
Lecture 3
Parnas’ Information Hiding

Announcement

• SSE: Students in Software Engineering

• http://www.edge.utexas.edu/sse/

• Software Engineering Reading Group

• 11AM - 12PM on every other friday

• http://users.ece.utexas.edu/~miryung/
teaching/SE-Seminar.Spring09.html

Announcement

• Reading assignments are due 10 PM. Sorry
for confusion last time!

• We will grade the best 20 reviews

instead of 24 reviews to give you more
time for your project.

Announcement

• Tool evaluation paper expectation

• Tutorials on program representations are
linked. (Review them before Lecture 8.)

• KWIC example code is available on the
blackboard

• Can you post a thread on the discussion
board?

Announcement

• Exemplary literature survey papers and
tool evaluation papers are on the
blackboard.

• Questions?

Example Project (1): History-
based Code Completion

• Motivation: Programmers need assistance in remembering long
API names. Most modern IDEs provide code completion
feature to increase productivity and to prevent compilation
errors.

• Problem: existing code completion algorithms only suggest
candidate APIs based on starting alphabets but do not consider
history of which code completion suggestions that
programmers took in the past

• Approach: propose a new algorithm that considers the history
of which code completion suggestions programmers took in
the past.

Example Project (1): History-
based Code Completion

• Implementation: implement a new code completion algorithm
in Eclipse

• Evaluation Plan: Download some code from OSS, remove some
API calls and see which APIs are suggested your algorithm and
compare those suggestions with the ones suggested by the
default code completion algorithm in Eclipse

• Identify strengths and weaknesses of your algorithm and
suggest future directions

Example (2): Library Installation
Suggestion based on Open Source

• Motivation: When programmers download open source
software, they often subsequently need to identify and install
libraries as some libraries’ source code cannot be released
together due to licensing reasons.

• Problem: Programmers currently do not have much support
other than reading README files and searching for needed
libraries on the web. Even when they find libraries, their
versions may not be compatible with the current version of
software.

• Approach: Your web-service takes the URL of OSS and
README files or a web-manual. It does some keyword analysis
to identify which libs are required. It automatically runs a
google search to locate these libraries and rank and suggestion
them. Your web-service can also accommodate users’ input
and maintain a set of compatible configurations.

• Evaluation Plan: Download some OSSs. Install them yourself by
manually finding required libraries and checking them by
running the application. Compare that results with your
system’s suggestions.

• Identify strengths and weaknesses of your algorithm and
suggest future directions

Example (2): Library Installation
Suggestion based on Open Source

Example Project (3): Suggestion
of when to refactor

• Motivation: Code decays without refactoring.

• Problem: Programmers need to know when to refactor.
Refactoring tends to take a low priority.

• Return on refactoring investment depends when to refactor.

• Approach: Identify code smells and suggest refactoring
opportunities. Use metrics to identify bad smells. Program
invariants (precondition/post conditions)

• Implementation:

• Evaluation plan: Compare with existing IDE-refactorings. Users
studies in real tasks.

Example Project (3): Suggestion
of when to refactor

Example Project (3): Suggestion
of when to refactor

• Motivation: Programmers often need to refactor to prevent
code decay due to duplicated code.

• Problem: The return on refactoring investments depends on
how often those code actually require similar changes. If
programmers refactor too early, the refactoring may turn out
to be unnecessary. If programmers refactor too late, the return
on refactoring investments may be marginal.

• Approach: We propose an algorithm that recommends the
appropriate timing for refactoring code duplicates based on
their change history.

• Implementation:

• propose several algorithms for recommending when to
refactor code

• Evaluation plan:

• Apply your algorithm to OSS history and produce cost-
benefit models

Example Project (3): Suggestion
of when to refactor

Parnas’ Information Hiding

• What problem did Parnas discuss in the paper?

•

Modularization

• What does Parnas mean by a “module?”

• What do you mean by a “module” in practice? an object, or
class

Modularization

• Expected Benefits

• Unexpected Pitfalls?

KWIC Requirements

• Input: an ordered set of lines where

• each line is an ordered set of words

• each word is an ordered set of characters

• Output: all circular shifts of all lines in alphabetical order

KWIC Requirements

• Input: an ordered set of lines where each line is an ordered set of words and each word is an ordered set of characters

• My name is Miryung Kim

• Software Evolution

• All circular shifts of all lines

• My name is Miryung Kim

• name is Miryung Kim My

• is Miryung Kim My name

• Miryung Kim My name is

• Kim My name is Miryung

• Software Evolution

• Evolution Software

KWIC Requirements

• All circular shifts of all lines in alphabetical order

• Evolution Software

• Kim My name is Miryung

• Miryung Kim My name is

• My name is Miryung Kim

• Software Evolution

• is Miryung Kim My name

• name is Miryung Kim My

Modularization 1

Master Control

Input Circular Shift Alphabetizing Output

Modularization 2

Master Control

Input Circular Shift Alphabetizing Output

Line Storage

Comparison

Master Control

Input Circular Shift Alphabetizing Output

Modularization 1
Nodes: 5
Edges: 9

Master Control

Input Circular Shift Alphabetizing Output

Line Storage

Modularization 2
Nodes: 6
Edges: 10

What are differences between
two alternative designs?

