinder.
« find cloning relationships among clone groups of V; and

V.., using CCFinder.
« map clones of V; and V., using diff based algorithm.
e separate each connected component of cloning

relationships (a clone genealogy).
e identify clone evolution patterns in each genealogy.
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this.key = key;

}

Record

rrFromWire{Name name, inttype, int dclass, long ttl, int length,
DataBytelnputStream in)

throws |OException

KEYRecord rec = new KEYRecord{name, dclass, tl);
if {in == null)
return rec;
rec.flags = in.readShort();
rec.proto = in.readByte();
rec.alg = in.readByte(;
if {length = 4) {
rec.key = new hyte[length - 4];
in.readirec.key),

}

return rec;
i
Record

rdataFromString{Name name, int dclass, long tl, Tokenizer st, Name origin)
throws I0Exception




Outline

vImotivation
viclone genealogy : model and tool
dstudy procedure and results




Two Java Subject Programs

Program carol dnsjava
LOC /878 ~ 23731 5756 ~ 21188
Duration 2 years 2 months | 5 years 8 months

versions 37 224

versions: a set of check-in snapshots that increased or decreased the total lines
of code clones