• Both are decompositions.

• Both share data representations and access methods

• Is the modularization 1 bad?Why?

Changeability Assessment:
Modularization 1

Changes
MasterCont

rol
Input CircularShift Alphabetizer Output

InputFormat !

A Single
Storage

! ! ! ! !

Packing
characters

! ! ! ! !

Index for CS ! ! !

Search or
Partial

Alphabetixe

! !

Changes
MasterCo

ntrol
Input

CircularSh
ift

Alphabetiz
er

Output
LineStorag

e

InputForm
at

!

A Single
Storage

!

Packing
characters

!

Index for
CS

!

Search or
Partial

Alphabetix

!

Changeability Assessment:
Modularization 2

Changeability Comparison

Changes
MasterC
ontrol

Input
CircularS

hift
Alphabeti

zer
Output

InputFor
mat

!

A Single
Storage

! ! ! ! !

Packing
character

s
! ! ! ! !

Index for
CS

! ! !

Search or
Partial

Alphabeti
xe

! !

Change
s

Master
Control

Input
Circular

Shift
Alphabe

tizer
Output

LineSto
rage

InputFo
rmat

!

A Single
Storage

!

Packing
charact

ers
!

Index
for CS

!

Search
or

Partial
Alphabe

!

Modularization 1: Modularization 2:

Independent Development

• Modularization 1: The decision to store line indices and word
indices must be communicated among all module developers

• Modularization: API names and types

Functional Decomposition vs.
Information Hiding

• Functional decomposition (Flowchart approach)

• Each module corresponds to each step in a flow chart.

• Information Hiding

• Each module corresponds to a design decision that are likely
to change and that must be hidden from other modules.

• Interfaces and definitions were chosen to reveal as little as
possibles.

0

Connecting Design Principles
to Source Code
for Improved Ease of Change

Vibha Sazawal
Department of Computer Science and Engineering
University of Washington

Now a professor at University of Maryland, College Park
These slides are borrowed from Dr. Sazawal’s talk.

16

The design snippets approach

Goals

• help programmers make decisions related to
ease of change

• remain easy to use in the context of existing code

Insight: these goals can be achieved by

• partial views of a system

• that are co-displayed with code, and

• provide a bridge between code and design principles

These views are called design snippets.

12

Contributions

• Empirical investigation of programmer work practices

• Four specific types of design snippets

– derived from the information hiding principle
∗ information hiding snippet
∗ type assumptions snippet

– derived from the low coupling principle
∗ dependencies snippet
∗ de facto interfaces snippet

• Empirical validation of this approach

21

Design principles: information hiding
and low coupling

Information hiding [Parnas72, Parnas84]

• “details that are likely to change should be the secrets of
separate modules”

• “the only assumptions that should appear in the
interfaces between modules are those that are considered
unlikely to change”

Low coupling [Yourdon78]

• helps reduce the effects of interface change

• helps programmers extract subsets of systems

22

Problem: a gap between design
principles and code

?

There is no direct mapping between design terms
(such as secret, volatile, and assumption) and code.

The gap between design principles and code

• complicates adherence to design principles

• results in design decision errors

23

Design snippets bridge the gap

design snippets

Design snippets approach

• accommodate common mappings between design
principles and Java code
∗ example: module ⇒ class

• present information that is
∗ needed to follow design principles
∗ relevant to the current Java file

24

Information hiding snippet

Goal: help programmers hide implementation details

Side-by-side view: for comparison of interface and
implementation

Secret types: non-parameter, non-field types used by a class

25

Secret types

Secret types, together with private members, provide a useful,
succinct view of implementation details.

26

Type assumptions snippet

Goal: identify assumptions that may violate information hiding

• casts to parameters and return values

Why focus on type assumptions?

• often symptoms of larger problems with information sharing

• casts in client code are often hidden to maintainers

Recap

• Information Hiding principle means “identify design decisions
that are likely to change and hide them within each module.”

• It does not mean using OO language, using abstract data types,
using built-in libraries, using of message passing, etc.

• But what happens if you cannot anticipate what are likely to
change?

